首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
An atmospheric deposition study was conducted in the downwind of Shaktinagar Thermal Power Plant (STPP), Renusagar Thermal Power Plant (RTPP), and Anpara Thermal Power Plant (ATPP), at Singrauli region, Uttar Pradesh (UP), India to characterize dry and wet deposition in relation to different pollution loading. During the study period, dry and wet depositions and levels of gaseous pollutants (SO2 and NO2) were estimated across the sites. Dry deposition was collected on a monthly basis and wet deposition on an event basis. Depositions were analyzed for pH, nitrate (NO3-), ammonium (NH4+), and sulphate (SO4(2-)) contents. Dry deposition rate both collected as clearfall and throughfall varied between 0.15 to 2.28 and 0.33 to 3.48 g m(-2) day(-1), respectively, at control and maximally polluted sites. The pH of dry deposition varied from 5.81 to 6.89 during winter and 6.09 to 7.02 during summer across the sites. During the rainy season, the mean pH of clear wet deposition varied from 6.56 to 7.04 and throughfall varied from 6.81 to 7.22. The concentrations of NO2 and SO2 pollutants were highest during the winter season. Mean SO2 concentrations varied from 18 to 75 g m(-3) at control and differently polluted sites during the winter season. The variation in NO2 concentrations did not show a pattern similar to that of SO2. The highest NO2 concentration during the winter season was 50 g m(-3), observed near RTPP. NO2 concentration did not show much variation among different sites, suggesting that the sources of NO2 emission are evenly distributed along the sites. The concentrations of NH4+, NO3-, and SO4(2-) ions in dry deposition were found to be higher in summer as compared to the winter season. In dry deposition (clearfall) the concentrations of NH4+, NO3-, and SO4(2-) varied from 0.13 to 1.0, 0.81 to 1.95, and 0.82 to 3.27 mg l(-1), respectively, during winter. In wet deposition (clearfall), the above varied from 0.14 to 0.74, 0.81 to 1.82, and 0.67 to 2.70 mg l(-1), respectively. The study clearly showed that both dry and wet depositions varied between the sites and season, suggesting significant impact of industrial activities in modifying the atmospheric input. The nonacidic deposition suggests that there is no threat of acidification of the receiving ecosystem at present.  相似文献   

2.
基于石生藓类氮含量的贵阳地区大气氮沉降   总被引:3,自引:0,他引:3  
刘学炎  肖化云  刘丛强  唐从国 《生态学报》2009,29(12):6646-6653
对贵阳市区到农村地区的石生藓类氮含量进行了系统分析,并根据藓类氮含量(y,%)和大气氮沉降(x, kg hm~(-2) a~(-1))的平均定量关系(y=0.052x+0.7325)计算了各采样点的大气氮沉降值.贵阳地区大气氮沉降的变化范围为0.91~44.69kg hm~(-2) a~(-1),市区大气氮沉降最高平均(29.21±6.17)kg hm~(-2) a~(-1),主要来自城市废水NH3释放;最低平均(11.95±3.95)kg hm~(-2) a~(-1),出现在城市和农村的结合地带,主要原因在于来自市区的氮污染物减少、且大量分布了环城林带、农业活动相对较低;20km以外的农村地区大气氮沉降略微升高(平均(14.31±5.11)kg hm~(-2) a~(-1)),主要反映了农业施肥导致NH3释放的增加.结果表明,石生藓类氮含量是一种经济可靠的大气氮沉降监测工具,能够较准确地量化大气氮沉降的水平,并为深入研究大气氮沉降的生态环境效应提供基础资料.  相似文献   

3.
Steady laminar axisymmetric inhalation flow and wall deposition of micron-size particles in representative triple bifurcation airways have been simulated using a commercial finite-volume code with user-enhanced programs. Assuming spherical non-interacting particles (3 microm相似文献   

4.

Steady laminar axisymmetric inhalation flow and wall deposition of micron-size particles in representative triple bifurcation airways have been simulated using a commercial finite-volume code with user-enhanced programs. Assuming spherical non-interacting particles (3 μm≤ d p ≤7 μm), various inlet Reynolds numbers (Re=500-2000) and Stokes numbers (St=0.02-0.23) were considered. The resulting particle deposition patterns were analyzed and then summarized in terms of deposition efficiencies, i.e. DE=DE(Re,St) Surprisingly high DE-values occur at relatively low Reynolds numbers (e.g., Re=500 ) in the third bifurcation. The quantitative results are of interest to researchers either conducting health risk assessment studies for inhaled particulate pollutants or analyzing drug aerosol inhalation and deposition at desired lung target sites.  相似文献   

5.
1-naphthol (1N), 2-naphthol (2N) and 8-quinolinol (8H) are general water pollutants. 1N and 2N are the configurational enantiomers and 8H is isoelectronic to 1N and 2N. These pollutants when ingested are transported in the blood by proteins like human serum albumin (HSA). Binding of these pollutants to HSA has been explored to elucidate the specific selectivity of molecular recognition by this multiligand binding protein. The association constants (K(b)) of these pollutants to HSA were moderate (10(4)-10(5) M(-1)). The proximity of the ligands to HSA is also revealed by their average binding distance, r, which is estimated to be in the range of 4.39-5.37 nm. The binding free energy (ΔG) in each case remains effectively the same for each site because of enthalpy-entropy compensation (EEC). The difference observed between ΔC(p) (exp) and ΔC(p) (calc) are suggested to be caused by binding-induced flexibility changes in the HSA. Efforts are also made to elaborate the differences observed in binding isotherms obtained through multiple approaches of calorimetry, spectroscopy and bioinformatics. We suggest that difference in dissociation constants of pollutants by calorimetry, spectroscopic and computational approaches could correspond to occurrence of different set of populations of pollutants having different molecular characteristics in ground state and excited state. Furthermore, our observation of enhanced binding of pollutants (2N and 8H) in the presence of hemin signifies that ligands like hemin may enhance the storage period of these pollutants in blood that may even facilitate the ill effects of these pollutants.  相似文献   

6.
为揭示大气湿沉降对胶州湾营养盐的输送通量及其生态效应,分别于2015年6—8月(夏季)、9—11月(秋季)采集胶州湾降水样品,测定了降水中不同形态N、P、Si的浓度。结果表明,降水中不同形态营养盐的浓度变化较大,且均与降水量呈负相关关系,其中NH4-N和NO3-N的浓度较高,溶解有机氮(DON)占溶解态总氮(DTN)含量的25.9%,而NO_2-N,PO_4-P和SiO_3-Si的浓度均很低。溶解无机氮(DIN)、DON、PO_4-P以及SiO_3-Si的湿沉降通量分别为141.7、61.87、0.35 mmol m~(-2)a~(-1)和0.12 mmol m~(-2)a~(-1)。受降水量和营养物质来源制约,各项营养盐湿沉降通量时间变化显著。农业活动导致的无机氮排放构成了胶州湾湿沉降DIN的主要来源。大气湿沉降DIN、DON、PO_4-P和SiO_3-Si分别占胶州湾总输入负荷的9.04%、10.24%、0.57%和0.17%,湿沉降输入的PO_4-P在夏、秋季分别可以支持0.575 mgC m~2d~(-1)和1.42 mg C m~2d~(-1)的新生产力;雨水中DIN/P比值高达1 617,突发性强降雨带来的营养盐输入会加剧表层水体的P限制和Si限制,对胶州湾浮游植物群落结构和粒级结构产生重要影响。大气湿沉降是胶州湾生源要素生物地球化学过程的重要一环,对营养物质收支的贡献及可能引发的生态效应不容忽视。  相似文献   

7.
Maintaining healthy forests is the major objective for the Forest Service scientists and managers working for the U.S. Department of Agriculture. Air pollution, specifically ozone (O3) and nitrogenous (N) air pollutants, may severely affect the health of forest ecosystems in the western U.S. Thus, the monitoring of air pollution concentration and deposition levels, as well as studies focused on understanding effects mechanisms, are essential for evaluation of risks associated with their presence. Such information is essential for development of proper management strategies for maintaining clean air, clean water, and healthy ecosystems on land managed by the Forest Service. We report on two years of research in the central Sierra Nevada of California, a semi-arid forest at elevations of 1100-2700 m. Information on O3 and N air pollutants is obtained from a network of 18 passive samplers. We relate the atmospheric N concentration to N concentrations in streams, shallow soil water, and bulk deposition collectors within the Kings River Experimental Watershed. This watershed also contains an intensive site that is part of a recent Forest Service effort to calculate critical loads for N, sulfur, and acidity to forest ecosystems. The passive sampler design allows for extensive spatial measurements while the watershed experiment provides intensive spatial data for future analysis of ecosystem processes.  相似文献   

8.
空气中的细颗粒物(PM2.5)是我国城市空气污染的主要污染物之一,严重威胁着城市居民的健康,限制城市发展的可持续性。PM2.5去除的自然途径有两种,分别是干沉降和湿沉降,其中干沉降占据主导作用,且干沉降的过程和效率与城市森林紧密关联。目前针对城市森林对干沉降作用的研究主要是在小尺度中从不同树种、不同群落结构、不同景观类型等角度来估算并比较其滞尘量,较少关注其占空气污染总量的比率,从而可能影响对城市森林滞尘服务能力的判断。因此,利用城市森林效益(Urban Forest Effect, UFORE)模型中的大气污染干沉降模块的核心算法,以2015年为例,估算了我国主要城市辖区的城市森林一年内对大气中的PM2.5削减量以及其占空气中PM2.5污染总量的比重。结果显示:(1)2015年全国主要城市单位绿地面积日均滞尘量较高地区主要集中在华北地区、华东地区、以及东北地区。其中北京30.47mg/m2,苏州24.63mg/m2,沈阳28.55mg/m2  相似文献   

9.
Summary Dry deposition of gases and airborne particles is reviewed in particular relation to their interaction with vegetation. Once deposited, pollutants overcome the system of resistances (air, cuticular, stomatal and mesophyll) and penetrate key physiological points that affect the plant's biochemistry. Strong relationships have been found between gases in the environment and the chlorophyll content of leaves, production and partitioning of dry matter, relative growth rate and net assimilation rate. Physical modes of dry deposition involving anthropogenic pollutants present in the surface layer and micrometeorological conditions allowing their diffusion in the canopy are also discussed, with emphasis on measurement techniques.  相似文献   

10.
地表臭氧作为近地层最主要的大气污染物之一,其不断上升的浓度及其对粮食作物的影响受到越来越多的关注.本研究利用微气象学观测方法,探明自然条件下冬麦田的臭氧沉降过程,分析了影响臭氧沉降过程的环境因子.结果表明: 观测期内(小麦生长旺期)臭氧通量均值为-0.35 μg·m-2·s-1(负号表示沉降方向指向地面),臭氧沉降平均速率为0.55 cm·s-1,空气动力学阻力均值为30 s·m-1,粘性副层阻力均值为257 s·m-1,冠层阻力均值为163 s·m-1,且均存在明显的日变化趋势.臭氧沉降阻力大小受摩擦速度、太阳辐射强度、温度和相对湿度等因素的影响.  相似文献   

11.
Man's activities pose a number of threats to the functioning, structure and diversity of natural and semi-natural ecosystems. One of the main threats is the increase in concentrations in air pollutants in this century (Wellburn, 1988; Tamm, 1991). This paper is a commentary on the effects of tropospheric ozone (O3) and airborne nitrogen deposition (both oxidized (NOx) and reduced (NHy) compounds) on natural and semi-natural ecosystems, based upon the oral presentations and the discussions during the Symposium, extended with a personal overview and some suggestions about future challenges for research. The most important effects of these air pollutants on natural and semi-natural vegetation are summarized and evaluated in ecological terms, with respect to the functioning and structure of unaffected systems. Air pollutants are transported over both short and long distances (as far as a few thousand km) before being deposited on surface water, vegetation or soil. In this way, vegetation over a large area or in remote regions can be influenced by airborne pollutants (see Fowler et al . (1998); Asman, Sutton & Schjørring (1998)).  相似文献   

12.
Concentrations of toxic pollutants in surface soils must be predicted in order to assess exposures and risks that may arise from emissions at incinerators and other air pollution sources. At present, concentrations are predicted using deterministic models and time-averaged values of input parameters. This steady-state equilibrium approach does not address variability in the underlying transport and fate processes. This paper explores the variability of pollutant concentrations in surface soils that arises from precipitation, an intermittent process that governs wet deposition and leaching processes. Using long-term (45 to 50 years) historical records at 6 climato-logically diverse sites, concentrations predicted using the steady-state approach are compared to those predicted using a dynamic numerical model that simulates dry and wet deposition, leaching, and pollutant accumulation in the surface layer of soil using a daily time step. The models are compared for pollutants of low, medium, and high water solubility. Both models show that predictions depend strongly on the pollutant solubility and the precipitation pattern at the location. Average concentrations differed between locations by a factor of up to 4 due to precipitation patterns; the solubility of the pollutant had a much more pronounced effect. Both models produced similar long-term trends, for example, the duration of the period needed to achieve a quasi-steady-state pollutant concentration. However, for soluble pollutants, the dynamic model produced maximum 24-hr average concentrations that exceeded long-term averages by 4 to 8 times, and long-term predictions of the dynamic model exceeded predictions of the steady-state model by 1.9 to 3.6 times (depending on the site). These differences are caused by the steady-state assumption that deposition and leaching occur continuously. While the steady-state model can be used to estimate long-term trends of moderately to highly insoluble pollutants, the dynamic model should be used to predict short-term, maximum concentrations and both short- and long-term averages of soluble pollutants. Site-specific exposure and risk assessments should consider temporal variation and the use of a dynamic model if concentrations of soluble pollutants approach risk-based target levels.  相似文献   

13.
Estimates of dry and wet deposition of nitrogen and sulphur compounds in the Czech Republic for the years 1994 and 1998 are presented. Deposition has been estimated from monitored and modeled concentrations in the atmosphere and in precipitation, where the most important acidifying compounds are sulphur dioxide, nitrogen oxides, ammonia, and their reaction products. Measured atmospheric concentrations of SO2, NOx, NH3, and aerosol particles (SO4(2-), NO3-, and NH4+), along with measured concentrations of SO4(2-), NO3-, and NH4+ in precipitation, weighted by precipitation amounts, were interpolated with Kriging technique on a 10- x 10-km grid covering the whole Czech Republic. Wet deposition was derived from concentration values for SO4(2-), NO3-, and NH4+ in precipitation and from precipitation amounts. Dry deposition was derived from concentrations of gaseous components and aerosol in the air, and from their deposition velocities. A multiple resistance model was used for calculation of SO2, NOx, and NH3 deposition velocities. Deposition velocities of particles were parameterized. It was estimated that the annual average deposition of SOx in the Czech Republic decreased from 1384 to 1027 mol H + ha(-1) a(-1) between 1994 and 1998. The annual average NOy deposition was estimated to be 972 and 919 mol H + ha(-1) a(-1) in 1994 and 1998, respectively. The annual average NHx deposition was estimated to be 887 mol H+ ha(-1) a(-1) and 779 mol H + ha(-1) a(-1) in 1994 and 1998, respectively. It was estimated that the annual average of the total potential acid deposition decreased from 3243 to 2725 mol H + ha(-1) a(-1) between 1994 and 1998. Sulphur compounds (SOx) contributed about 38%, oxidized nitrogen species (NOy) 34%, and reduced nitrogen species (NHx) 28% to the total potential acid deposition in 1998. The wet deposition contributed 42% to the total potential acid deposition in 1998.  相似文献   

14.
Caveolin-1 (cav1) is a 22-kDa membrane protein essential to the formation of small invaginations in the plasma membrane, called caveolae. The cav1 gene is expressed primarily in adherent cells such as endothelial and smooth muscle cells and fibroblasts. Caveolae contain a variety of signaling receptors, and cav1 notably downregulates transforming growth factor (TGF)-beta signal transduction. In pulmonary pathologies such as interstitial fibrosis or emphysema, altered mechanical properties of the lungs are often associated with abnormal ECM deposition. In this study, we examined the physiological functions and the deposition of ECM in cav1(-/-) mice at various ages (1-12 mo). Cav1(-/-) mice lack caveolae and by 3 mo of age have significant reduced lung compliance and increased elastance and airway resistance. Pulmonary extravasation of fluid, as part of the cav1(-/-) mouse phenotype, probably contributed to the alteration of compliance, which was compounded by a progressive increase in deposition of collagen fibrils in airways and parenchyma. We also found that the increased elastance was caused by abundant elastic fiber deposition primarily around airways in cav1(-/-) mice at least 3 mo old. These observed changes in the ECM composition probably also contribute to the increased airway resistance. The higher deposition of collagen and elastic fibers was associated with increased tropoelastin and col1alpha2 and col3alpha1 gene expression in lung tissues, which correlated tightly with increased TGF-beta/Smad signal transduction. Our study illustrates that perturbation of cav1 function may contribute to several pulmonary pathologies as the result of the important role played by cav1, as part of the TGF-beta signaling pathway, in the regulation of the pulmonary ECM.  相似文献   

15.
During the last 5 decades the northeastern part of Estonia (the region where oil shale and the chemical industry are located) has been subjected to pollution with acidic compounds. In 1981-1988 the yearly mean nitrogen (N) deposition load was up to 11.1 kg ha(-1). This N pollution level combined with the deposition of sulphur (S) could have seriously endangered the environment, but the simultaneous emission of strongly alkaline fly ash restrained acidification processes. After 1989-1991 the situation changed, and in 1994-1996 the N deposition load in northeastern Estonia remained within the range of 2.6 to 6.6 kg ha(-1) year(-1) and that of S within 2 to 50 kg ha(-1) year(-1). Because the fly ash deposition is permanently decreasing, more sensitive lichens and mosses can be subjected to critical N+S loads in the future. The proportion of oil shale industry in total emission of NOx in Estonia from stationary sources equals approximately 65 to 75%. During 1996-2000 the yearly mean concentration of NO2 in the air of towns increased from 9 to 12 to 16 to 29 g m(-3). The emission of N compounds was mainly caused by N oxides in flue gases from power plants, as well as ammonia and carbamide discharges from chemical plants. In 1988-1990 the estimated yearly total emission of NOx (as NO2 equivalent) was about 18 to 18.6 thousand t and in 1994-2000, 9.9 to 11.8 thousand t.  相似文献   

16.
The concept of critical load (CL) was defined to express the tolerance of natural and semi‐natural habitats for anthropogenic air pollution. Correct evaluation of the exceedance of critical loads is fundamental for the long‐term protection of ecosystems by limiting emissions of potential acidifying and eutrophying pollutants. For forest ecosystems, the exceedance of critical loads is often calculated using deposition data measured in the forest interior. However, several studies report forest edges acting as ‘hotspots’ of acidifying and nitrogen deposition, showing up to fourfold increases in atmospheric deposition compared to the forest interior. This paper estimates the relevance of considering the higher deposition load in forest edges for calculating exceedance of critical loads for nitrogen and potential acidifying deposition. If measures to control and reduce atmospheric deposition are based on mean deposition fluxes within forest stands, deposition reductions will not be enough for preventing adverse effects. In fact, emission reductions should be adjusted to deposition values at the forest edge, since these zones are most threatened. We thus conclude that there is an urgent need to reconsider the calculation of exceedance of critical loads, taking into account edge enhancement of deposition. This is an issue of high relevance, particularly in highly fragmented regions, such as Flanders (Belgium).  相似文献   

17.
HSPA1A (HSP70-1) is a highly inducible heat shock gene up-regulated in response to environmental stresses and pollutants. The aim of our study was to evaluate the sensitivity of the stable metabolically competent HepG2 cells containing a human HSPA1A promoter-driven luciferase reporter (HepG2-luciferase cells) for assessing the toxicity of organic pollutants present in air. The HepG2-luciferase cells were validated by heat shock treatment and testing three organic compounds (pyrene, benzo[a]pyrene, and formaldehyde) that are ubiquitous in the air. The maximal level of HSPA1A (HSP70-1) and relative luciferase activity induced by heat shock were over three and nine times the control level, respectively. Pyrene, benzo[a]pyrene, and formaldehyde all induced significantly elevated levels of relative luciferase activity in a dose-dependent manner. Extractable organic matter (EOM) from urban traffic and coke oven emissions in ambient air were tested on the HepG2-luciferase cells. The traffic EOM induced significant increase in relative luciferase activity at concentrations of picogram per liter. The coke oven EOM produced a strong dose-dependent induction of relative luciferase activity up to six times the control value. Significant increases in relative luciferase activity were observed at concentrations that were as low, or lower than the concentrations that the tested organic pollutants decreased cell viability, and increased malondialdehyde concentration, Olive tail moment, and micronuclei frequency. Therefore, we conclude that the HepG2-luciferase cells are a valuable tool for rapid screening of the overall toxicity of organic pollutants present in air.  相似文献   

18.
Of the various types of industry-generated effluents, those containing organic pollutants such as phenols are generally difficult to remediate. There is a need to develop new technologies that emphasize the destruction of these pollutants rather than their disposal. In this work the white rot fungus, Trametes pubescens, was demonstrated to be an effective bioremediation agent for the treatment of phenolic wastewaters. An airlift loop reactor was optimized, in terms of volumetric oxygen transfer rate (K(L)a = 0.45 s(-1)), to provide an environment suited to rapid growth of T.pubescens (mu = 0.25 day(-1)) and a particularly efficient growth yield on glucose of 0.87 g biomass.g glucose(-1). The phenolic effluent was shown to be a paramorphogen, influencing fungal pellet morphology in the reactor, as well as increasing laccase enzyme activity by a factor of 5 over the control, to a maximum of 11.8 U.mL(-1). This increased activity was aided by the feeding of nonrepressing amounts (0.5 g.L(-1)) of glucose to the reactor culture. To our knowledge the degradation results represent the highest rate of removal (0.033 g phenol.g biomass(-1).day(-1)) of phenolic compounds from water reported for white rot fungi.  相似文献   

19.
Dysregulation of matrix metalloproteinases (MMPs) and ineffective fibrinolysis are associated with the deposition of extracellular matrix (ECM). We hypothesized that elevated plasminogen activator inhibitor (PAI)-1 promotes ECM deposition in the asthmatic airway by inhibiting MMP-9 activity and fibrinolysis. Degree of airway inflammation was similar in PAI-1(-/-) and wild type (WT) mice after ovalbumin (OVA) challenge. PAI-1 production, deposition of collagen and fibrin, and MMP-9 activity in the lung tissue or airways were greater after OVA challenge compared with saline challenge. However, in PAI-1(-/-) mice, collagen deposition was 2-fold less, fibrin deposition was 4-fold less, and MMP-9 activity was 3-fold higher. This is the first direct evidence that the plasmin system regulates ECM deposition in the airways of a murine asthma model, independently of the effect of PAI-1 on inflammatory cells. The results suggest that the PAI-1-dependent inhibition of MMP-9 activity and fibrinolysis is a major mechanism by which ECM deposition occurs.  相似文献   

20.
A computational model to predict deposition of a wide variety of particulate pollutants in several species of mammals is presented. The model incorporates breathing pattern and detailed anatomical models of the respiratory tract based on extensive morphometric measurements of individual airways. The predicted deposition from this general model is in close agreement with observed deposition of monodisperse aerosols in rats. Particle size and density and respiratory breathing patterns are the critical parameters affecting regional deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号