共查询到20条相似文献,搜索用时 15 毫秒
1.
Ritter M Su Z Spitzer KW Ishida H Barry WH 《American journal of physiology. Heart and circulatory physiology》2000,278(2):H666-H669
Ca(2+) sparks are spatially localized intracellular Ca(2+) release events that were first described in 1993. Sparks have been ascribed to sarcoplasmic reticulum Ca(2+) release channel (ryanodine receptor, RyR) opening induced by Ca(2+) influx via L-type Ca(2+) channels or by spontaneous RyR openings and have been thought to reflect Ca(2+) release from a cluster of RyR. Here we describe a pharmacological approach to study sparks by exposing ventricular myocytes to caffeine with a rapid solution-switcher device. Sparks under these conditions have properties similar to naturally occurring sparks in terms of size and intracellular Ca(2+) concentration ([Ca(2+)](i)) amplitude. However, after the diffusion of caffeine, sparks first appear close to the cell surface membrane before coalescing to produce a whole cell transient. Our results support the idea that a whole cell [Ca(2+)](i) transient consists of the summation of sparks and that Ca(2+) sparks consist of the opening of a cluster of RyR and confirm that characteristics of the cluster rather than the L-type Ca(2+) channel-RyR relation determine spark properties. 相似文献
2.
Zhang PC Llach A Sheng XY Hove-Madsen L Tibbits GF 《American journal of physiology. Regulatory, integrative and comparative physiology》2011,300(1):R56-R66
The zebrafish is an important model for the study of vertebrate cardiac development with a rich array of genetic mutations and biological reagents for functional interrogation. The similarity of the zebrafish (Danio rerio) cardiac action potential with that of humans further enhances the relevance of this model. In spite of this, little is known about excitation-contraction coupling in the zebrafish heart. To address this issue, adult zebrafish cardiomyocytes were isolated by enzymatic perfusion of the cannulated ventricle and were subjected to amphotericin-perforated patch-clamp technique, confocal calcium imaging, and/or measurements of cell shortening. Simultaneous recordings of the voltage dependence of the L-type calcium current (I(Ca,L)) amplitude and cell shortening showed a typical bell-shaped current-voltage (I-V) relationship for I(Ca,L) with a maximum at +10 mV, whereas calcium transients and cell shortening showed a monophasic increase with membrane depolarization that reached a plateau at membrane potentials above +20 mV. Values of I(Ca,L) were 53, 100, and 17% of maximum at -20, +10, and +40 mV, while the corresponding calcium transient amplitudes were 64, 92, and 98% and cell shortening values were 62, 95, and 96% of maximum, respectively, suggesting that I(Ca,L) is the major contributor to the activation of contraction at voltages below +10 mV, whereas the contribution of reverse-mode Na/Ca exchange becomes increasingly more important at membrane potentials above +10 mV. Comparison of the recovery of I(Ca,L) from acute and steady-state inactivation showed that reduction of I(Ca,L) upon elevation of the stimulation frequency is primarily due to calcium-dependent I(Ca,L) inactivation. In conclusion, we demonstrate that a large yield of healthy atrial and ventricular myocytes can be obtained by enzymatic perfusion of the cannulated zebrafish heart. Moreover, zebrafish ventricular myocytes differed from that of large mammals by having larger I(Ca,L) density and a monophasically increasing contraction-voltage relationship, suggesting that caution should be taken upon extrapolation of the functional impact of mutations on calcium handling and contraction in zebrafish cardiomyocytes. 相似文献
3.
Cardiomyocytes from terminally failing hearts display significant abnormalities in e-c-coupling, contractility and intracellular Ca(2+) handling. This study is the first to demonstrate the influence of end-stage heart failure on specific properties of Ca(2+) sparks in human ventricular cardiomyocytes. We investigated the frequency and characteristics of spontaneously arising Ca(2+) sparks in single isolated human myocytes from terminally failing (HF) and non-failing (NF) control myocardium by using the Ca(2+) indicator Fluo-3. The Ca(2+) sparks were recorded by line-scan images along the longitudinal axis of the myocytes at a frequency of 250Hz. After loading the sarcoplasmic reticulum (SR) with Ca(2+) by repetitive field stimulation (10 pulses at 1Hz) the frequency of the Ca(2+) sparks immediately after stimulation (t = 0s) was reduced significantly in HF compared to NF (4.15 +/- 0.42 for NF vs. 2.81 +/- 0.20 for HF sparks s(-1), P = 0.05). This difference was present constantly in line-scan recordings up to 15s duration (t = 15s: 2.75 +/- 0.65 for NF vs. 1.36 +/- 0.34 for HF sparks s(-1), P = 0.05). The relative amplitude (F/F(0)) of Ca(2+) sparks was also significantly lower in HF cardiomyocytes (1.33 +/- 0.015 NF vs. 1.19 +/- 0.003 HF, t = 0s) and during subsequent recordings of 15s. Significant differences between HF and NF were also present in calculations of specific spark properties. The time to peak was estimated at 25.75 +/-0.88ms in HF and 18.68 +/- 0.45ms in NF cardiomyocytes (P = 0.05). Half-time of decay was 66.48 +/- 1.89ms (HF) vs. 44.15 +/- 1.65ms (NF, P < 0.05), and the full width at half-maximum (FWHM) was 3.99 +/- 0.06 microm (HF) vs. 3.5 +/- 0.07 microm (NF, P < 0.05). These data support the hypothesis that even in the absence of cardiac disease, Ca(2+) sparks from human cardiomyocytes differ from previous results of animal studies with respect to the time-to-peak, half-time of decay and FWHM. The role of elevated external Ca(2+) in HF was studied by recording Ca(2+) sparks in HF cardiomyocytes with 10mmol external Ca(2+) concentration. Under these conditions, the average spark amplitude was increased from 1.19 +/- 0.003 (F/F(0), 2mmol Ca(2+)) to 1.26 +/- 0.01 (F/F(0), 10mmol Ca(2+)). We conclude that human heart failure causes distinct changes in Ca(2+) spark frequency and characteristics comparable to results established in animal models of heart failure. A reduced Ca(2+) load of the SR alone is unlikely to account for the observed differences between HF and NF and additional alterations in intracellular Ca(2+) release mechanisms must be postulated. 相似文献
4.
Lukyanenko V Györke I Subramanian S Smirnov A Wiesner TF Györke S 《Biophysical journal》2000,79(3):1273-1284
We have compared the effects of the sarcoplasmic reticulum (SR) Ca(2+) release inhibitor, ruthenium red (RR), on single ryanodine receptor (RyR) channels in lipid bilayers, and on Ca(2+) sparks in permeabilized rat ventricular myocytes. Ruthenium red at 5 microM inhibited the open probability (P(o)) of RyRs approximately 20-50-fold, without significantly affecting the conductance or mean open time of the channel. At the same concentration, RR inhibited the frequency of Ca(2+) sparks in permeabilized myocytes by approximately 10-fold, and reduced the amplitude of large amplitude events (with most probable localization on the line scan) by approximately 3-fold. According to our theoretical simulations, performed with a numerical model of Ca(2+) spark formation, this reduction in Ca(2+) spark amplitude corresponds to an approximately 4-fold decrease in Ca(2+) release flux underlying Ca(2+) sparks. Ruthenium red (5 microM) increased the SR Ca(2+) content by approximately 2-fold (from 151 to 312 micromol/l cytosol). Considering the degree of inhibition of local Ca(2+) release events, the increase in SR Ca(2+) load by RR, and the lack of effects of RR on single RyR open time and conductance, we have estimated that Ca(2+) sparks under normal conditions are generated by openings of at least 10 single RyRs. 相似文献
5.
Calcium sparks in skeletal muscle fibers 总被引:3,自引:0,他引:3
Baylor SM 《Cell calcium》2005,37(6):513-530
Ca(2+) sparks monitor transient local releases of Ca(2+) from the sarcoplasmic reticulum (SR) into the myoplasm. The release takes place through ryanodine receptors (RYRs), the Ca(2+)-release channels of the SR. In intact fibers from frog skeletal muscle, the temporal and spatial properties of voltage-activated Ca(2+) sparks are well simulated by a model that assumes that the Ca(2+) flux underlying a spark is 2.5 pA (units of Ca(2+) current) for 4.6 ms (18 degrees C). This flux amplitude suggests that 1-5 active RYRs participate in the generation of a typical voltage-activated spark under physiological conditions. A major goal of future experiments is to estimate this number more precisely and, if it is two or more, to investigate the communication mechanism that allows multiple RYRs to be co-activated in a rapid but self-limited fashion. 相似文献
6.
Howlett SE Grandy SA Ferrier GR 《American journal of physiology. Heart and circulatory physiology》2006,290(4):H1566-H1574
This study determined whether whole cell Ca(2+) transients and unitary sarcoplasmic reticulum (SR) Ca(2+) release events are constant throughout adult life or whether Ca(2+) release is altered in aging ventricular myocytes. Myocytes were isolated from young adult (approximately 5 mo old) and aged (approximately 24 mo old) mice. Spontaneous Ca(2+) sparks and Ca(2+) transients initiated by field stimulation were detected with fluo-4. All experiments were conducted at 37 degrees C. Ca(2+) transient amplitudes were reduced, and Ca(2+) transient rise times were abbreviated in aged cells stimulated at 8 Hz compared with young adult myocytes. Furthermore, the incidence and frequency of spontaneous Ca(2+) sparks were markedly higher in aged myocytes compared with young adult cells. Spark amplitudes and spatial widths were similar in young adult and aged myocytes. However, spark half-rise times and half-decay times were abbreviated in aged cells compared with younger cells. Resting cytosolic Ca(2+) levels and SR Ca(2+) stores were assessed by rapid application of caffeine in fura-2-loaded cells. Neither resting Ca(2+) levels nor SR Ca(2+) content differed between young adult and aged cells. Thus increased spark frequency in aging cells was not attributable to increased SR Ca(2+) stores. Furthermore, the decrease in Ca(2+) transient amplitude was not due to a decrease in SR Ca(2+) load. These results demonstrate that alterations in fundamental SR Ca(2+) release units occur in aging ventricular myocytes and raise the possibility that alterations in Ca(2+) release may reflect age-related changes in fundamental release events rather than changes in SR Ca(2+) stores and diastolic Ca(2+) levels. 相似文献
7.
Xu Y Dong PH Zhang Z Ahmmed GU Chiamvimonvat N 《American journal of physiology. Heart and circulatory physiology》2002,283(1):H302-H314
The properties of several components of outward K(+) currents, including the pharmacological and kinetics profiles as well as the respective molecular correlates, have been identified in mouse cardiac myocytes. Surprisingly little is known with regard to the Ca(2+)-activated ionic currents. We studied the Ca(2+)-activated transient outward currents in mouse ventricular myocytes. We have identified a 4-aminopyridine (4-AP)- and tetraethyl ammonium-resistant transient outward current that is Ca(2+) dependent. The current is carried by Cl(-) and is critically dependent on Ca(2+) influx via voltage-gated Ca(2+) channels and the sarcoplasmic reticulum Ca(2+) store. The current can be blocked by the anion transport blockers niflumic acid and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. Single channel recordings reveal small conductance channels (approximately 1 pS in 140 mM Cl(-)) that can be blocked by anion transport blockers. Ensemble-averaged current faithfully mirrors the transient kinetics observed at the whole level. Niflumic acid (in the presence of 4-AP) leads to prolongation of the early repolarization. Thus this current may contribute to early repolarization of action potentials in mouse ventricular myocytes. 相似文献
8.
Bondarenko VE Szigeti GP Bett GC Kim SJ Rasmusson RL 《American journal of physiology. Heart and circulatory physiology》2004,287(3):H1378-H1403
We have developed a mathematical model of the mouse ventricular myocyte action potential (AP) from voltage-clamp data of the underlying currents and Ca2+ transients. Wherever possible, we used Markov models to represent the molecular structure and function of ion channels. The model includes detailed intracellular Ca2+ dynamics, with simulations of localized events such as sarcoplasmic Ca2+ release into a small intracellular volume bounded by the sarcolemma and sarcoplasmic reticulum. Transporter-mediated Ca2+ fluxes from the bulk cytosol are closely matched to the experimentally reported values and predict stimulation rate-dependent changes in Ca2+ transients. Our model reproduces the properties of cardiac myocytes from two different regions of the heart: the apex and the septum. The septum has a relatively prolonged AP, which reflects a relatively small contribution from the rapid transient outward K+ current in the septum. The attribution of putative molecular bases for several of the component currents enables our mouse model to be used to simulate the behavior of genetically modified transgenic mice. 相似文献
9.
The effect of a change in temperature on net mitochondrial Ca2+ exchange has been investigated in a suspension of adult rat ventricular myocytes. Temperature was varied between 42 degrees C and 15 degrees C. Hypothermia reduced the initial rate of respiration-dependent Ca2+ uptake and reduced the Na+-sensitivity of Ca2+ efflux. The net result of these alterations is that at low temperatures, the Ca2+ level at which a steady-state between mitochondria and sarcoplasm is maintained, will be raised. 相似文献
10.
11.
Four kinetically distinct depolarization-activated K+ currents in adult mouse ventricular myocytes 总被引:8,自引:0,他引:8
下载免费PDF全文

In the experiments here, the time- and voltage-dependent properties of the Ca2+-independent, depolarization-activated K+ currents in adult mouse ventricular myocytes were characterized in detail. In the majority (65 of 72, approximately 90%) of cells dispersed from the ventricles, analysis of the decay phases of the outward currents revealed three distinct K+ current components: a rapidly inactivating, transient outward K+ current, Ito,f (mean +/- SEM taudecay = 85 +/- 2 ms); a slowly (mean +/- SEM taudecay = 1,162 +/- 29 ms) inactivating K+ current, IK,slow; and a non inactivating, steady state current, Iss. In a small subset (7 of 72, approximately 10%) of cells, Ito,f was absent and a slowly inactivating (mean +/- SEM taudecay = 196 +/- 7 ms) transient outward current, referred to as Ito,s, was identified; the densities and properties of IK,slow and Iss in Ito,s-expressing cells are indistinguishable from the corresponding currents in cells with Ito,f. Microdissection techniques were used to remove tissue pieces from the left ventricular apex and from the ventricular septum to allow the hypothesis that there are regional differences in Ito,f and Ito,s expression to be tested directly. Electrophysiological recordings revealed that all cells isolated from the apex express Ito,f (n = 35); Ito,s is not detected in these cells (n = 35). In the septum, by contrast, all of the cells express Ito,s (n = 28) and in the majority (22 of 28, 80%) of cells, Ito,f is also present. The density of Ito,f (mean +/- SEM at +40 mV = 6.8 +/- 0.5 pA/pF, n = 22) in septum cells, however, is significantly (P < 0.001) lower than Ito,f density in cells from the apex (mean +/- SEM at +40 mV = 34.6 +/- 2.6 pA/pF, n = 35). In addition to differences in inactivation kinetics, Ito,f, Ito,s, and IK,slow display distinct rates of recovery (from inactivation), as well as differential sensitivities to 4-aminopyridine (4-AP), tetraethylammonium (TEA), and Heteropoda toxin-3. IK,slow, for example, is blocked selectively by low (10-50 microM) concentrations of 4-AP and by (>/=25 mM) TEA. Although both Ito,f and Ito,s are blocked by high (>100 microM) 4-AP concentrations and are relatively insensitive to TEA, Ito,f is selectively blocked by nanomolar concentrations of Heteropoda toxin-3, and Ito,s (as well as IK,slow and Iss) is unaffected. Iss is partially blocked by high concentrations of 4-AP or TEA. The functional implications of the distinct properties and expression patterns of Ito,f and Ito,s, as well as the likely molecular correlates of these (and the IK,slow and Iss) currents, are discussed. 相似文献
12.
Gayathri Krishnamoorthy Keil Regehr Samantha Berge Elias Q Scherer Philine Wangemann 《BMC physiology》2011,11(1):1-8
Background
We and others have demonstrated previously that ghrelin receptor (GhrR) knock out (KO) mice fed a high fat diet (HFD) have increased insulin sensitivity and metabolic flexibility relative to WT littermates. A striking feature of the HFD-fed GhrR KO mouse is the dramatic decrease in hepatic steatosis. To characterize further the underlying mechanisms of glucose homeostasis in GhrR KO mice, we conducted both hyperglycemic (HG) and hyperinsulinemic-euglycemic (HI-E) clamps. Additionally, we investigated tissue glucose uptake and specifically examined liver insulin sensitivity.Results
Consistent with glucose tolerance-test data, in HG clamp experiments, GhrR KO mice showed a reduction in glucose-stimulated insulin release relative to WT littermates. Nevertheless, a robust 1st phase insulin secretion was still achieved, indicating that a healthy β-cell response is maintained. Additionally, GhrR KO mice demonstrated both a significantly increased glucose infusion rate and significantly reduced insulin requirement for maintenance of the HG clamp, consistent with their relative insulin sensitivity. In HI-E clamps, both LFD-fed and HFD-fed GhrR KO mice showed higher peripheral insulin sensitivity relative to WT littermates as indicated by a significant increase in insulin-stimulated glucose disposal (Rd), and decreased hepatic glucose production (HGP). HFD-fed GhrR KO mice showed a marked increase in peripheral tissue glucose uptake in a variety of tissues, including skeletal muscle, brown adipose tissue and white adipose tissue. GhrR KO mice fed a HFD also showed a modest, but significant decrease in conversion of pyruvate to glucose, as would be anticipated if these mice displayed increased liver insulin sensitivity. Additionally, the levels of UCP2 and UCP1 were reduced in the liver and BAT, respectively, in GhrR KO mice relative to WT mice.Conclusions
These results indicate that improved glucose homeostasis of GhrR KO mice is characterized by robust improvements of glucose disposal in both normal and metabolically challenged states, relative to WT controls. GhrR KO mice have an intact 1st phase insulin response but require significantly less insulin for glucose disposal. Our experiments reveal that the insulin sensitivity of GhrR KO mice is due to both BW independent and dependent factors. We also provide several lines of evidence that a key feature of the GhrR KO mouse is maintenance of hepatic insulin sensitivity during metabolic challenge. 相似文献13.
Li L Louch WE Niederer SA Andersson KB Christensen G Sejersted OM Smith NP 《Biophysical journal》2011,(2):322-331
We describe a simulation study of Ca2+ dynamics in mice with cardiomyocyte-specific conditional excision of the sarco(endo)plasmic reticulum calcium ATPase (SERCA) gene, using an experimental data-driven biophysically-based modeling framework. Previously, we reported a moderately impaired heart function measured in mice at 4 weeks after SERCA2 gene deletion (knockout (KO)), along with a >95% reduction in the level of SERCA2 protein. We also reported enhanced Ca2+ flux through the L-type Ca2+ channels and the Na+/Ca2+ exchanger in ventricular myocytes isolated from these mice, compared to the control Serca2flox/flox mice (flox-flox (FF)). In the current study, a mathematical model-based analysis was applied to enable further quantitative investigation into changes in the Ca2+ handling mechanisms in these KO cardiomyocytes. Model parameterization based on a wide range of experimental measurements showed a 67% reduction in SERCA activity and an over threefold increase in the activity of the Na+/Ca2+ exchanger. The FF and KO models were then validated against experimentally measured [Ca2+]i transients and experimentally estimated sarco(endo)plasmic reticulum (SR) function. Simulation results were in quantitative agreement with experimental measurements, confirming that sustained [Ca2+]i transients could be maintained in the KO cardiomyocytes despite severely impaired SERCA function. In silico analysis shows that diastolic [Ca2+]i rises sharply with progressive reductions in SERCA activity at physiologically relevant pacing frequencies. Furthermore, an analysis of the roles of the compensatory mechanisms revealed that the major combined effect of the compensatory mechanisms is to lower diastolic [Ca2+]i. Finally, by using a comprehensive sensitivity analysis of the role of all cellular calcium handling mechanisms, we show that the combination of upregulation of the Na+/Ca2+ exchanger and increased L-type Ca2+ current is the most effective means to maintain diastolic and systolic calcium levels after loss of SERCA function. 相似文献
14.
Cheng LF Wang F Lopatin AN 《American journal of physiology. Heart and circulatory physiology》2011,301(5):H1984-H1995
Cardiac ventricular myocytes possess an extensive t-tubular system that facilitates the propagation of membrane potential across the cell body. It is well established that ionic currents at the restricted t-tubular space may lead to significant changes in ion concentrations, which, in turn, may affect t-tubular membrane potential. In this study, we used the whole cell patch-clamp technique to study accumulation and depletion of t-tubular potassium by measuring inward rectifier potassium tail currents (I(K1,tail)), and inward rectifier potassium current (I(K1)) "inactivation". At room temperatures and in the absence of Mg(2+) ions in pipette solution, the amplitude of I(K1,tail) measured ~10 min after the establishment of whole cell configuration was reduced by ~18%, but declined nearly twofold in the presence of 1 mM cyanide. At ~35°C I(K1,tail) was essentially preserved in intact cells, but its amplitude declined by ~85% within 5 min of cell dialysis, even in the absence of cyanide. Intracellular Mg(2+) ions played protective role at all temperatures. Decline of I(K1,tail) was accompanied by characteristic changes in its kinetics, as well as by changes in the kinetics of I(K1) inactivation, a marker of depletion of t-tubular K(+). The data point to remodeling of t tubules as the primary reason for the observed effects. Consistent with this, detubulation of myocytes using formamide-induced osmotic stress significantly reduced I(K1,tail), as well as the inactivation of inward I(K1). Overall, the data provide strong evidence that changes in t tubule volume/structure may occur on a short time scale in response to various types of stress. 相似文献
15.
Examining calcium spark morphology and its relationship to the structure of the cardiac myocyte offers a direct means of understanding excitation-contraction coupling mechanisms. Traditional confocal line scanning achieves excellent temporal spark resolution but at the cost of spatial information in the perpendicular dimension. To address this, we developed a methodology to identify and analyze sparks obtained via two-dimensional confocal or charge-coupled device microscopy. The technique consists of nonlinearly subtracting the background fluorescence, thresholding the data on the basis of noise level, and then localizing the spark peaks via a generalized extrema test, while taking care to detect and separate adjacent peaks. In this article, we describe the algorithm, compare its performance to a previously validated spark detection algorithm, and demonstrate it by applying it to both a synthetic replica and an experimental preparation of a two-dimensional isotropic myocyte monolayer exhibiting sparks during a calcium transient. We find that our multidimensional algorithm provides better sensitivity than the conventional method under conditions of temporally heterogeneous background fluorescence, and the inclusion of peak segmentation reduces false negative rates when spark density is high. Our algorithm is robust and can be effectively used with different imaging modalities and allows spark identification and quantification in subcellular, cellular, and tissue preparations. 相似文献
16.
Comparison of cardiac excitation-contraction coupling in isolated ventricular myocytes between rat and mouse 总被引:3,自引:0,他引:3
Hintz KK Norby FL Duan J Cinnamon MA Doze VA Ren J 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2002,133(1):191-198
Transgenic animals offer many advantages for physiological study. The mouse is the most extensively utilized mammalian model for gene modification. Isolated ventricular myocytes are pivotal for assessment of cardiac function by allowing direct cellular and environmental manipulation without interference from compensatory mechanisms that may exist in vivo. This study was designed to compare the basic excitation-contraction coupling properties of mouse and rat ventricular myocytes. Cardiac myocytes were isolated from age- and gender-matched mice (FVB and C57BL/6) and rats (Sprague-Dawley (SD) and Wistar). Mechanical and intracellular Ca2+ properties were measured with an IonOptix SoftEdge system, including peak shortening (PS), time-to-PS (TPS), time-to-90% relengthening (TR(90)), maximal velocity of shortening and relengthening (+/-dL/dt), and intracellular Ca2+ fura-2 fluorescence intensity and decay rate (tau). Resting cell length was variable among the different species or strains. PS from FVB group was significantly higher than the SD group. TPS and TR(90) were significantly shorter in mice. +dL/dt was similar among all groups whereas -dL/dt was significantly faster in the C57BL/6 group compared to the rat groups. Resting intracellular Ca2+ was lower in mice than in rats, and Ca2+-induced Ca2+ release was variable among the four groups. Intracellular Ca2+ decay was slower in Wistar compared to all other groups. The myocytes from C57BL/6 did not respond to increases in extracellular Ca2+. Myocytes from the FVB group exhibited a lesser reduction in PS in response to elevated stimulus frequency. These data suggest that inherent differences between strains or species should be taken into consideration when comparing results from these different animal models. 相似文献
17.
Several of the physical properties of calmodulin are changed significantly upon increasing the temperature from 25 to 37°C. Among the observed changes are a minor increase in intrinsic viscosity, a decrease in molecular ellipticity in the peptide region, the development of a difference spectrum in the aromatic region, and an increase in the mobility of extrinsic fluorescent labels. Except for the latter case, the magnitudes of the changes are substantially reduced in the presence of Ca2+. The above observations are consistent with an expanded and less tightly organized structure of calmodulin at the higher temperature. 相似文献
18.
Nivala M Qu Z 《American journal of physiology. Heart and circulatory physiology》2012,303(3):H341-H352
Intracellular calcium (Ca) alternans in cardiac myocytes have been shown in many experimental studies, and the mechanisms remain incompletely understood. We recently developed a "3R theory" that links Ca sparks to whole cell Ca alternans through three critical properties: randomness of Ca sparks; recruitment of a Ca spark by neighboring Ca sparks; and refractoriness of Ca release units. In this study, we used computer simulation of a physiologically detailed mathematical model of a ventricular myocyte couplon network to study how sarcoplasmic reticulum (SR) Ca load and other physiological parameters, such as ryanodine receptor sensitivity, SR uptake rate, Na-Ca exchange strength, and Ca buffer levels affect Ca alternans in the context of 3R theory. We developed a method to calculate the parameters used in the 3R theory (i.e., the primary spark rate and the recruitment rate) from the physiologically detailed Ca cycling model and paced the model periodically to elicit Ca alternans. We show that alternans only occurs for an intermediate range of the SR Ca load, and the underlying mechanism can be explained via its effects on the 3Rs. Furthermore, we show that altering the physiological parameters not only directly changes the 3Rs but also alters the SR Ca load, having an indirect effect on the 3Rs as well. Therefore, our present study links the SR Ca load and other physiological parameters to whole cell Ca alternans through the framework of the 3R theory, providing a general mechanistic understanding of Ca alternans in ventricular myocytes. 相似文献
19.
S Hollingworth J Peet W K Chandler S M Baylor 《The Journal of general physiology》2001,118(6):653-678
Calcium sparks were studied in frog intact skeletal muscle fibers using a home-built confocal scanner whose point-spread function was estimated to be approximately 0.21 microm in x and y and approximately 0.51 microm in z. Observations were made at 17-20 degrees C on fibers from Rana pipiens and Rana temporaria. Fibers were studied in two external solutions: normal Ringer's ([K(+)] = 2.5 mM; estimated membrane potential, -80 to -90 mV) and elevated [K(+)] Ringer's (most frequently, [K(+)] = 13 mM; estimated membrane potential, -60 to -65 mV). The frequency of sparks was 0.04-0.05 sarcomere(-1) s(-1) in normal Ringer's; the frequency increased approximately tenfold in 13 mM [K(+)] Ringer's. Spark properties in each solution were similar for the two species; they were also similar when scanned in the x and the y directions. From fits of standard functional forms to the temporal and spatial profiles of the sparks, the following mean values were estimated for the morphological parameters: rise time, approximately 4 ms; peak amplitude, approximately 1 DeltaF/F (change in fluorescence divided by resting fluorescence); decay time constant, approximately 5 ms; full duration at half maximum (FDHM), approximately 6 ms; late offset, approximately 0.01 DeltaF/F; full width at half maximum (FWHM), approximately 1.0 microm; mass (calculated as amplitude x 1.206 x FWHM(3)), 1.3-1.9 microm(3). Although the rise time is similar to that measured previously in frog cut fibers (5-6 ms; 17-23 degrees C), cut fiber sparks have a longer duration (FDHM, 9-15 ms), a wider extent (FWHM, 1.3-2.3 microm), and a strikingly larger mass (by 3-10-fold). Possible explanations for the increase in mass in cut fibers are a reduction in the Ca(2+) buffering power of myoplasm in cut fibers and an increase in the flux of Ca(2+) during release. 相似文献
20.
Alain Coulombe Isabel Ann Lefèvre Isabelle Baro Edouard Coraboeuf 《The Journal of membrane biology》1989,111(1):57-67
Summary Ca2+- and Ba2+-permeable channel activity from adult rat ventricular myocytes, spontaneously appeared in the three single-channel recording configurations: cell-attached, and excised inside-out or outside-out membrane patches. Single-channel activity was recorded at steady-state applied membrane potentials including the entire range of physiologic values, and displayed no rundown in excised patches. This activity occurred in irregular bursts separated by quiescent periods of 5 to 20 min in cell-attached membrane patches, whereas in excised patch experiments, this period was reduced to 2 to 10 min. During activity, a variety of kinetic behaviors could be observed with more or less complex gating patterns. Three conductance levels: 22, 45 and 78 pS were routinely observed in the same excised membrane patch, sometimes combining to give a larger level. These channels were significantly permeable to divalent cations and showed little or no permeability to potassium or sodium ions. The inorganic blockers of voltage-gated Ca channels, cobalt (2mm), cadmium (0.5mm) or nickel (3mm), had no apparent effect on these spontaneous unitary currents carried by barium ions. Under 10–5
m bay K 8644 or nitrendipine, the activity was clearly increased in about half of the tested excised inside-out membrane patches. Both dihydropyridines enhanced openings of the larger conductance level, which was only very occasionally seen under control conditions. When the single-channel activity became sustained under 5×10–6
m Bay K 8644, it was possible to calculate the mean unitary current at different membrane potentials and show that the mean current value increased with membrane potential. 相似文献