首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lasius neoniger (Emery), a cosmopolitan ant species, can be a serious pest when its mound-building activities occur on golf course putting greens and other closely mowed turfgrass sites. We mapped the distribution of 735 ant mounds on 30 sand-based putting greens of three golf courses. We then examined factors that might explain why >90% of the mounds on such greens were concentrated in a 2-m wide band just inside the perimeter. Root aphids (Homoptera: Aphididae) from which L. neoniger obtains honeydew were largely absent from high-sand root zone mix of greens but present in surrounding turfgrass on natural soil. Main ant nests, with brood, also were absent from sand-based greens but abundant in adjacent roughs. Although more root aphids were found within ant nests than away from nests, their numbers seem too low to be the main factor restricting the ants' distribution to edges of putting greens. In manipulative experiments, ants responded to low cut (scalped) turf and to sand-filled holes by increased mound building. We suggest that most ant mounds on sand-based greens are associated with subnests, used by foraging workers, which are connected to main nests located just outside the collar in natural soil. Encroachment of mounds into greens occurs when the polydomous colonies seasonally expand their foraging territories, accounting for mounds being concentrated around the perimeter. Control actions for L. neoniger on golf courses should focus on the perimeter of sand-based greens.  相似文献   

2.
Larvae of Phyllophaga spp. (Coleoptera: Scarabaeidae) are important turfgrass pests in many regions of the United States. However, not all of the species associated with turfgrass are known, including species most likely to be of economic concern in Oklahoma turfgrasses, especially Bermuda grass. This study documented the species composition and seasonal occurrence of Phyllophaga associated with high maintenance Bermuda grass turf in Oklahoma over a 2-yr period. In 2005 and 2006, adult Phyllophaga spp. were collected with blacklight traps from selected golf courses throughout Oklahoma Phyllophaga larvae were obtained from Bermuda grass stands at selected sod production facilities adjacent to or near the light traps. We collected 20 species of Phyllophaga beetles in light traps, and nine species of Phyllophaga larvae from turfgrass. Peak flight periods for most species occurred in May and June, but some were captured as early as mid-April and others as late as September. The cytochrome c oxidase I (COI) gene from adults and larvae was amplified using polymerase chain reaction, sequenced, and then used to compare larval DNA against DNA from identified adults. These results confirmed the validity of using COI sequences to identify species of some Phyllophaga larvae. The identifications will aid in optimizing the timing of insecticide applications against Phyllophaga white grubs as discussed.  相似文献   

3.
Field experiments were conducted in turf maintained under golf course fairway conditions in May, June, and August 2009 and in August and September 2010 to evaluate the ability of entomopathogenic nematodes to control larval populations of the black cutworm, Agrotis ipsilon, on golf courses. Commercial products containing the entomopathogenic nematodes Heterorhabditis bacteriophora, Steinernema carpocapsae, S. feltiae, and S. riobrave were applied at 1.0 or 2.5×109 infective juveniles per ha against fourth-instar black cutworms. Larval mortality and turf damage were evaluated at 4 and/or 7 days after treatment (DAT). Steinernema carpocapsae was the best performing species due to a combination of high control rates (average 83%), most consistent results (70–90% range), high speed of kill (average 68% at 4 DAT), and prevention of significant turf damage despite very high larval densities at 0 DAT. Efficacy of S. feltiae and H. bacteriophora was often similar to that of S. carpocapsae but overall less consistent. Short-term persistence of the nematodes was evaluated in four turfgrass sites maintained under golf course putting green, fairway, or rough conditions in June and August 2009 by baiting soil samples at 0, 4, 7, and 14 DAT. Relative to recovery immediately after application, at least 50% of S. feltiae and 25% of S. carpocapsae consistently persisted up to 4 days in one of the greens and up to 7 days in some trials. Our finding suggests that S. carpocapsae and S. feltiae may provide adequate black cutworm control in golf course turf under moderate summer temperatures.  相似文献   

4.
Fairy ring is a frequently reported disease of turfgrasses worldwide, and necrotic or severely injured grass are observed in those turf sites exhibiting type-I fairy ring symptoms. The objective of this research was to characterize soil chemical and physical properties at two soil sampling depths (0.5 cm and 3.0 cm) at a turfgrass site exhibiting type-I fairy ring symptoms. Soil samples were obtained from a perennial ryegrass (Lolium perenne L.) golf course fairway at one sampling date in the summer when environmental conditions were most conducive to the appearance of severe type-I fairy ring symptoms. At both soil depths, soil analysis indicated that concentrations of ammonium-nitrogen, potassium, and sulfur were statistically higher in soil underlying necrotic or bare zones versus soil in healthy turfgrass zones. At both soil depths, soil electrical conductivity was statistically higher, and volumetric soil water content was statistically lower in necrotic zones versus soil under healthy turfgrass. At both soil depths, total nitrogen, magnesium, calcium, cation exchange capacity, and organic matter content were not statistically different among necrotic and healthy turfgrass zones. Soil pH was statistically higher in the necrotic zone versus soil under healthy turfgrass at only the 3.0 cm soil sampling depth. Comparing soil properties within the necrotic zone, only potassium and electrical conductivity was statistically higher at the 0.5 cm depth compared to the 3.0 cm depth. Although most soil information was considered very similar at both sampling depths, soil sampling at the 3.0 cm depth would be a more practical or easier method for turfgrass managers. At either soil sampling depth, the necrotic zones of type-I fairy ring areas in turfgrass were most likely associated with a combination of direct and indirect effects of the basidiomycete fungi on soil chemical and physical properties in the turfgrass root zone. Presented at the International Conference on Biohydrology, Prague, Czech Republic, 20–22 September 2006.  相似文献   

5.
Potentially, golf courses could act as wildlife refuges under adequate golf course management. We assessed the impacts of golf course managements on arthropod communities by analyzing arthropod community data. Arthropods were collected using a sweeping-net method from turf areas. Information of management applied in each golf course such as frequency of chemical use, length of grass was obtained by field measurements and also from interviews based on management records with green keepers. In total, 92 invertebrate families were collected. Of 44 frequently appearing families, the number of individuals in 22 arthropods families such as Delphacidae and Deltocephalidae were associated with some kind of course management features. Length of grass was the most influential factor to those families. After removing the effect of the grass length by regression analysis, herbicide affected six families. The effects of frequency of the use of fungicide and insecticide were not detected in this study.  相似文献   

6.
In this study, the utility of inoculative releases of local strains of Heterorhabditis bacteriophora and Steinernema feltiae isolated from northern New York (NY) State for managing soil-dwelling pests in sod (turfgrass production systems) was evaluated. The objectives of the project were to (a) quantify changes in biocontrol potential during the sod production process and (b) evaluate the potential for the nematodes to suppress populations of soil-dwelling turf pests following harvest and installation at a new site. A field study was conducted on four sod fields in central NY State on soils with varying texture and organic matter content, and a post-harvest sod installation study was performed in the greenhouse on a sandy loam soil. Nematode-induced mortality of Galleria mellonella was increased significantly one month following inoculation but differed between fields with different soil types, likely due to variation in soil organic matter content. In the following year, nematode persistence in sod fields was low, likely driven by moderate to severe drought conditions. In contrast, upon harvest and installation, significant nematode-induced mortality was observed in soil receiving an installation of muck-produced sod. Enhanced nematode-induced mortality was detected in both the greater wax moth and third instar Japanese beetle larvae. This study indicates that inoculation of sod with entomopathogenic nematodes can improve biocontrol potential during sod production and after harvest, however, the utility of this practice is sensitive to soil conditions, and likely most efficacious on coarse-textured soils with high organic matter.  相似文献   

7.
Denitrification is known as an important pathway for nitrate loss in agroecosystems. It is important to estimate denitrification fluxes to close field and watershed N mass balances, determine greenhouse gas emissions (N2O), and help constrain estimates of other major N fluxes (e.g., nitrate leaching, mineralization, nitrification). We compared predicted denitrification estimates for a typical corn and soybean agroecosystem on a tile drained Mollisol from five models (DAYCENT, SWAT, EPIC, DRAINMOD-N II and two versions of DNDC, 82a and 82h), after first calibrating each model to crop yields, water flux, and nitrate leaching. Known annual crop yields and daily flux values (water, nitrate-N) for 1993–2006 were provided, along with daily environmental variables (air temperature, precipitation) and soil characteristics. Measured denitrification fluxes were not available. Model output for 1997–2006 was then compared for a range of annual, monthly and daily fluxes. Each model was able to estimate corn and soybean yields accurately, and most did well in estimating riverine water and nitrate-N fluxes (1997–2006 mean measured nitrate-N loss 28 kg N ha?1 year?1, model range 21–28 kg N ha?1 year?1). Monthly patterns in observed riverine nitrate-N flux were generally reflected in model output (r 2 values ranged from 0.51 to 0.76). Nitrogen fluxes that did not have corresponding measurements were quite variable across the models, including 10-year average denitrification estimates, ranging from 3.8 to 21 kg N ha?1 year?1 and substantial variability in simulated soybean N2 fixation, N harvest, and the change in soil organic N pools. DNDC82a and DAYCENT gave comparatively low estimates of total denitrification flux (3.8 and 5.6 kg N ha?1 year?1, respectively) with similar patterns controlled primarily by moisture. DNDC82h predicted similar fluxes until 2003, when estimates were abruptly much greater. SWAT and DRAINMOD predicted larger denitrification fluxes (about 17–18 kg N ha?1 year?1) with monthly values that were similar. EPIC denitrification was intermediate between all models (11 kg N ha?1 year?1). Predicted daily fluxes during a high precipitation year (2002) varied considerably among models regardless of whether the models had comparable annual fluxes for the years. Some models predicted large denitrification fluxes for a few days, whereas others predicted large fluxes persisting for several weeks to months. Modeled denitrification fluxes were controlled mainly by soil moisture status and nitrate available to be denitrified, and the way denitrification in each model responded to moisture status greatly determined the flux. Because denitrification is dependent on the amount of nitrate available at any given time, modeled differences in other components of the N cycle (e.g., N2 fixation, N harvest, change in soil N storage) no doubt led to differences in predicted denitrification. Model comparisons suggest our ability to accurately predict denitrification fluxes (without known values) from the dominant agroecosystem in the midwestern Illinois is quite uncertain at this time.  相似文献   

8.
Imidacloprid, a relatively long residual neonicotinoid soil insecticide, is often applied to lawns and golf courses in spring for preventive control of root-feeding white grubs. We evaluated effects of such applications on spring parasitism of the overwintered third-instar Japanese beetle, Popillia japonica Newman, by Tiphia vernalis Rohwer, an introduced solitary ectoparasitoid. Natural rates of parasitism on a golf course rough were significantly lower in plots treated with full or one-half label rates of imidacloprid in early May compared with untreated turf. Parasitism also was reduced when female T. vernalis were exposed to imidacloprid residues on turf cores in the laboratory. Such exposures did not affect wasp mortality, longevity, survival, or developmental period of Tiphia larvae feeding on hosts in treated turf. They did, however, reduce wasps' ability to parasitize hosts in nontreated soil for at least 1-2 wk postexposure. In Y-trail choice tests, wasps that previously had been exposed to treated turf failed to respond normally to host frass trails in the soil. Female wasps did not avoid imidacloprid residues, imidacloprid-treated host frass, or host grubs that had previously been exposed to treated soil. This study indicates that applying imidacloprid in early spring can interfere with biological control by T. vernalis, whereas postponing preventive grub treatments until June or July, after the wasps' flight period, will help to conserve T. vernalis populations.  相似文献   

9.
Plant-parasitic nematodes are important pathogens of intensely-managed turf used on golf courses. Two of these nematodes that are common in the southeastern US are Belonolaimus longicaudatus and Mesocriconema ornata. Currently, there is a lack of effective treatments that can be used to manage these important pests. Turfgrass field trials evaluated DL-methionine as a turfgrass nematicide against B. longicaudatus and M. ornata. One trial was on a bermudagrass putting green, the other was on zoysiagrass maintained under putting-green conditions. Two rates of methionine, 1120 kg/ha in a single application, and 112 kg/ha applied twice four weeks apart, were compared with untreated control and fenamiphos treatments. Measurements collected included soil nematode counts, turf density, and root lengths. In both trials, 1120 kg/ha of methionine reduced numbers of both nematode species (P ≤ 0.1), and 112 kg/ha of methionine reduced numbers of both nematode species after two applications. Bermudagrass turf density responded favorably to both methionine rates and root lengths were improved by the 1120 kg/ha rate. Zoysiagrass showed short-term phytotoxicity to methionine, but quickly recovered and treated plots were improved compared to the untreated controls by the end of the trial. These trials indicated that methionine has potential for development as a turfgrass nematicide, but further research is needed to determine how it can best be used.  相似文献   

10.
Certain nematodes are common soilborne organisms found in turfgrass in the United States that cause significant economic damage to golf course turf. One of the most prevalent plant-parasitic nematodes infesting turfgrass are root-knot nematodes (Meloidogyne spp.). Chemical treatment options for root-knot nematodes in turfgrass are limited, and there is a need for new nematicidal active ingredients to address this problem. In this study, we evaluated the use of silver nanoparticles (AgNP) as a potential nematicide in laboratory and field experiments. AgNP was synthesized by a redox reaction of silver nitrate with sodium borohydride using 0.2% starch as a stabilizer. When J2 of M. incognita were exposed to AgNP in water at 30 to 150 μg/ml, >99% nematodes became inactive in 6 hr. When turfgrass and soil composite samples infested with M. graminis were treated with 150 μg/ml AgNP, J2 were reduced in the soil samples by 92% and 82% after 4- and 2-d exposures, respectively, in the treated compared to the nontreated soil samples. Field trials evaluating AgNP were conducted on a bermudagrass (Cynodon dactylon × C. transvaalensis) putting green infested with M. graminis. Biweekly application of 90.4 mg/m2 of AgNP improved turfgrass quality in one year and reduced gall formation in the roots in two years without phytotoxicity. The AgNP application did not significantly reduce the number of M. graminis J2 in plots during the growing season. The laboratory assays attested to the nematicidal effect of AgNP, and the field evaluation demonstrated its benefits for mitigating damage caused by root-knot nematode in bermudagrass.  相似文献   

11.
In 2010, a turfgrass bionematicide containing in vitro produced Pasteuria sp. for management of Belonolaimus longicaudatus was launched under the tradename Econem. Greenhouse pot studies and field trials on golf course fairways and tee boxes evaluated Econem at varied rates and application frequencies. Trials on putting greens compared efficacy of three applications of Econem at 98 kg/ha to untreated controls and 1,3-dichloropropene at 53 kg a.i/ha. Further putting green trials evaluated the ability of three applications of Econem at 98 kg/ha to prevent resurgence of population densities of B. longicaudatus following treatment with 1,3-dichloropropene at 53 kg a.i./ha. None of the Econem treatments in pot studies were effective at reducing B. longicaudatus numbers (P ≤ 0.05). Econem was associated with reduction in population densities of B. longicaudatus (P ≤ 0.1) on only a single sampling date in one of the eight field trials and did not improve turf health in any of the trials (P > 0.1). These results did not indicate that Econem is an effective treatment for management of B. longicaudatus on golf course turf.  相似文献   

12.
Composting of pulp and paper mill fly ash with wastewater treatment sludge   总被引:2,自引:0,他引:2  
Wastewater treatment sludge and power boiler fly ash were combined and composted in mixed and static windrows 50 m long, 4 m high and 6 m wide. Moisture content was maintained above 50%. The final compost had a pH of 8.5, contained high concentrations of specific nutrients, and an average C:N ratio of 43:1. All metal, PCB, chlorophenol and PAH concentrations were below levels stipulated by local regulations. Over the first 8 weeks of the composting period dioxin concentration decreased by 45% to 41 pg/g TEQ. Leachate tests indicated minimal (<0.1 mg/l Cu and Pb; <50 mg/l Na, P, and SO4−2) leaching of contaminants from the composted material. Application of compost (8 cubic yards/acre) at a sod farm improved soil characteristics as measured by a number of parameters. The dioxin concentration in the final soil/compost mixture was 3 pg/g TEQ, allowing the soil/compost mixture to be classified as agricultural soil. It was concluded that composting produced an acceptable soil conditioner attractive for large volume users of inexpensive soil material (sod farms, golf courses, land reclamation sites).  相似文献   

13.
Agrotis ipsilon multiple nucleopolyhedrovirus (family Baculoviridae, genus Nucleopolyhedrovirus, AgipMNPV), a naturally occurring baculovirus, was found infecting black cutworm, Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae), on central Kentucky golf courses. Laboratory, greenhouse, and field studies investigated the potential of AgipMNPV for managing black cutworms in turfgrass. The virus was highly active against first instars (LC50 = 73 occlusion bodies [OBs] per microl with 2-microl dose; 95% confidence intervals, 55-98). First instars that ingested a high lethal dose stopped feeding and died in 3-6 d as early second instars, whereas lethally infected fourth instars continued to feed and grow for 4-9 d until death. Sublethal doses consumed by third or fifth instars had little or no effect on subsequent developmental rate or pupal weight. Horizontal transmission of AgipMNPV in turfgrass plots was shown. Sprayed suspensions of AgipMNPV (5 x 10(8) - 6 x 10(9) OBs/m2) resulted in 75 to > 93% lethal infection of third or fourth instars in field plots of fairway-height creeping bentgrass, Agrostis stolonifera (Huds.), and on a golf course putting green collar. Virus spray residues (7 x 10(9) OBs/m2) allowed to weather on mowed and irrigated creeping bentgrass field plots significantly increased lethal infection of implanted larvae for at least 4 wk. This study, the first to evaluate a virus against a pest in turfgrass, suggests that AgipMNPV has potential as a preventive bioinsecticide targeting early instar black cutworms. Establishing a virus reservoir in the thatch and soil could suppress successive generations of that key pest on golf courses and sport fields.  相似文献   

14.
One of the most frequently used fungicides on golf courses, chlorothalonil, was applied to field plots at four different golf courses to determine how Ataenius spretulus Haldeman, Aphodius granarius L., carabids, staphylinids, formicids and Paenibacillus sp. were affected. Chlorothalonil had no influence on the incidence of Paenibacillus sp. infection of A. spretulus larvae in golf course fairways. The incidence of Paenibacillus sp. infection of A. spretulus larvae was much greater in the rough (47.4%) compared with the fairway (26.4%) at Cattails Golf Club despite a more dense population (fourfold) of larvae in the fairway. Chlorothalonil treatment of turf plots had no influence on the number of staphylinids, carabids, formicids, or A. spretulus adults caught in pitfall traps. It also did not affect the density of A. spretulus larvae. Data from this study suggest that the widespread use of chlorothalonil on fairways is not likely to cause outbreaks of A. spretulus on golf courses.  相似文献   

15.
草坪建植体系构建中的生态问题   总被引:7,自引:2,他引:5  
多立安  赵树兰  高玉葆 《生态学报》2007,27(3):1065-1071
草坪建植体系对城市复合生态系统具有重要的调控能力与服务功能,使草坪建植体系构建成为现代城市生态建设中必须考虑的重要内容之一。在分析国内外草坪建植体系构建现状及其主要制约因素的基础上,进一步探讨了草坪绿化体系构建中草皮建植、植生带建植及运动场草坪建植体系的几个主要生态问题,指出土壤基质草皮建植方式的弊端在于消耗土壤资源,破坏农田生态系统,草皮杂草控制难;植生带草坪建植方式的问题在于复杂的工艺和无纺布的高成本,这与节约型生态经济发展模式相矛盾;运动场草坪建植体系存在的问题则是场地长期处于高强度践踏下,导致基质紧实而失去弹性,使生态适宜性降低。在构建城市草坪建植体系中,寻找低成本廉价的草坪建植材料的替代物,开展环境友好的草坪建植材料选择应用及其生态适宜性研究,则是解决城市草坪建植体系中上述几个突出生态问题的关键。  相似文献   

16.
Golf courses have been shown to have a positive impact on local biodiversity, quality of life and the economy. However, the impacts of golf courses on local environment, including ecosystem services and dis-services are not clearly understood. To explore this relationship, we took two golf courses in Beijing (a links course and a parkland course) to develop an assessment framework and present estimates of economic values of net ecosystem services, in aspects of ecosystem goods, carbon fixation, soil retention, flood storage, recreation, water consumption and nonpoint-source pollution. The results showed that the two golf courses have provided remarkable net ecosystem services values (links 51.58 × 104 yuan/ha/yr, parkland 42.60 × 104 yuan/ha/yr, 6.19 yuan = 1 US$ in 2013). Over 95% of this value is generated by three services: recreation, ecosystem goods and flood storage. Our results indicate that the parkland course has better performance in sustainable supply of ecosystem services than the links course. In addition, this study provides useful improvements for golf course design and management concerning positive environmental externalities optimizing, including the scaling of non-playing areas to maximize golf course ecosystem services supply capacity, appropriate grass species selecting and irrigation with recycled water. Moreover, a policy analysis suggests that the development of public golf course in China is a necessary complement to resolve the mismatch between private and public benefits and let more people enjoy the ecosystem services.  相似文献   

17.
With the cancellation of fenamiphos in the near future, alternative nematode management tactics for plant-parasitic nematodes (PPN) on golf courses need to be identified. The use of entomopathogenic nematodes (EPN) has been suggested as one possible alternative. This paper presents the results of 10 experiments evaluating the efficacy of EPN at managing PPN on turfgrasses and improving turf performance. These experiments were conducted at various locations throughout Florida over the course of a decade. In different experiments, different EPN species were tested against different species of PPN. Separate experiments evaluated multiple rates and applications of EPN, compared different EPN species, and compared single EPN species against multiple species of PPN. In a few trials, EPN were associated with reductions in certain plant-parasite species, but in other trials were associated with increases. In most trials, EPN had no effect on plant parasites. Because EPN were so inconsistent in their results, we conclude that EPN are not acceptable alternatives to fenamiphos by most turf managers in Florida at this time.  相似文献   

18.
We conducted a study to determine the relationship between turfgrass management intensity and natural occurrence of entomopathogenic nematodes (EPNs). We surveyed for EPNs on putting greens, fairways, and rough areas—three distinct surface types on golf courses that are managed with different intensities. We collected 159 soil samples from putting greens, contiguous fairways, and rough areas from 19 golf courses in Ohio, USA. Nematodes were recovered from soil samples using the insect baiting technique. We also analyzed the soil samples for texture, organic matter, pH, phosphorus, calcium, magnesium and potassium. We used principal components analysis and Pearson correlation to determine the relationship between nematode occurrence and the measured parameters. Surface type was the most important factor in predicting EPNs occurrence. Putting greens differed significantly from fairways and rough areas in the number of EPN-positive sites. No EPNs were recovered from putting greens but were recovered from 43% of the fairways and 57% of the rough areas. Putting greens also differed significantly from fairways and rough areas in organic matter, pH, calcium, and phosphorus. The fairways and rough areas did not however differ in number of EPN-positive sites and measured soil parameters. Presence of EPNs correlated significantly, although weakly, with sand, silt, phosphorus, organic matter, and magnesium content, but not with clay, pH, calcium, and potassium. Nematode isolates were identified as Heterorhabditis bacteriophora, Steinernema carpocapsae, and S. glaseri. This suggests that EPNs are more likely to occur in less intensively managed sites that receive fewer inputs and have relatively high sand, and moderate silt, organic matter, phosphorus, and magnesium content.  相似文献   

19.
Highly managed turfgrass systems accumulate considerable soil organic C, which supports a diverse and robust soil microbial community. Degradation of this soil organic C is mediated by a suite of soil enzymes. The relationship between these enzyme activities and the quality of soil organic C is central to understanding the dynamics of soil organic matter. We examined the activities of several soil enzymes involved in microbial C acquisition, including β-glucosidase, N-acetyl-β-glucosaminidase, cellulase, chitinase, and phenol oxidase, and characterized the chemical composition of soil organic matter using Fourier transform infrared spectroscopy (FTIR) in a turfgrass chronosequence (1–95 years old) and adjacent native pines. Non-metric multidimensional scaling analysis showed that the chemical composition of soil organic matter varied with turf age and land use (turf versus pines). Using the polysaccharide peak (1,060 cm−1) as a reference, both aliphatic (2,930 cm−1) and carboxylic (1,650 and 1,380 cm−1) compounds increased with turf age, indicating that soil organic matter became more recalcitrant. Soil enzyme activities per unit soil mass increased with turf age and were correlated to soil C content. Most soil enzyme activities in native pines were similar to those in young turf, but the cellulase activity was similar to or greater than the activity in old turfgrass systems. On a soil C basis, however, the activities of N-acetyl-β-glucosaminidase and cellulase decreased with turf age; this reduction was correlated to the relative changes in the chemical composition of soil organic matter. We observed that the chemical composition of soil organic matter was significantly correlated with the enzyme activity profile when expressed per unit microbial biomass C, but not per unit soil organic C. Our results suggest that chemical composition of soil organic matter changes with turf age and this change partially determines the relative abundance of C-degrading soil enzymes, likely through the influence on microbial community composition.  相似文献   

20.
Belonolaimus longicaudatus is a serious problem on bermudagrass, a common warm-season turfgrass, in Florida. The cancellation of organophosphate nematicides necessitates that new management tools be identified for use on sports turf. Postplant application of 1,3-dichloropropene (1,3-D) on bermudagrass was evaluated for management of B. longicaudatus on golf course fairways and driving ranges. A series of 10 experiments were conducted to evaluate the effectiveness of 1,3-D in reducing population densities of B. longicaudatus and enhancing bermudagrass recovery from nematode damage. In 5 of 10 experiments, 1,3-D injected at 46.8 liters/ha was effective in reducing population densities of B. longicaudatus (P < 0.05) compared to untreated plots 2 to 4 weeks after treatment. One month after treatment, population densities of B. longicaudatus ranged from 59% to 97% of those in untreated plots. Nematode suppression generally lasted 2 months or less. Turf visual performance was improved following injection with 1,3-D (P < 0.05) over untreated plots when other factors were not limiting. Turf root development also was enhanced following injection with 1,3-D. Postplant injection of 1,3-D could be a useful nematode management tool for certain sports turf applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号