首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cultures of chick-embryo hepatocytes were used to study the mechanism by which 3,4,3',4'-tetrachlorobiphenyl and 2,4,5,3',4'-pentabromobiphenyl cause accumulation of uroporphyrin. In a previous paper, an isoenzyme of cytochrome P-450 induced by 3-methylcholanthrene had been implicated in this process [Sinclair, Bement, Bonkovsky & Sinclair (1984) Biochem. J. 222, 737-748]. Cells treated with 3,4,3',4'-tetrachlorobiphenyl and 5-aminolaevulinate accumulated uroporphyrin and heptacarboxyporphyrin, whereas similarly treated cells accumulated protoporphyrin immediately after piperonyl butoxide was added. Piperonyl butoxide also restored haem synthesis as detected by incorporation of radioactive 5-aminolaevulinate into haem, and decrease in drug-induced 5-aminolaevulinate synthase activity. The restoration of synthesis of protoporphyrin and haem by piperonyl butoxide was not affected by addition of cycloheximide, indicating recovery was probably not due to protein synthesis de novo. Piperonyl butoxide also reversed uroporphyrin accumulation caused by 3,4,5,3',4',5'-hexachlorobiphenyl, mixtures of other halogenated biphenyls, lindane, parathion, nifedipine and verapamil. The effect of piperonyl butoxide was probably not due to inhibition of metabolism of these compounds, since the hexachlorobiphenyl was scarcely metabolized. Other methylenedioxyphenyl compounds, as well as ellipticine and acetylaminofluorene, also reversed the uroporphyrin accumulation caused by 3,4,3',4'-tetrachlorobiphenyl. SKF-525A (2-dimethylaminoethyl-2,2-diphenyl valerate) did not reverse the uroporphyrin accumulation caused by the halogenated biphenyls, but did reverse that caused by phenobarbital and propylisopropylacetamide. We conclude that the mechanism of the uroporphyrin accumulation cannot be due to covalent binding of activated metabolites of halogenated compounds to uroporphyrinogen decarboxylase.  相似文献   

2.
Accumulating evidence, including experiments using cytochrome P450 1a2 (Cyp1a2) gene knock-out mice (Cyp1a2(−/−)), indicates that the development of chemically induced porphyria requires the expression of CYP1A2. It has also been demonstrated that iron enhances and expedites the development of experimental uroporphyria, but that iron alone without CYP1A2 expression, as in Cyp1a2(−/−) mice, does not cause uroporphyria. The role of iron in the development of porphyria has not been elucidated. We examined the in vivo effect of iron deficiency on hepatic URO accumulation in experimental porphyria. Mice were fed diets containing low (iron-deficient diet (IDD), 8.5 mg iron/kg) or normal (normal diet (ND), 213.7 mg iron/kg) levels of iron. They were treated with 3-methylcholanthrene (MC), an archetypal inducer of CYP1A, and 5-aminolevulinate (ALA), precursors of porphyrin and heme. We found that uroporphyrin (URO) levels and uroporphyrinogen oxidation (UROX) activity were markedly increased in ND mice treated with MC and ALA, while the levels were not raised in IDD mice with the same treatments. CYP1A2 levels and methoxyresorufin O-demethylase (MROD) activities, the CYP1A2-mediated reaction, were markedly induced in the livers of both ND and IDD mice treated with MC and ALA. UROX activity, supposedly a CYP1A2-dependent activity, was not enhanced in iron-deficient mice in spite of the fact of induction of CYP1A2. We showed that a sufficient level of iron is essential for the development of porphyria and UROX activity.  相似文献   

3.
The effects of a single oral dose (50 mg/kg body wt.) of 3,4,5,3',4',5'-hexachlorobiphenyl (HCB), 2,4,5,2',4',5'-HCB or 2,3,5,2',3',5'-HCB for a period of 72 h have been studied in the male rat. Only 3,4,5,3',4',5'-HCB caused necrosis of thymocytes. 3,4,5,3',4',5'-HCB caused marked pathological changes in the liver with less marked effects being caused by 2,4,5,2',4',5'-HCB and 2,3,5,2',3',5'-HCB. Total lipid content was increased by all the isomers studied, but 3,4,5,3',4',5'-HCB had more pronounced effect on total lipid content. Lipid accumulation was pericentral in the livers obtained from rats treated with 3,4,5,3',4',5'-HCB, but midzonal in the liver obtained from the rats treated with the other two isomers. Analysis of various lipid fractions showed that triacylglycerols were increased seven-fold only by 3,4,5,3',4',5'-HCB, while phospholipids were increased slightly by 2,4,5,2',4',5'-HCB or 2,3,5,2',3',5'-HCB. Only 3,4,5,3',4',5'-HCB increased the level of total and esterified cholesterol. These results show that the fatty livers caused by 3,4,5,3',4',5'-HCB were qualitatively and quantitatively different from those caused by the other two isomers at the same dose. For the first time a hexachlorobiphenyl unchlorinated in the para position, 2,3,5,2',3',5'-HCB has been shown to be a specific inducer of cytochrome P-450. The effects of 2,3,5,2',3',5'-HCB on cell structure and phospholipid content were quantitatively similar to those caused by 2,4,5,2',4',5'-HCB. Thus, chlorination at para (4,4') positions in chlorobiphenyls is not necessarily required for biological activity. It is hypothesized that net stereoelectronic properties of the isomers or resistance to metabolism may be the underlying factor in determining structure-activity relationships.  相似文献   

4.
The interaction of isosafrole, 3,4,5,3',4',5'-hexabromobiphenyl (HBB) and hexachlorobiphenyl (HCB) with cytochrome P-450d was evaluated by characterization of estradiol 2-hydroxylase activity. Displacement of the isosafrole metabolite from microsomal cytochrome P-450d derived from isosafrole-treated rats resulted in a 160% increase in estradiol 2-hydroxylase. The increase was fully reversed by incubation with 1 microM HBB. Although isosafrole is capable of forming a complex with many different cytochrome P-450 isozymes, it appears to bind largely to cytochrome P-450d in vivo as was demonstrated by measuring the enzymatic activity of microsomal cytochromes P-450b, P-450c, and P-450d from isosafrole-treated rats. When estradiol 2-hydroxylase was measured in rats treated with increasing doses of HCB, there was a gradual decrease in microsomal enzyme activity despite a 20-fold increase in cytochrome P-450d. The ability of cytochrome P-450d ligands to stabilize the enzyme was investigated in two ways. First, cytochromes P-450c and P-450d were quantitated immunochemically in microsomes from rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), at a dose which maximally induced total cytochrome P-450, followed by a single dose of a second inducer. The specific content of cytochrome P-450d was significantly increased when isosafrole or HCB was the second inducer but not when 3-methylcholanthrene was the second inducer. Second, the relative turnover of cytochrome P-450d was measured by the dual label technique. Following TCDD treatment, microsomal protein was labeled in vivo with [3H]leucine, the second inducer was given and protein was again labeled 3 days later with [14C]leucine. A higher ratio of 3H/14C in the cytochrome P-450d from isosafrole + TCDD- and HCB + TCDD-treated rats relative to TCDD (control)-treated rats suggested that isosafrole and HCB were able to retard the degradation of cytochrome P-450d, presumably by virtue of being tightly bound to the enzyme.  相似文献   

5.
Cell-free preparations from liver of chick embryo treated with 3-methylcholanthrene catalyzed oxidation of uroporphyrinogen I in the presence of NADPH and 3,4,3',4'-tetrachlorobiphenyl. Extracts of untreated embryo liver or liver from embryo treated with glutethimide, a phenobarbital-like inducer of cytochrome P450 in this system, did not catalyse the oxidation. Direct involvement of cytochrome P450 was demonstrated by inhibition of the oxidation by CO, piperonyl butoxide and specific antisera to the methylcholanthrene-induced cytochrome P450. 2,4,2',4'-tetrachlorobiphenyl was inactive in the oxidation. These results may explain the role of induced cytochrome P450 in experimental uroporphyria. The oxidation may be useful as a simple assay for reactive O2 species.  相似文献   

6.
Rat cytochrome P450 2c (P450 gene IIC11) is a constitutive, male-specific hepatic enzyme which is suppressed greater than 90% by treatment with 3,4,5,3',4',5'-hexachlorobiphenyl (HCB) [H. N. Yeowell et al. (1987) Mol. Pharmacol. 32, 340-347]. HCB also decreases serum testosterone levels in adult male rats (greater than 98% loss). The present study assesses whether the suppression of P450 2c by HCB is a direct result of its effects on serum testosterone levels. Further, the site along the hypothalamic-pituitary-testicular axis at which HCB acts to depress testosterone secretion was examined. Administration of the synthetic androgen methyltrienolone to HCB-treated rats failed to prevent the suppression of P450 2c mRNA and its associated microsomal steroid 16 alpha-hydroxylase activity under conditions where it effectively reversed the large decrease in P450 2c mRNA and steroid 16 alpha-hydroxylase activity produced by castration. Hepatic steroid 6 beta-hydroxylase activity, which is catalyzed primarily by P450 2a (P450 gene IIIA2), was also suppressed by HCB and was not protected by methyltrienolone. Administration of either human chorionic gonadotropin, an analog of pituitary-derived luteinizing hormone, or the hypothalamic luteinizing hormone releasing hormone elevated serum testosterone levels to a much smaller extent in HCB-treated rats than in control rats. These results indicate that the effects of HCB on serum testosterone levels reflect its effects on testicular function rather than the pituitary or hypothalamus. However, the present study demonstrates that the consequential reduction in serum testosterone levels in HCB-treated rats is not causally related to the reduction in hepatic P450 2c levels. Thus, HCB must also act on some other regulatory mechanism involved in the expression of this protein.  相似文献   

7.
The oxidation of uroporphyrinogen, an intermediate of the heme biosynthetic pathway, by methylcholanthrene-inducible isozymes(s) of cytochrome P-450 has been proposed to play a role in the development of chemically induced uroporphyria. Prior work from this laboratory indicated that although addition of 3,4,3',4'-tetrachlorobiphenyl is required for uroporphyrinogen oxidation by methylcholanthrene-induced chick embryo liver microsomes, this biphenyl is not required for the oxidation catalyzed by hepatic microsomes from methylcholanthrene-induced rodents. Here we investigated whether rodent microsomes catalyze uroporphyrinogen oxidation without addition of 3,4,3',4'-tetrachlorobiphenyl because the chemical used as an inducer remains bound to cytochrome P-450. Hepatic microsomes containing almost no residual inducer were isolated from rats treated with a low dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). These microsomes oxidized uroporphyrinogen at high rates without addition of 3,4,3',4'-tetrachlorobiphenyl. Inducer-free microsomal cytochrome P-450 was also obtained by inducing cytochrome P-450 in rats and mice with isosafrole, which was then removed from the isolated microsomes by butanol treatment. This procedure resulted in microsomes with high activity for uroporphyrinogen oxidation. Furthermore, addition of chlorobiphenyl to these inducer-free microsomes was inhibitory. Hepatic microsomes from isosafrole-induced C57BL/6 and DBA mice, rendered inducer-free by butanol treatment, oxidized uroporphyrinogen at the same rate even though these two strains differ markedly in their susceptibility to chemically induced uroporphyria. We conclude that uroporphyrinogen oxidation is catalyzed by cytochrome P-450 that is free of inducer.  相似文献   

8.
Hexachlorobenzene (HCB) produces hepatic porphyria and induces the hepatic cytochrome P450 isozymes P450c (P450IA1) and P450d (P450IA2) in rodents. These and other effects of HCB resemble those of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which acts via its binding to the aromatic hydrocarbon (Ah) receptor. We therefore examined the ability of HCB to interact with this receptor in vitro and in vivo. HCB, at concentrations of 1 microM or higher, inhibited the specific binding of [3H]TCDD (0.3 nM) to the Ah receptor in vitro, whereas the solubility of [3H]TCDD was affected only at 100 microM HCB. The inhibition was competitive, with a KI of approximately 2.1 microM. In rats fed a diet containing 3000 ppm HCB for varying times (4 h to 7 days), the specific binding of [3H]TCDD in hepatic cytosol was reduced by up to 40%, as observed previously for known Ah receptor agonists. The decrease in [3H]TCDD specific binding in cytosol of HCB-treated rats was due principally to a decrease in the number of binding sites for [3H]TCDD rather than competition from residual HCB. As shown by immunoblotting and radioimmunoassay, HCB induced the cytochrome P450 isozymes P450c and P450d, which are regulated by the Ah receptor, as well as the phenobarbital-inducible isozymes P450b and P450e. Together these results indicate that HCB is a weak agonist for the Ah receptor, and suggest that some of its effects may be mediated by its interaction with this gene-regulatory protein.  相似文献   

9.
The effects of pure synthetic polychlorinated biphenyl (PCB) congeners on the induction of cytochrome P450 and associated activities were examined in cultured chick embryo hepatocytes. Dose-response effects for the induction of total cytochrome P450 ethoxyresorufin-O-deethylase (EROD) activity, and benzphetamine demethylase (BPDM) activity were studied using 10 selected tetra- to hexachlorinated PCB congeners. These studies revealed that PCBs caused effects in the chick hepatocyte culture different from previously observed effects in rat liver. Based on their effects in chick hepatocytes, the PCBs could be categorized into two groups. The first group (consisting of 3,3',4,4'-PCB, 3,3',4,4',5-PCB, 3,3',4,4',5,5'-PCB, 2',3,3',4,5-PCB, 2,3,3',4,4',5'-PCB, and 2,3,4,4',5-PCB) induced total cytochrome P450 2.4- to 2.9-fold and EROD activity from 1-2 pmol/min/mg protein to 162-247. There was marked variation in potency, but all these congeners had a maximal inducing dose above which cytochrome P450 concentrations and EROD activities declined. BPDM activities were increased only slightly (1.2- to 1.6-fold) at the maximal cytochrome P450 inducing dose. The second group of congeners (consisting of 2,2',4,5,5'-PCB. 2,2',4,4',5,5'-PCB, and 2,2',3,4,4',6-PCB) induced total cytochrome P450 concentrations 4.0-fold and BPDM activities 2.2- to 2.6-fold with greatest activity occurring at the highest doses which could be added (10-50 microM). However, EROD activities were also increased by these congeners to 60-112 pmol/min/mg protein with declining activities seen at the highest PCB doses (i.e., resembling EROD induction patterns of the first group). The EROD induction patterns with these latter PCB congeners are noteworthy since these PCBs do not induce EROD activity in the rat. For both groups of PCB congeners, EROD induction was associated with increased accumulation of uroporphyrin in cultures exposed to exogenous 5-aminolevulinate. Studies investigating the reason for the depression of cytochrome P450 concentrations and/or EROD activities by high doses of the PCBs revealed that with the first group there was slightly decreased total protein synthesis, decreased total cell heme concentrations, and decreased accumulation of radiolabeled heme synthesized from 5-[14C]aminolevulinate. These changes might represent nonspecific toxic effects of the first group of PCBs. However, since these changes were not seen with the second group of PCBs, it is unlikely that either inhibition of heme synthesis or toxicity cause the depression of EROD activity with high PCB doses.  相似文献   

10.
11.
Polyclonal antibodies to the major beta-naphthoflavone (BNF)-inducible form of cytochrome P-450 (P450IA) and to the major phenobarbitone (PB)-inducible form (P450IIB) have been used to quantify the contribution of these subfamilies to the total amount of cytochrome P-450 in rat livers and rat hepatocyte cultures treated with PB, BNF and metyrapone for 24 and 72 h. The P450IA and IIB subfamilies were not detectable (less than 5 pmol/mg of microsomal protein) in the livers of control rats, but administration of BNF resulted in the P450IA subfamily comprising more than 80% of the total hepatic cytochrome P-450. Administration of PB and metyrapone to rats did not elevate the level of this subfamily but elevated the levels of the P450IIB subfamily to 60% and 30% respectively of the total. Thus metyrapone is a ''PB-like'' inducer. However, in contrast with their effects in vivo, treatment with PB and metyrapone of rat hepatocytes did not elevate the proportion of the P450IIB subfamily relative to that in untreated cells but rather, like BNF, increased the P450IA subfamily. This would account for the ability of metyrapone to produce in hepatocyte culture, like BNF, a pronounced induction of ethoxyresorufin O-de-ethylase activity, but it does not account for why of all inducers studied only metyrapone can maintain the total cytochrome P-450 content of cultured hepatocytes, or the activity of ethylmorphine N-demethylase. This activity is generally considered to be associated with the P450IIB subfamily, but the lack of effect of metyrapone on this subfamily in hepatocyte culture must suggest that metyrapone is able to prevent the loss of the total amount of the cytochrome by increasing the expression of other cytochromes P-450.  相似文献   

12.
The effects of coplanar+ 3,4,5,3′,4′,5′-hexachlorobiphenyl (HCB) and noncoplanar 2,4,5,2′,4′,5′-HCB, 2,3,5,2′,3′,5′-HCB, phenobarbitone (PB) and 3-methylcholanthrene (3-MC) on drug metabolizing enzymes have been studied 72 hr after dosing in male rat liver. 3-MC and 3,4,5,3′,4′,5′-HCB induced the activity of ethoxyresorufin deethylase dramatically. NADPH cytochrome P-450 reductase and benzphetamine N-demethylase were induced by PB and noncoplanar isomers and not by 3-MC or 3,4,5,3′,4′,5′-HCB. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the microsomes obtained from various groups showed that 3-MC and 3,4,5,3′,4′,5′-HCB induced the synthesis of a polypeptide of approximate 54,500 daltons which was absent in the microsomes obtained from control, PB or noncoplanar isomer treated animals. Noncoplanar isomers and PB induced the synthesis of a polypeptide of approximate 51,000 daltons. These results, along with the reduced, CO difference spectra, demonstrate that 3,4,5,3′,4′,5′-HCB induces the synthesis of cytochrome P-448 and resembled 3-MC in its mechanism of action, while noncoplanar isomers induced the synthesis of cytochrome P-450 and resembled PB in its mechanism of action. Further administration of various doses of 3,4,5,3′,4′,5′-HCB to genetically responsive mice (C57BL/6J), induced cytochrome P-450, caused one nm shift in the difference spectrum of reduced microsomes and induced the activity of ethoxyresorufin deethylase, whereas it did not induce the activity of ethoxyresorufin deethylase in non-responsive mice (DBA/2J) even at the highest dose studied. These studies indicate the fact that coplanar and noncoplanar isomers have differential interaction with Ah locus.  相似文献   

13.
Porphyria cutanea tarda is a liver disease characterized by excess production of uroporphyrin. We previously reported that acetone, an inducer of CYP2E1, enhances hepatic uroporphyrin accumulation in mice treated with iron dextran (Fe) and 5-aminolevulinic acid (ALA). Cyp2e1(-/-) mice treated with Fe and ALA were used to investigate whether CYP2E1 is required for the acetone effect. Hepatic uroporphyrin accumulation was stimulated by acetone in Cyp2e1(-/-) mice to the same extent as in wild-type mice. In the absence of acetone, uroporphyrin accumulated in Cyp2e1(-/-) mice treated with Fe and ALA, but less than in wildtype mice. However, in Cypla2(-/-) mice, uroporphyrin accumulation caused by Fe and ALA, with or without acetone, was completely prevented. Acetone was not an inducer of hepatic CYP1A2 in the wild-type mice. Although acetone is an inducer of CYP2E1, CYP1A2 appears to have the essential role in acetone-enhancement of uroporphyria.  相似文献   

14.
1. The role of heme in the coordinate elevations of liver delta-aminolevulinate (ALA) synthase activity and microsomal cytochrome P-450 concentration induced by phenobarbital (PB) was investigated in the chicken embryo. 2. Eighteen day old chicken embryos were given PB, and the changes in liver content of PB-inducible cytochrome P-450 RNA and of ALA synthase RNA were determined at different times after exposure to the drug. 3. The concentrations of both types of RNA increased rapidly after PB administration, and by 9 hr the level of ALA synthase RNA was 55-fold higher than control and that of cytochrome P-450 RNA was 7-fold higher than normal. 4. While the rate of increase in ALA synthase activity paralleled closely that of the enzyme's RNA concentration, the rate of increase of spectrally active cytochrome P-450 concentration in microsomes lagged behind that of the apoprotein's RNA by several hours. 5. To test whether heme depletion was responsible for the coordinate inductions of the two enzymes, embryos were loaded with ALA 2 hr before exposure to PB. 6. The protocol led to a drop in the PB-inducible ALA synthase RNA concentration and to an increase in that of cytochrome P-450 RNA, measured 6 hr after drug administration. 7. In primary cultures of hepatocytes, hemin in the culture medium caused a modest drop in ALA synthase RNA concentration but had a variable effect on that of cytochrome P-450 RNA in cells incubated with PB for 9 hr.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Ingestion of broccoli or other cruciferous vegetables inhibits the induction of cancer by chemicals and modifies some cytochrome P-450 enzyme activities. The effect of dietary broccoli on the levels of P450IA and IIB mRNA and proteins in rat liver and colon has been studied. Rats were fed a ten percent broccoli diet for 7 days. The expression of the cytochrome P-450 forms was altered to a different extent in the liver and colon. The level of total P450IA mRNA in the liver was increased by the broccoli together with the P450IA1 and IA2 proteins. Colonic P450IA1 mRNA and protein were induced by the broccoli diet, whereas only P450IA2 protein and not mRNA was detectable in colon, but the protein level was unaffected by the broccoli diet. Liver P450IIB and IIE1 proteins were increased by the broccoli diet, whereas the level of P450IIB mRNAs was not affected. In contrast, the P450IIB mRNA levels were reduced but the protein levels were increased in colon and we suggest that a feedback mechanism caused the decrease of the P450IIB mRNAs levels. Because the ratio between activation and deactivation may be an important risk determinant, we conclude that the protective effect of the broccoli diet on chemically induced tumors in rodents may be caused by the broccoli-induced changes in P450IA and IIB associated enzyme activities.  相似文献   

16.
Vitamin A status and turnover were examined in rats that had been exposed to chronic dietary treatment of 3,4,5,3',4',5'-hexachlorobiphenyl (HCB), 1 mg/kg diet. HCB caused hepatic depletion and renal accumulation of vitamin A, and a 1.7-fold increase in the serum retinol concentration. Intravenously administered [3H]retinol bound to retinol binding protein-transthyretin complex (RBP-TTR complex) was used to study the dynamics of circulatory retinol in these rats. In HCB-treated rats, the plasma turnover rate of retinol was increased compared to vitamin A-adequate untreated controls. HCB caused a 50% reduction of total radioactivity in liver, and, except for 0.5 h after the [3H]retinol-RBP-TTR dose, the specific activity of the hepatic retinyl ester pool was greater compared to control rats. The kidneys of HCB-treated rats accumulated radioactivity in the retinyl ester fraction. HCB also caused a 50% reduction in adrenal radioactivity compared with control rats. Urinary and fecal excretion of radioactivity was 3-fold higher in HCB-treated rats as compared to controls. Our findings demonstrate that chronic HCB feeding results in expansion of plasma vitamin A mass, in changes of liver and kidney retinol and retinyl ester pool dynamics and in an increased metabolism of vitamin A.  相似文献   

17.
This study investigated whether the same cytochrome P-450 (P-450) isoenzymes were inducible in cultures of chick-embryo hepatocytes as in the liver of chicken embryos. We purified two isoenzymes of cytochrome P-450 from the livers of 17-day-old-chick embryos: one of molecular mass approx. 50 kDa induced in vivo by the phenobarbital-like inducer glutethimide, and the second of approx. 57 kDa induced by 3-methylcholanthrene. Rabbit antiserum against the 50 kDa protein inhibited benzphetamine demethylase activity in hepatic microsomes (microsomal fractions) from glutethimide-treated chick embryo. Antiserum to the 57 kDa protein inhibited ethoxyresorufin de-ethylase activity in hepatic microsomes from methylcholanthrene-treated chick embryo. Cultured chick hepatocytes were treated with chemicals known to induce isoenzymes of P-450 in rodent liver. The induced P-450s were quantified spectrophotometrically and characterized by immunoblotting and enzyme assays. From these studies, chemical inducers were classified into three groups: (i) chemicals that induced a P-450 isoenzyme of 50 kDa and increased benzphetamine demethylase activity: glutethimide, phenobarbital, metyrapone, mephenytoin, ethanol, isopentanol, isobutanol, lindane, lysodren; (ii) chemicals that induced a P-450 isoenzyme of 57 kDa and increased ethoxyresorufin de-ethylase activity: 3-methylcholanthrene and 3,3',4,4'-tetrachlorobiphenyl; and (iii) the mono-alpha-substituted 2,3',4,4',5-pentabromobiphenyl, which induced both proteins and both activities. The immunochemical data showed that chick-embryo hepatocytes in culture retain the inducibility of glutethimide- and methylcholanthrene-induced isoenzymes of P-450 that are inducible in the liver of the chicken embryo.  相似文献   

18.
Addition of glucose to cultured chick embryo hepatocytes caused a concentration-dependent impairment of phenobarbital-mediated induction of delta-aminolevulinate (ALA) synthase resembling the "glucose effect" observed in rodents in vivo. This glucose effect occurred in the complete absence of extrahepatic factors such as serum and hormones. Fructose, glycerol, and lactate mimicked the inhibitory glucose effect on ALA synthase induction, whereas 2-deoxyglucose and 3-O-methylglucose augmented the induction evoked by phenobarbital. 2-Deoxyglucose reversed the effect of glucose, glycerol, and lactate on ALA synthase induction suggesting that the glucose effect is mediated by free glucose or glucose 6-phosphate or a nonglycolytic metabolite of glucose 6-phosphate. The phenobarbital-mediated induction of cytochrome P-450 hemoprotein(s) and its monooxygenase function were concomitantly diminished by glucose. However, this inhibitory effect or glucose was reversible by the addition of exogenous heme or ALA suggesting that the primary target of the glucose effect is ALA synthase induction and not synthesis of apocytochrome P-450. Glucagon and dibutyryl cAMP enhanced the induction of ALA synthase and cytochrome P-450 by phenobarbital and partially counteracted the glucose effect on both enzymes suggesting that the glucose effect may be mediated by changes in cAMP levels. Although insulin did not alter induction of ALA synthase, it impaired induction of cytochrome P-450 even in the presence of glucagon and cAMP. These data may be relevant for the treatment with glucose and heme of patients with "inducible" hepatic porphyria.  相似文献   

19.
Several diphenyl ether herbicides, such as acifluorfen methyl, have been previously shown to cause large accumulations of the heme and chlorophyll precursor, protoporphyrin, in plants. Lightinduced herbicidal damage is mediated by the photoactive porphyrin. Here we investigate whether diphenyl ether herbicides can affect porphyrin synthesis in rat and chick hepatocytes. In rat hepatocyte cultures, protoporphyrin, as well as coproporphyrin, accumulated after treatment with acifluorfen or acifluorfen methyl. Combination of acifluorfen methyl with an esterase inhibitor to prevent the conversion of acifluorfen methyl to acifluorfen resulted in a greater accumulation of porphyrins than caused by acifluorfen methyl or acifluorfen alone. In vitro enzyme studies of hepatic mitochondria isolated from rat and chick embryos demonstrated that protopor-phyrinogen oxidase, the penultimate enzyme of heme biosynthesis, was inhibited by low concentrations of acifluorfen, nitrofen, or acifluorfen methyl with the latter being the most potent inhibitor. These findings indicate that diphenyl ether treatment can cause protoporphyrin accumulation in rat hepatocyte cultures and suggest that this accumulation was associated with the inhibition of protoporphyrinogen oxidase. In cultured chick embryo hepatocytes, treatment with acifluorfen methyl plus an esterase inhibitor caused massive accumulation of uroporphyrin rather than protoporphyrin or coproporphyrin. Specific isozymes of cytochrome P450 were also induced in chick embryo hepatocytes. These effects were not observed in the absence of an esterase inhibitor. These results suggest that diphenyl ether herbicides can cause uroporphyrin accumulation similar to that induced by other cytochrome P450-inducing chemicals such as polyhalogenated aromatic hydrocarbons in the chick hepatocyte system.  相似文献   

20.
The effects of inducers of cytochrome P-450 on haem biosynthesis from 5-aminolaevulinate were examined by using cultured chick-embryo hepatocytes. Cultures treated with either 2-propyl-2-isopropylacetamide or 3-methylcholanthrene contained increased amounts of cytochrome P-450 and haem. After treatment for 3 h with 5-amino[4-14C]laevulinate, the relative amounts of radioactivity accumulating as haem corresponded to the relative amounts of total cellular haem, but not to increases in the amounts of cytochrome P-450. Treatment with 5-aminolaevulinate did not alter cellular haem or cytochrome P-450 concentrations in either control or drug-treated cultures. The mechanism of the enhanced accumulation of radioactivity in haem was investigated. Although 2-propyl-2-isopropylacetamide enhanced the uptake of 5-aminolaevulinate and increased the cellular concentration of porphobilinogen 1.5-fold, these changes did not account for the increases in haem radioactivity. The inducing drugs had no effect on the rates of degradation of radioactive haem, but appeared to enhance conversion of protoporphyrin into haem. This latter effect was shown by: (1) a decreased accumulation of protoporphyrin from 5-aminolaevulinate in cells treated with inducers, and (2) complete prevention of this decrease if the iron chelator desferrioxamine was present. We conclude that inducers of cytochrome P-450 may increase haem synthesis not only by increasing activity of 5-aminolaevulinate synthase, but also by increasing conversion of protoporphyrin into haem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号