首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human olfactory neuroepithelium (OE) is situated within the olfactory cleft of the nasal cavity and has the characteristic property of continually regenerating neurons during the lifetime of the individual. This regenerative ability of OE provides a unique model for neuronal differentiation, but little is known about the structure and biology of human olfactory mucosa. Thus, to better understand neurogenesis in human OE, we studied the expression of olfactory marker protein (OMP), TrkB and NeuroD in human nasal biopsies and autopsy specimens and compared these data with those obtained from normal and regenerating mouse OE. We show that NeuroD and TrkB are coordinately expressed in human OE. Thus, by using these markers we have been able to extend the known boundaries of the human OE to include the inferior middle turbinate. In normal mouse OE, TrkB and OMP expression overlap in cells closest to the superficial layer, but TrkB is expressed more strongly in the lower region of this layer. In contrast, NeuroD expression is more basally restricted in a region just above the globose basal cells. These characteristic expression patterns of OMP, TrkB and NeuroD were also observed in the regenerating mouse OE induced by axotomy. These results support a role of NeuroD and brain-derived neurotrophic actor (BDNF), the preferred ligand for TrkB, in the maintenance of the olfactory neuroepithelium in humans and mice.  相似文献   

2.
Neuronal nitric oxide synthase (nNOS) is implicated in some developmental processes, including neuronal survival, differentiation, and precursor proliferation. To define the roles of nNOS in neuronal development, we utilized the olfactory system as a model. We hypothesized that the role of nNOS may be influenced by its localization. nNOS expression was developmentally regulated in the olfactory system. During early postnatal development, nNOS was expressed in developing neurons in the olfactory epithelium (OE), while in the adult its expression was restricted to periglomerular (PG) cells in the olfactory bulb (OB). At postnatal week 1 (P1W), loss of nNOS due to targeted gene deletion resulted in a decrease in immature neurons in the OE due to decreased proliferation of neuronal precursors. While the pool of neuronal precursors and neurogenesis normalized in the nNOS null mouse by P6W, there was an overgrowth of mitral or tufted cells dendrites and a decreased number of active synapses in the OB. Cyclic GMP (cGMP) immunostaining was reduced in the OE and in the glomeruli of the OB at early postnatal and adult ages, respectively. Our results suggest that nNOS appears necessary for neurogenesis in the OE during early postnatal development and for glomerular organization in the OB in the adult. Thus, the location of nNOS, either within cell bodies or perisynaptically, may influence its developmental role.  相似文献   

3.
Abstract - The adult olfactory receptor neurons (ORNs), located in the olfactory epithelium (OE) are permanently renewed thanks to neuronal progenitors present in the deep part of the OE, the globose basal cells (GBCs). Following the ablation of their synaptic target, the olfactory bulb (OB), ORNs degenerate by apoptosis and a wave of neurogenesis, including proliferation of GBCs and neuronal differentiation of their progeny, restores the olfactory function. The Ginkgo biloba extract (EGb 761) (Beaufour Ipsen, France) was administered to adult mice at the doses of 50 or 100 mg/kg, following bilateral bulbectomy and its effects on the expression of PCNA, reflecting the number of proliferating GBCs and on growth associated protein 43 (GAP-43), expressed by differentiating neurons were measured by Western blotting. PCNA expression peaked 9 days post-bulbectomy in untreated animals, but 7 days post-lesion in EGb 761-treated animals. A simultaneous reduction in GAP-43 expression suggested that EGb 761 may temporarily favor the proliferation of GBCs rather than their entry into the differentiation pathway. Probably as a consequence of the earlier onset of the neurogenetic response to bulbectomy, neuronal differentiation was enhanced in the OE, 3 weeks post-bulbectomy. These data suggest that EGb 761 may have beneficial effects upon neurogenesis in the OE through changing the balance between proliferation and differentiation.  相似文献   

4.
Chemosensory neurons in the olfactory epithelium (OE) project axonal processes to the olfactory bulb (OB) of the brain. During embryonic stages, on their trajectory to the OB, the outgrowing axons traverse the so-called cribriform mesenchyme, which is located between the OE and the OB. The molecular cues guiding these axons through the cribriform mesenchyme are largely unknown. To identify molecules influencing the axonal trajectory in the murine cribriform mesenchyme, we performed microarray analyses focusing on extracellular matrix (ECM) proteins present in this tissue. Thereby, the ECM protein Reelin turned out to be an interesting candidate. Reelin was found to be expressed by numerous cells in the cribriform mesenchyme during the embryonic stages when the first axons navigate from the OE to the OB. These cells were closely associated with olfactory axons and apparently lack glial and neuronal markers. In the mesenchyme underlying the OE, localization of the Reelin protein was not confined to the Reelin-expressing cells, but it was also observed to be widely distributed in the ECM—most prominently in regions traversed by olfactory axons. Importantly, these axons were found to be endowed with the Reelin receptor very-low-density lipoprotein receptor (VLDLR). Finally, Reelin expression was also detectable in neuronal cells of the OB, which are contacted by VLDLR-positive olfactory axons. In summary, the results of the present study suggest that a Reelin/VLDLR signaling pathway might contribute to the formation of olfactory projections to the OB and the establishment of initial contacts between the incoming axons and neurons in the OB. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Funding:  This work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

5.
In this immunocytochemical study we investigated the distribution of nervous structures in the lower lip of adult rats. The region is characterized by a rich cutaneous and mucosal sensory innervation originating from terminal branches of the trigeminal system. Lower lip innervation was investigated by detection of the general neuronal marker protein gene product 9.5 (PGP 9.5) and the growth-associated protein 43 (GAP-43), a neurochemical marker of neuronal plasticity. The entire neural network of both cutaneous and mucosal aspects was stained by the antibody to PGP 9.5. In particular, nerve fibers were observed in the submucosal and the subepithelial plexuses. Thin immunoreactive fibers were observed within the epithelial layers ending as free fibers or as fibers associated with immunopositive Merkel cells. Well-identified anatomical structures receiving sensory or autonomic innervation were also surrounded by PGP 9.5-ir nerve fibers, in particular, hair follicles, vibrissae, glands, and blood vessels. GAP-43-immunostained nerve fibers were observed in all these structures; however, they were generally less numerous than the PGP 9.5-immunoreactive elements. An equal amount of PGP 9.5 and GAP-43 immunoreactivity occurred, in contrast, in the subepidermal and the submucosal plexuses, or in the epidermis and the mucosal epithelium. The present results show that GAP-43 is normally expressed in the mature trigeminal sensory system of the rat. Skin and oral mucosa are characterized by continuous remodeling that may also involve the sensory nervous apparatus. Continuous neural remodeling, regeneration and sprouting may be the reason for the observed expression of GAP-43.  相似文献   

6.
7.
Retinoic acid (RA), a member of the steroid/thyroid superfamily of signaling molecules, is an essential regulator of morphogenesis, differentiation, and regeneration in the mammalian olfactory pathway. RA-mediated teratogenesis dramatically alters olfactory pathway development, presumably by disrupting retinoid-mediated inductive signaling that influences initial olfactory epithelium (OE) and bulb (OB) morphogenesis. Subsequently, RA modulates the genesis, growth, or stability of subsets of OE cells and OB interneurons. RA receptors, cofactors, and synthetic enzymes are expressed in the OE, OB, and anterior subventricular zone (SVZ), the site of neural precursors that generate new OB interneurons throughout adulthood. Their expression apparently accommodates RA signaling in OE cells, OB interneurons, and slowly dividing SVZ neural precursors. Deficiency of vitamin A, the dietary metabolic RA precursor, leads to cytological changes in the OE, as well as olfactory sensory deficits. Vitamin A therapy in animals with olfactory system damage can accelerate functional recovery. RA-related pathology as well as its potential therapeutic activity may reflect endogenous retinoid regulation of neuronal differentiation, stability, or regeneration in the olfactory pathway from embryogenesis through adulthood. These influences may be in register with retinoid effects on immune responses, metabolism, and modulation of food intake.  相似文献   

8.
The olfactory system is the appropriate model for studying several aspects of neuronal physiology spanning from the developmental stage to neural network remodelling in the adult brain. Both the morphological and physiological understanding of this system were strongly supported by classical histochemistry. It is emblematic the case of the Olfactory Marker Protein (OMP) staining, the first, powerful marker for fully differentiated olfactory receptor neurons and a key tool to investigate the dynamic relations between peripheral sensory epithelia and central relay regions given its presence within olfactory fibers reaching the olfactory bulb (OB). Similarly, the use of thymidine analogues was able to show neurogenesis in an adult mammalian brain far before modern virus labelling and lipophilic tracers based methods. Nowadays, a wealth of new histochemical techniques combining cell and molecular biology approaches is available, giving stance to move from the analysis of the chemically identified circuitries to functional research. The study of adult neurogenesis is indeed one of the best explanatory examples of this statement. After defining the cell types involved and the basic physiology of this phenomenon in the OB plasticity, we can now analyze the role of neurogenesis in well testable behaviours related to socio-chemical communication in rodents.  相似文献   

9.
10.
Three monoclonal antibodies specific for different carbohydrate antigens were used to analyze the development of the olfactory system in rats. CC2 antibodies react with a subset of main olfactory neurons, their axons, and terminals in the olfactory bulb. CC2 antigens are expressed on dorsomedial neurons in the olfactory epithelium (OE) from embryonic (E) day 15 to adults. In the olfactory bulb (OB), only dorsomedially located glomeruli express CC2 glycoconjugates from postnatal day (P) 2 to adults. Thus CC2 defines a dorsomedially organized projection that is established early in embryonic development and continues in adults. P-Path antibodies react with antigens that are expressed on the olfactory nerve in embryos, and are also detected on cell bodies in the neuroepithelium and in glomeruli of the OB at P2. At P14, P-Path staining is weaker, but remains present on many cells in the epithelium and in many glomeruli in the bulb. Postnatally, P-Path immunostaining continues to decrease in most regions of the OE and OB. At P35 and afterwards, only a few P-Path-positive neuronal cells can be detected in the OE. Furthermore, after P35 only two groups of glomeruli in the OB are P-Path immunoreactive. One is situated adjacent to the accessory olfactory bulb (AOB) at the dorsocaudal surface of the OB. The other is adjacent to the AOB at the ventrocaudal surface of the OB. Thus, in adults, P-Path glycoconjugates are expressed in neurons and axons that project only to a specific subset of caudal glomeruli of the OB. Monoclonal antibody 1B2, reacts with β-galactose-terminating glycolipids and glycoproteins. At P2, 1B2 immunoreactivity is seen on a subset of cell bodies that are distributed throughout the OE and is expressed in most glomeruli in the OB at this age. By P35 and in adults, 1B2 continues to be expressed on a subset of neurons in the OE that project to only a small subset of glomeruli in the OB. Unlike CC2 and P-Path antigens that define specific groups of glomeruli, 1B2-immunoreactive glomeruli do not have a detectable spatial pattern. It is more likely that 1B2 antigens define a specific stage in the maturation of connections between the OE and OB.  相似文献   

11.
Three monoclonal antibodies specific for different carbohydrate antigens were used to analyze the development of the olfactory system in rats. CC2 antibodies react with a subset of main olfactory neurons, their axons, and terminals in the olfactory bulb. CC2 antigens are expressed on dorsomedial neurons in the olfactory epithelium (OE) from embryonic (E) day 15 to adults. In the olfactory bulb (OB), only dorsomedially located glomeruli express CC2 glycoconjugates from postnatal day (P) 2 to adults. Thus CC2 defines a dorsomedially organized projection that is established early in embryonic development and continues in adults. P-Path antibodies react with antigens that are expressed on the olfactory nerve in embryos, and are also detected on cell bodies in the neuroepithelium and in glomeruli of the OB at P2. At P14, P-Path staining is weaker, but remains present on many cells in the epithelium and in many glomeruli in the bulb. Postnatally, P-Path immunostaining continues to decrease in most regions of the OE and OB. At P35 and afterwards, only a few P-Path-positive neuronal cells can be detected in the OE. Furthermore, after P35 only two groups of glomeruli in the OB are P-Path immunoreactive. One is situated adjacent to the accessory olfactory bulb (AOB) at the dorsocaudal surface of the OB. The other is adjacent to the AOB at the ventrocaudal surface of the OB. Thus, in adults, P-Path glycoconjugates are expressed in neurons and axons that project only to a specific subset of caudal glomeruli of the OB. Monoclonal antibody 1B2, reacts with beta-galactose-terminating glycolipids and glycoproteins. At P2, 1B2 immunoreactivity is seen on a subset of cell bodies that are distributed throughout the OE and is expressed in most glomeruli in the OB at this age. By P35 and in adults, 1B2 continues to be expressed on a subset of neurons in the OE that project to only a small subset of glomeruli in the OB. Unlike CC2 and P-Path antigens that define specific groups of glomeruli, 1B2-immunoreactive glomeruli do not have a detectable spatial pattern. It is more likely that 1B2 antigens define a specific stage in the maturation of connections between the OE and OB.  相似文献   

12.
The vomeronasal organ (VNO) detects pheromones via 2 large families of receptors: vomeronasal receptor 1, associated with the protein Giα2, and vomeronasal receptor 2, associated with Goα. We investigated the distribution of Goα in the developing and adult VNO and adult olfactory bulb of a marsupial, the tammar wallaby. Some cells expressed Goα as early as day 5 postpartum, but by day 30, Goα expressing cells were distributed throughout the receptor epithelium of the VNO. In the adult tammar, Goα appeared to be expressed in sensory neurons whose nuclei were mostly basally located in the vomeronasal receptor epithelium. Goα expressing vomeronasal receptor cells led to all areas of the accessory olfactory bulb (AOB). The lack of regionally restricted projection of the vomeronasal receptor cell type 2 in the tammar was similar to the uniform type, with the crucial difference that the uniform type only shows expression of Giα2 and no expression of Goα. The observed Goα staining pattern suggests that the tammar may have a third accessory olfactory type that could be intermediate to the segregated and uniform types already described.  相似文献   

13.
Altered distribution of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor subunit GluR1 has been linked to stimulation-dependent changes in synaptic efficacy, including long-term potentiation and depression. The main olfactory bulb (OB) remains plastic throughout life; how GluR1 may be involved in this plasticity is unknown. We have previously shown that neonatal naris occlusion reduces numbers of interneuron cell bodies that are immunoreactive for GluR1 in the external plexiform layer (EPL) of the adult mouse OB. Here, we show that immunoreactivity of mouse EPL interneurons for GluR1 is also dramatically reduced following olfactory deafferentation in adulthood. We further show that expression of glutamic acid decarboxylase (GAD) 65, 1 of 2 GAD isoforms expressed by adult gamma-aminobutyric acidergic interneurons, is reduced, but to a much smaller extent, and that in double-labeled cells, immunoreactivity for the Ca(2+)-binding protein parvalbumin (PV) is also reduced. In addition, GluR1 expression is reduced in presumptive tufted cells and interneurons that are negative for GAD65 and PV. Consistent with previous reports, sensory deafferentation resulted in little neuronal degeneration in the adult EPL, indicating that these differences were not likely due to death of EPL neurons. Together, these results suggest that olfactory input regulates expression of the GluR1 AMPA receptor subunit by tufted cells that may in turn regulate GluR1 expression by interneurons within the OB EPL.  相似文献   

14.
The neurotrophin brain-derived neurotrophic factor (BDNF) has been implicated in the generation and differentiation of new olfactory sensory neurons (OSNs) and in the regulation of branching of OSN axons in their target glomeruli. However, previous reports of BDNF mRNA and protein expression in olfactory epithelium and olfactory bulb (OB) have been inconsistent, raising questions on the proposed roles for BDNF. Here, we report on beta-galactosidase (beta-gal) expression in adult gene-targeted mice where the BDNF promoter drives expression of the Escherichia coli lacZ gene (BDNF(lacZneo) mice). We find that beta-gal is expressed in a small subset of OSNs with axons that reach the olfactory nerve layers throughout the OB. In the OB, we find expression of beta-gal in gamma-aminobutyric acidergic but not dopaminergic periglomerular cells and external tufted cells and in interneurons located in the mitral cell layer. Our results are inconsistent with the regulation of generation and differentiation of new OSNs elicited by the release of BDNF from horizontal basal cells. The results are consistent with a role for BDNF in competitive branching of OSN axons within the glomeruli of the OB.  相似文献   

15.
On the chemosensory nature of the vomeronasal epithelium in adult humans   总被引:1,自引:1,他引:0  
In contrast to many lower vertebrates, the vomeronasal epithelium (VNE) in humans has long been regarded as absent or functionally irrelevant. For example, the neural connection between the VNE and the accessory olfactory bulb has been reported to degenerate during the second half of pregnancy and its presence has not been demonstrated in adults. Further, reports on the organ's occurrence in adult humans have been contradictory. The aims of this study were to collect immunohistochemical data on the neurogenic or epithelial character of the VNE [for example, with antibodies against protein gene product 9.5 (PGP 9.5), olfactory marker protein (OMP), beta-tubulin, and cytokeratin], determine its proliferative capacity (for example, proliferating cell nuclear antigen), as well as to examine the differentiation activity of VNE cells and their interactions with extracellular matrix components (for example, hyaluronan receptor CD44, galectins, and caveolin). To this end, we studied the vomeronasal organs (VNOs) of 22 human cadavers, three adult biopsies, one embryo (week 8) and one fetus (week 13) by means of immunohistochemistry. The histology of the VNE appeared extremely heterogeneous. There were sections of stratified, respiratory, and typical "pseudostratified" vomeronasal epithelia consisting of slender bipolar cells. Mostly negative immunohistochemical results for OMP indicated that the human VNE does not function like the mature olfactory epithelium. In addition, the investigations did not support the hypothesis that neural connections between the VNE and central brain structures might be present. On the other hand, the presence of some bipolar cells positive for both PGP 9.5 and soybean lectin (SBA) pointed to a neuron-like activity of a small subset of VNE cells. Proliferation antigens located in the nuclei of basally located cells of the VNE were not regularly expressed. However, positive reactions for CD44 demonstrated a high activity of VNE cells in terms of differentiation and migration. Some bipolar cells showed immunoreactivity for caveolin indicating its possible role in signal transduction and differentiation. In summary, the reaction patterns of most antibodies in the adult human VNE are different from those obtained in the olfactory epithelium and the VNO of the rat. However, the VNE shows a specific pattern of activity unique to the mucosa of the nasal cavity. Considering the histologically well differentiated epithelium and its steady maintenance, the VNE of the adult human appears to be a highly differentiated structure the function of which remains unclear.  相似文献   

16.
In vertebrate olfactory epithelium (OE), neurogenesis proceeds continuously, suggesting that endogenous signals support survival and proliferation of stem and progenitor cells. We used a genetic approach to test the hypothesis that Fgf8 plays such a role in developing OE. In young embryos, Fgf8 RNA is expressed in the rim of the invaginating nasal pit (NP), in a small domain of cells that overlaps partially with that of putative OE neural stem cells later in gestation. In mutant mice in which the Fgf8 gene is inactivated in anterior neural structures, FGF-mediated signaling is strongly downregulated in both OE proper and underlying mesenchyme by day 10 of gestation. Mutants survive gestation but die at birth, lacking OE, vomeronasal organ (VNO), nasal cavity, forebrain, lower jaw, eyelids and pinnae. Analysis of mutants indicates that although initial NP formation is grossly normal, cells in the Fgf8-expressing domain undergo high levels of apoptosis, resulting in cessation of nasal cavity invagination and loss of virtually all OE neuronal cell types. These findings demonstrate that Fgf8 is crucial for proper development of the OE, nasal cavity and VNO, as well as maintenance of OE neurogenesis during prenatal development. The data suggest a model in which Fgf8 expression defines an anterior morphogenetic center, which is required not only for the sustenance and continued production of primary olfactory (OE and VNO) neural stem and progenitor cells, but also for proper morphogenesis of the entire nasal cavity.  相似文献   

17.
The septal organ of Masera (SO) is a small, isolated patch of olfactory epithelium, located in the ventral part of the nasal septum. We investigated in this systematic study the postnatal development of the SO in histological sections of rats at various ages from the day of birth (P1) to P666. The SO-area increases to a maximum at P66-P105, just as the animals reach sexual maturity, and decreases thereafter, significantly however only in males, indicating a limited neurogenetic capacity for regeneration. In contrast, the main olfactory epithelium area continues to expand beyond P300. The modified respiratory epithelium ('zwischen epithelium') separating the SO and the main olfactory epithelium contains a few olfactory neurons up to age P66. Its length increases postnatally so that the SO becomes more ventral to the OE. Although the position of the SO relative to other anatomical landmarks changes with development it is consistently located just posterior to the opening of the nasopalatine duct (NPAL). Thus, a possible function of the SO is in sensing chemicals in fluids entering the mouth by licking and then delivered to the nasal cavity via the NPAL; therefore the SO may be involved in social/sexual behavior as is the vomeronasal organ (VNO). We suggest that the SO is a separate accessory olfactory organ with properties somewhat different from both OE and VNO and may exist only in species where the NPAL does not open into the VNO.  相似文献   

18.
19.
The main olfactory and the accessory olfactory systems are both anatomically and functionally distinct chemosensory systems. The primary sensory neurones of the accessory olfactory system are sequestered in the vomeronasal organ (VNO), where they express pheromone receptors, which are unrelated to the odorant receptors expressed in the principal nasal cavity. We have identified a 240 kDa glycoprotein (VNO(240)) that is selectively expressed by sensory neurones in the VNO but not in the main olfactory neuroepithelium of mouse. VNO(240) is first expressed at embryonic day 20.5 by a small subpopulation of sensory neurones residing within the central region of the crescent-shaped VNO. Although VNO(240) was detected in neuronal perikarya at this age, it was not observed in the axons in the accessory olfactory bulb until postnatal day 3.5. This delayed appearance in the accessory olfactory bulb suggests that VNO(240) is involved in the functional maturation of VNO neurones rather than in axon growth and targeting to the bulb. During the first 2 postnatal weeks, the population of neurones expressing VNO(240) spread peripherally, and by adulthood all primary sensory neurones in the VNO appeared to be expressing this molecule. Similar patterns of expression were also observed for NOC-1, a previously characterized glycoform of the neural cell adhesion molecule NCAM. To date, differential expression of VNO-specific molecules has only been reported along the rostrocaudal axis or at different apical-basal levels in the neuroepithelium. This is the first demonstration of a centroperipheral wave of expression of molecules in the VNO. These results indicate that mechanisms controlling the molecular differentiation of VNO neurones must involve spatial cues organised, not only about orthogonal axes, but also about a centroperipheral axis. Moreover, expression about this centroperipheral axis also involves a temporal component because the subpopulation of neurones expressing VNO(240) and NOC-1 increases during postnatal maturation.  相似文献   

20.
This study was performed to compare GAP-43, PGP 9.5, synaptophysin, and NSE as neuronal markers in the human intestine. GAP-43-immunoreactive nerve fibers were abundant in all layers of the ileum and colon. GAP-43 partially co-localized partially with every neuropeptide (VIP, substance P, galanin, enkephalin) studied. All neuropeptide-immunoreactive fibers also showed GAP-43 reactivity. By blind visual estimation, the numbers of GAP-43-immunoreactive fibers in the lamina propria were greater than those of PGP 9.5, synaptophysin, or NSE. In the muscle layer, visual estimation indicated that the density of GAP-43-immunoreactive fiber profiles was slightly greater than that of the others. The number and intensity of GAP-43-, PGP 9.5-, and NSE-immunoreactive fibers were estimated in sections of normal human colon and ileum using computerized morphometry. In the colon, the numbers of GAP-43-immunoreactive nerve profiles per unit area and their size and intensity were significantly greater than the values for PGP and NSE. A similar trend was observed in the ileum. Neuronal somata lacked or showed only weak GAP-43 immunoreactivity, variable PGP 9.5 immunoreactivity, no synaptophysin immunoreactivity, and moderate to strong NSE immunoreactivity. We conclude that GAP-43 is the superior marker of nerve fibers in the human intestine, whereas NSE is the marker of choice for neuronal somata. (J Histochem Cytochem 47:1405-1415, 1999)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号