首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inorganic-N concentrations in soil solution of whole tree harvest (WTH) and conventional fell (CF) plots were monitored for two years before felling and four years after felling. Concentrations in the mineral soil after felling were higher than in standing forest for up to 14 months in both felling treatments. In the WTH plots inorganic-N concentrations then dropped steadily until four years after felling they approached zero. In contrast, inorganic-N concentrations of the CF plots remained comparatively large. Inorganic-N was dominated by nitrate throughout the period of the study, and especially in the mineral horizons.Felling debris was not a source of inorganic-N, unless indirectly through release and mineralisation of soluble organic-N. Vegetation cover, biomass and N content were substantially greater in the WTH plots two to three years after felling, compared with the CF. Vegetation cover and brash cover (slash cover in N. America) were negatively correlated. There was also a negative correlation between inorganic-N concentration in soil water samplers and the vegetation cover within the collection area of, or a 1 m square surrounding, these samplers.Two factors are probably responsible for the reduction in inorganic-N concentrations after felling in the WTH — the rapid re-establishment of vegetation and the lack of a N source in felling debris. In the CF plots, brash prevents re-establishment of vegetation over wide areas for at least four years. However, brash is not directly a source of inorganic-N at this stage.  相似文献   

2.
Cycling of soil carbon in the first year after a clear-felling was compared with that before the felling in a Japanese red pine forest in Hiroshima Prefecture, west Japan. The daily mean temperature at the soil surface in summer was increased after the felling in comparison to that before felling, and the water content of both the A0 layer and the surface mineral soil was decreased due to the loss of the forest canopy. The rate of weight loss of the A0 layer was reduced after felling. However, accumulation of the A0 layer rapidly decreased because of the lack of litter supply to the forest floor. Low soil respiration after felling was mainly caused by the cessation of root respiration. Analysis of annual soil carbon cycling was then conducted using a compartment model. The relative decomposition rate of the A0 layer decreased whereas that of humus and dead roots in mineral soil increased to some extent after felling. The accumulation of carbon in mineral soil, however, increased slightly due to the supply of humus from roots killed by the felling.  相似文献   

3.
纯林长期生长或多代连栽必然会导致土壤腐殖质含量和构成发生异化,探究这种异化特征及其与土壤其他性质的关系可以为纯林管理或混交改造提供科学依据。通过对半干旱黄土丘陵区南泥湾林场8种典型纯林土壤腐殖质及其他性质进行系统检测,结果表明:(1)侧柏林土壤腐殖质含量最高(34.61 g/kg),腐殖化程度和稳定性一般;白榆和白桦林土壤的腐殖质含量中等(19.69—23.58 g/kg)、腐殖化程度和稳定性最佳;茶条槭和小叶杨林土壤的腐殖质含量(20.59—22.53 g/kg)和构成均为中等水平;油松、沙棘和刺槐林土壤的腐殖质质量较低(11.77—13.81 g/kg),且腐殖化程度较低,稳定性相对最差;(2)与胡敏酸含量存在显著相互促进作用(P0.05)的土壤性质为CEC、N、微生物量和蛋白酶活性(相关系数0.769—0.926,下同),存在显著相互抑制作用的为有效Cu(-0.793);与富啡酸存在显著相互促进作用的为N、CEC、微生物量、蔗糖酶和磷酸酶活性(0.836—0.955),存在显著相互抑制作用的为有效Cu(-0.822);与胡敏素存在显著相互促进作用的为N、CEC、微生物量、磷酸酶活性和有效Zn(0.766—0.951),存在显著相互抑制作用的为脱氢酶活性(-0.784)。(3)腐殖质构成与其他性质的相关性均不显著(P0.05),其中相对有利于提高胡敏酸/腐殖酸含量之比的土壤性质为蛋白酶、蔗糖酶和过氧化氢酶活性,而不利的是脱氢酶活性;相对有利于提高胡敏酸/富啡酸含量之比的为速效K、CEC和脲酶活性,而不利的是脱氢酶活性。(4)总体而言土壤腐殖质含量较之腐殖质构成与其他性质之间具有更大的相关性;向土壤增施N肥可以促进腐殖质的形成,增加K肥则有利于腐殖质构成的改善,而通过混交改造或增加林下植被是促进纯林土壤腐殖质化过程和解决土壤退化的根本措施。  相似文献   

4.
In order to evaluate soil functions of contemporary agricultural management practices, the adjustment of microbial biomass and C and N mineralisation capacities was monitored during 9 years following the implementation of conventional and reduced tillage, and mineral N and pig slurry fertilisation systems. Soil microbial biomass content and microbial activities decreased continuously from initial values. The decrease was slowed by slurry application, compared to either no or mineral N fertilisation, and both slurry and mineral N application stimulated soil microbial activities in the long-term. There were no significant differences in microbiological characteristics between conventional and reduced tillage for the 0 to 30 cm soil depth but microbial biomass and activity were highest from 0 to 15 cm depth under reduced tillage. Changes in several microbial properties became evident when analysing the whole experiment of 9 years and the soil unit is also of importance as shown by higher microbial activity level in Anthrosols in comparison to Luvisols.  相似文献   

5.
兴安落叶松林碳平衡及管理活动影响研究 (英文)   总被引:12,自引:0,他引:12       下载免费PDF全文
 在利用大兴安岭地区根河落叶松(Larix gmelini)林生态系统定位研究站的实际观测资料验证CENTURY模型的基础上,探讨了林业经营管理方式对兴安落叶松林碳循环的影响,指出:1)目前兴安落叶松林是一个碳汇,每年净吸收碳2.65 t·hm-2。2)砍伐将使兴安落叶松林生物量和生产力下降,土壤碳含量则有所增加。干扰强度越大则其植物总生物量、生产力和土壤碳含量变化幅度越大,伐后恢复时间也越长。3)连年去除枯枝落叶处理使兴安落叶松林土壤碳含量下降,土壤越来越贫瘠。植物总生物量在前30年迅速增加,之后则趋于稳  相似文献   

6.
Pasture and improved grasslands are commonly managed by a combination of artificial fertilisation and biomass removal, but a deeper understanding of how management options interact over the long-term are required to improve sustainability. Studies of multi-trophic responses to these options can provide important insights for biodiversity and soil management, particularly when they cover long time periods. In this study, we provide a novel perspective on long-term experimental field studies of grassland management by examining the direct and indirect effects of N fertilisation and mowing (with biomass retention and removal) on above-ground biodiversity, below-ground soil chemistry and their interactions. Our experimental treatments were applied annually from 1994 in medium to high soil fertility conditions on a non-native pastoral farm in New Zealand, and analysis of data to 2013 show that in general, plants and soil properties did not respond to N fertiliser treatments. In response to mowing regimes, soil properties exhibited subtle, but annually varying changes mostly related to biomass retention or removal, and plant richness was consistently higher under all mowing treatments. The management regime with the greatest gains in diversity also depended on year of study. We further analysed the indirect effects of mowing treatments on plant and arthropod richness via soil properties using structural equation modelling, and found that the impact of mowing is likely to be mediated by soil chemistry changes. In particular, the direct positive impact of mowing on plant richness may be offset by changes to soil properties, depending on whether biomass is retained or removed. We suggest that management regime effects on soil chemistry may limit plant composition changes to those species able to take advantage of altered conditions. These findings suggest that management to improve grassland diversity and soil conditions should consider the abiotic history and conditions of the site.  相似文献   

7.
There is increasing evidence that forests and forest soil contribute to the signature of chlorine composition in water bodies. However, little is known about the potential effects of land management activities on chlorine biogeochemistry. This study examines the effects of previous nitrogen addition on chlorine chemistry in a Pinus sylvestris L. forest located in south-central Sweden (60°00′N, 13°43′E). Repeated addition of nitrogen to study plots over a 20-year period resulted in total additions of 0, 450 and 900 kg N ha?1. Soil samples were collected before harvesting, and soil solution and biomass were sampled following final felling. Contrary to previous findings, we found no clear evidence that previous addition of nitrogen had hampered the formation of organic chlorine in the organic soil layer. We suggest that the effects of nitrogen addition on chlorination processes are not seen in the surface soil, but are instead manifested in the migration of organic matter in the mineral soil. Soil organic matter from the E-horizon had a lower chlorination degree in the nitrogen-amended plots than in the control plots. In addition, we observed lower Cl? levels in the seedling needles following high nitrogen fertilization (900 N) than in 450 N or control. These results add on the importance of studying chlorine dynamics with focus on what chlorinated soil organic matter can be resistant to degradation compared to average soil organic matter and what can be leached as a result of harvesting and available for vegetation.  相似文献   

8.
Exotic Earthworm Invasion and Microbial Biomass in Temperate Forest Soils   总被引:11,自引:0,他引:11  
Invasion of north temperate forest soils by exotic earthworms has the potential to alter microbial biomass and activity over large areas of North America. We measured the distribution and activity of microbial biomass in forest stands invaded by earthworms and in adjacent stands lacking earthworms in sugar maple-dominated forests in two locations in New York State, USA: one with a history of cultivation and thin organic surface soil horizons (forest floors) and the other with no history of cultivation and a thick (3–5 cm) forest floor. Earthworm invasion greatly reduced pools of microbial biomass in the forest floor and increased pools in the mineral soil. Enrichment of the mineral soil was much more marked at the site with thick forest floors. The increase in microbial biomass carbon (C) and nitrogen (N) in the mineral soil at this site was larger than the decrease in the forest floor, resulting in a net increase in total soil profile microbial biomass in the invaded plots. There was an increase in respiration in the mineral soil at both sites, which is consistent with a movement of organic matter and microbial biomass into the mineral soil. However, N-cycle processes (mineralization and nitrification) did not increase along with respiration. It is likely that the earthworm-induced input of C into the mineral soil created a microbial sink for N, preventing an increase in net mineralization and nitrification and conserving N in the soil profile.  相似文献   

9.
樟子松(Pinus sylvestris var.mongolica)人工林是章古台沙地生物生产量较高的林分,其生长主要受沙丘部位和造林类型所影响。樟子松林乔木层与凋落物中贮存了大量营养元素,土壤上层的有机质与N、P元素含量较高,下层含量较低,出现一定的降低趋势。樟子松林混以小青杨可提高生物产量,增加土壤腐殖质,且改善土壤腐殖酸组成成分。  相似文献   

10.
纯林土壤腐殖质含量及其构成是否会因枯落叶组成的单一性和单优群落环境的特殊性而发生分异变化是关系到森林可持续经营的关键问题.本文以内蒙半干旱低山区的6种典型纯林为研究对象,研究了不同树种纯林土壤腐殖质分异特征及其与其他生物化学性质的关系.结果表明:云杉和白桦林地土壤的腐殖质含量、缩合程度和稳定性均较高,其次为小叶杨和落叶松林地,再次为白榆林地,而油松林地土壤的腐殖质含量和缩合程度均最低、稳定性最差.土壤微生物生物量和磷酸酶活性与腐殖质各组分的积累及其稳定性存在相互促进作用;过氧化氢酶和脱氢酶活性则与土壤腐殖质存在相互抑制作用,且脱氢酶活性的提高可能破坏腐殖质的稳定性.速效N含量与腐殖质积累及其稳定性呈正相关,而全量Cu、Fe、Zn含量与腐殖质呈负相关,全Cu、Fe的增加可能会破坏腐殖质的稳定性.纯林环境及其枯落叶性质的特殊性是造成腐殖质分异的重要原因,混交改造或增加林下植被是改善土壤腐殖质构成的根本措施.  相似文献   

11.
A dynamic carbon (C) and nitrogen (N) circulation model, SOILN, was applied and tested on 7 years of control data and 3 years of manipulation data from an experiment involving monthly N addition in a Norway spruce ( Picea abies, L. Karst) forest in Denmark. The model includes two pathways for N uptake: (1) as mineral N after mineralisation of organic N, or (2) directly from soil organic matter as amino acids proposed to mimic N uptake by mycorrhiza. The model was parameterised and applied to the data from the control plot both with and without the organic N uptake included. After calibration, the models performance was tested against data from the N-addition experiment by comparing model output with measurements. The model reproduced well the overall trends in C and N pools and the N concentrations in soil solutions in the top soil layers whereas discrepancies in soil-solution concentrations in the deeper soil layers are seen. In the control data, the needle-N concentration was well reproduced except for small underestimations in some years because of drought effects not included in the model. In the N-addition experiment, SOILN reproduces the observed changes; in particular, the changes in needle-N concentrations and the overall distribution within the ecosystem of the extra added 3.5 g N m(-2) year(-1) parallel the observations. When organic N uptake is included, the simulations indicate that in the control plot receiving c. 1.9 g N m(-2) year(-1), the organic N uptake in average supplies 35% of the total plant N uptake. By addition of an extra 35 kg N ha(-1) year(-1), the organic N uptake is reduced to 16% of the total N uptake. Generally, inclusion of the pathway for organic N uptake improves model performance compared with observations for both C and N. This is because mineral N uptake alone implies a larger mineralisation rate, leading to bigger concentrations of N in the soil and soil water, bigger N losses, and net loss of c. 100 kg C ha(-1) year(-1), thereby causing depletion of the organic soil layer.  相似文献   

12.
热带次生林利用与土壤物理性质变化   总被引:8,自引:1,他引:7  
许炼烽  朱伍坤 《生态学报》1996,16(6):652-659
利用海南岛吊罗山林区内的生态定位观测站近3a的定位观测数据,和定期采样进行的土壤物理性质测定,分析了不同的次生林砍伐程度和利用方式(包括次生林对照、择伐50%、择伐70%、皆伐迹地、垦植橡胶和刀耕火种垦植甘蔗、蕃茨等样方)对土壤温度、土壤含水量、土壤团聚结构、土壤机械组成、土壤容重、孔隙度和土壤持水特性等土壤主要物理性质的影响,结果显示,热带次生林的过度砍伐和不合理的刀耕火种,严重地影响了土壤重要  相似文献   

13.
In boreal spruce forests that rarely experience extensive disturbances, fine-scale vegetation gaps are important for succession dynamics and species diversity. We examined the community implications of fine-scale gap disturbances by selective removal of vegetation layers in a pristine boreal spruce forest in Northern Finland. The aim was to investigate how the speed of recovery depends on the type of disturbance and the species growth form. We also wanted to know if there appeared changes in species composition after disturbance. Five different treatments were applied in the study: Control, removal of the ground layer (bryophytes and lichens), removal of the understorey layer (dwarf shrubs, herbs and graminoids), removal of both the ground and understorey layers, and complete removal of the vegetation and humus layers above the mineral soil. The vegetation recovery was monitored in terms of cover and species numbers over a 5-year period. Understorey layer cover, composed mainly of clonal dwarf shrubs, recovered completely in 4 years in treatments where the humus layer remained intact, whereas ground layer cover did not reach the control level in plots from where bryophytes and lichens were removed. Recovery was faster in terms of species number than species cover. Bryophytes, graminoids and dominant dwarf shrubs appeared in all disturbed plots quickly after disturbance. Seedlings of trees appeared exclusively in disturbed plots. Graminoids dominated after the removal of humus layer. The results indicate that the regeneration of forest floor after small gap disturbance occurs mainly by re-establishment of the dominant species. Although destruction of the humus layer leaves a long-lasting scar to the forest floor, exposing of mineral soil may enhance the sexual reproduction of dominant species and the colonization of weaker competitors.  相似文献   

14.
The main limiting factor for cleaning-up contaminated soils with hyperaccumulator plants is the low production of aerial biomass and the number of successive crops needed to reach the objective of remediation. The aim of this study was to contribute to the determination of a fertilisation strategy to optimise soil metal phytoextraction by Thlaspi caerulescens. A pot experiment was conducted on an agricultural soil and on a contaminated soil from the vicinity of a former Pb/Zn smelter. The nitrogen (N) treatment consisted of 4 levels (0, 11, 21.5 and 31 mg N kg(-1) dry soil (DS)) added as NH4NO3. The highest N treatment was combined with 4 levels of phosphorus (P) (0, 20, 40 and 80 mg P kg(-1) DS as KH2PO4) and sulfur (S) additions (0, 10, 20 and 30 mg S kg(-1) DS as MgSO4). The highest N fertilisation contributed significantly to enhance biomass production of T. caerulescens and to decrease the concentration of Cd and Zn in the biomass. At constant N addition, P supply did not affect metal extraction by T. caerulescens but negatively affected plant health. Sulfur supply slightly increased phytoextraction of Cd. Our results show that N and S fertilisation might interact but further investigations on the effect of such interaction on Cd extraction efficiency are needed.  相似文献   

15.
Dissolved organic matter (DOM) plays an important role in transporting carbon and nitrogen from forest floor to mineral soils in temperate forest ecosystems. Thus, the retention of DOM via sorption or microbial assimilation is one of the critical steps for soil organic matter formation in mineral soils. The chemical properties of DOM are assumed to control these processes, yet we lack fundamental information that links litter quality, DOM chemistry, and DOM retention. Here, we studied whether differences in litter quality affect solution chemistry and whether changes in litter inputs affect DOM quality and removal in the field. The effects of litter quality on solution chemistry were evaluated using chemical fractionation methods for laboratory extracts and for soil water collected from a temperate coniferous forest where litter inputs had been altered. In a laboratory extraction, litter type (needle, wood, root) and the degree of decomposition strongly influenced solution chemistry. Root litter produced more than 10 times more water-extractable dissolved organic N (DON) than any other litter type, suggesting that root litter may be most responsible for DON production in this forest ecosystem. The chemical composition of the O-horizon leachate was similar under all field treatments (doubled needle, doubled wood, and normal litter inputs). O-horizon leachate most resembled laboratory extracts of well-decomposed litter (that is, a high proportion of hydrophobic acids), in spite of the significant amount of litter C added to the forest floor and a tendency toward higher mean DOM under doubled-Litter treatments. A lag in DOM production from added litter or microbial modification might have obscured chemical differences in DOM under the different treatments. Net DOM removal in this forest soil was strong; DOM concentration in the water deep in the mineral soil was always low regardless of concentrations in water that entered the mineral soil and of litter input manipulation. High net removal of DOM from O-horizon leachate, in spite of extremely low initial hydrophilic neutral content (labile DOM), coupled with the lack of influence by season or soil depth, suggests that DOM retention in the soil was mostly by abiotic sorption.  相似文献   

16.
Nowotny  I.  Dähne  J.  Klingelhöfer  D.  Rothe  G.M. 《Plant and Soil》1998,199(1):29-40
Effects of soil acidification and liming on biomass responses and free Al, Ca, K, Mg, Mn and P contents of mycorrhizal roots of mature Norway spruce (Picea abies [L.] Karst.) were studied at Höglwald Forest in Southern Germany.At the untreated site, mycorrhizal root biomass was lower in the acid humus (pH = 3.3) than in the less acid upper (0–5 cm) mineral soil (pH 4.1). Mycorrhizal roots from the humus contained 10% of the level free Al in mycorrhizal roots from the upper mineral soil. During seven years of soil acidification the quantity of mycorrhizal roots remained unaffected in the humus and the upper mineral soil, perhaps due to the high buffering capacity of the humus which prevented a significant alteration of the nutrient status of the roots. However, two years after soil acidification had been terminated, the percentage of mycorrhizal roots in the humus decreased, possibly because the free root concentrations of K had decreased.On the other hand, six years after liming, there was a two-fold increase of the annual mean quantity of mycorrhizal roots in the humus. Compensatory liming (acid irrigation after liming) had a similar effect on mycorrhizal root production in the humus. However, two years after acid irrigation had been terminated a decrease of mycorrhizal roots in the upper mineral soil (0–5 cm) was observed. Since the total amount of mycorrhizal roots in the humus and upper mineral soil remained constant, compensatory liming produced a shift in fine roots to the humus layer.The higher mass of living mycorrhizal roots in the upper mineral soil (0–5 cm) as compared to the humus of the untreated plot as well as the increased mass of mycorrhizal roots in the humus after liming or compensatory liming are both attributed to an increase in pH to 4.5 rather than alleviation of Al toxicity.  相似文献   

17.
15N-ammonium sulphate equivalent to 0.5 kg N/ha was added as a tracer to lysimeters containing the organic horizons of an acid forest soil. The effect of logging debris (brash), vegetation and second rotationPicea sitchensis seedlings on the amount of the15N found in various soil, vegetation and leachate pools was followed over a period of 60 days. Transformation of15N-ammonium to nitrate occurred within 24 hours. Although total nitrate leachate losses were high, tracer-derived nitrate represented only 0.4%–4.2% of the applied15N-ammonium. The atom % excess of the KCI-extractable organic-N pool was initially lower than for the inorganic species but due to the large pool size, consistently represented 3–6% of the applied15N-ammonium. The similarity of the atom % excess of the ammonium and nitrate pools indicated an autotrophic nitrification pathway.A significant proportion of the15N-ammonium passed through the microbial biomass which contained between 16 and 48% of the15N-ammonium 2 days after addition of the15N-ammonium. This nitrogen was in a readily available form or short-term pool for the first two weeks (with no change in the overall biomass pool), after which the nitrogen appeared to become transformed into more stable compounds representing a long-term pool. Total recovery of the15N was between 68% and 99% for the different treatments. The presence of brash reduced microbial immobilisation of the15N-ammonium and total retention in the organic matter. This is suggested to be a consequence of greater nitrification and denitrificatiion rate in organic horizons beneath a brash covering due to different microclimatic conditions.  相似文献   

18.
Canada bluejoint grass [Calamagrostis canadensis (Michx.) Beauv., referred to as bluejoint below] is a competitive understory species widely distributed in the boreal region in North America and builds up a thick litter layer that alters the soil surface microclimate in heavily infested sites. This study examined the effects of understory removal, N fertilization, and litter layer removal on litter decomposition, soil microbial biomass N (MBN), and net N mineralization and nitrification rates in LFH (the sum of organic horizons of litter, partially decomposed litter and humus on the soil surface) and mineral soil (0–10 cm) in a 13-year-old white spruce [Picea glauca (Moench.) Voss] plantation infested with bluejoint in Alberta, Canada. Removal of the understory vegetation and the litter layer together significantly increased soil temperature at 10 cm below the mineral soil surface by 1.7 and 1.3°C in summer 2003 and 2004, respectively, resulting in increased net N mineralization (by 1.09 and 0.14 mg N kg−1 day−1 in LFH and mineral soil, respectively, in 2004) and net nitrification rates (by 0.10 and 0.20 mg N kg−1 day−1 in LFH and mineral soil, respectively, in 2004). When the understory vegetation was intact, nitrification might have been limited by NH4 + availability due to competition for N from bluejoint and other understory species. Litter layer removal increased litter decomposition rate (percentage mass loss per month) from 2.6 to 3.0% after 15 months of incubation. Nitrogen fertilization did not show consistent effects on soil MBN, but increased net N mineralization and nitrification rates as well as available N concentrations in the soil. Clearly, understory removal combined with N fertilization was most effective in increasing rates of litter decomposition, net N mineralization and nitrification, and soil N availability. The management of understory vegetation dominated by bluejoint in the boreal region should consider the strong effects of understory competition and the accumulated litter layer on soil N cycling and the implications for forest management.  相似文献   

19.
Fertiliser application can not only influence plant communities, but also the soil microbial community dynamics, and consequently soil quality. Specifically, mineral fertilisation can directly or indirectly affect soil chemical properties, microbial abundance and, the structure and diversity of soil microbial communities. We investigated the impact of six different mineral fertiliser regimes in a maize/soybean rotation system: control (CK, without fertilisation), PS (application of phosphorus plus sulphur), NS (application of nitrogen plus S), NP (application of N plus P), NPS (application of N, P plus S) and NPSm (application of N, P, S plus micronutrients). Soil samples were collected at the physiological maturity stage of maize and soybean in March of 2013 and 2014, respectively. Overall, mineral fertilisation resulted in significantly decreased soil pH and increased total organic carbon compared with the control (CK). The analysis of terminal restriction fragment length polymorphism (T‐RFLP) revealed that mineral fertilisers caused a shift in the composition of both bacterial and fungal communities. In 2013, the highest value of Shannon diversity of bacterial terminal restriction fragments (TRFs) was found in control soils. In 2014, NPSm treated soils showed the lowest values of diversity for both bacterial and fungal TRFs. In both crop growing seasons, the analysis of phospholipid fatty acid (PLFA) detected the lowest value of total microbial biomass under CK. As PLFA analysis can be used to evaluate total microbial community, this result suggests that fertilisation increased total microbial biomass. When the bacterial and fungal abundance were examined using real time polymerase chain reaction, the results revealed that mineral fertilisation led to decreased bacterial abundance (16S rRNA), while fungal abundance (18S rRNA) was found to be increased in both crop growing seasons. Our results show that mineral fertiliser application has a significant impact on soil properties, bacterial and fungal abundance and microbial diversity. However, further studies are needed to better understand the mechanisms involved in the changes to microbial communities as a consequence of mineral fertilisation.  相似文献   

20.
Ecological developments during Holocene age and high atmospheric depositions since industrialization have changed the N dynamics of temperate forest ecosystems. A number of different parameters are used to indicate whether the forests are N‐saturated or not, most common among them is the occurrence of nitrates in the seepage water below the rooting zone. The use of different definitions to describe N saturation implies that the N status of ecosystems is not always appropriately assessed. Data on N dynamics from 53 different German forests were used to classify various development states of forest ecosystems according to the forest ecosystem theory proposed by Ulrich for which N balances of input – (output plus plant N increment) were used. Those systems where N output equals N input minus plant N increment are described as (quasi‐) Steady State Type. Those forests where N output does not equal N input minus plant N increment as in a ‘transient state.’ Forests of the transient state may lose nitrogen from the soil (Degradation Type) or gain nitrogen [e.g., from atmospheric depositions (Accumulation Type)]. Forest ecosystems may occur in four different N states: (a) (quasi‐) Steady State Type with mull type humus, (b) Degradation Type with mull type humus, (c) Accumulation Type with moder type humus, and (d) (quasi‐) Steady State Type with moder type humus. Forests with the (quasi‐) steady state with mull type humus in the forest floor (n= 8) have high‐soil pH values, high N retention by plant increment, high N contents in the mineral soils, and have not undergone large changes in the N status. Forests of the Degradation Type lose nitrogen from the mineral soil (currently degradation is occurring on one site). Most forests that have moder or mor type humus and low‐soil pH values, and low N contents in the mineral soil have gone through the transient state of organic matter loss in the mineral soils. They accumulate organic matter in the forest floor (accumulation phase, currently 21 sites are accumulating 6–21 kg N ha?1 yr?1) or have reached a new (quasi‐) steady state with moder/mor type humus (n= 15). N retention in the accumulation phase has significantly increased in soil with N deposition (r2= 0.38), soil acidity (considering thickness of the forest floor as indices of soil acidity, r2= 0.43) and acid deposition (sulfate deposition, r2= 0.39). Retention of N (4–20 kg N ha?1 yr?1) by trees decreased and of soils increased with a decrease in the availability of base cations indicating the important role of trees for N retention in less acid soils and those of soils in more acid soils. Ecosystem theory could be successfully applied on the current data to understand the dynamics of N in temperate forest ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号