首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Dynamics of the temperature-humidity index in the Mediterranean basin   总被引:1,自引:0,他引:1  
The study was aimed at describing the temperature humidity index (THI) dynamics over the Mediterranean basin for the period 1951–2007. The THI combines temperature and humidity into a single value, and may help to predict the effects of environmental warmth in farm animals. In particular, on the basis of THI values, numerous studies have been performed to establish thresholds for heat stress in dairy cows. The THI was calculated by using monthly mean values of temperature and humidity obtained from the National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis project. The analysis demonstrated a high degree of heterogeneity of THI patterns over the Mediterranean basin, a strong north–south gradient, and an overall warming during the study period, which was particularly marked during summer seasons. Results indicated that several areas of the basin present summer THI values which were unfavorable to cow welfare and productivity, and that risk of heat stress for cows is generally greater in the countries of the south coast of the basin. Furthermore, THI data from the summer 2003 revealed that severe positive anomalies may impact areas normally characterized by a favorable climate for animal production. In conclusion, THI dynamics should be taken into careful consideration by farmers and policy makers operating in Mediterranean countries when planning investments in the sector of animal production. The investments should at least partially be directed towards implementation of adaptation measures, which may help to alleviate the impact of hot on farm animals welfare, performance and health.  相似文献   

2.
The Murray dairy region produces approximately 1.85 billion litres of milk each year, representing about 20 % of Australia’s total annual milk production. An ongoing production challenge in this region is the management of the impacts of heat stress during spring and summer. An increase in the frequency and severity of extreme temperature events due to climate change may result in additional heat stress and production losses. This paper assesses the changing nature of heat stress now, and into the future, using historical data and climate change projections for the region using the temperature humidity index (THI). Projected temperature and relative humidity changes from two global climate models (GCMs), CSIRO MK3.5 and CCR-MIROC-H, have been used to calculate THI values for 2025 and 2050, and summarized as mean occurrence of, and mean length of consecutive high heat stress periods. The future climate scenarios explored show that by 2025 an additional 12–15 days (compared to 1971 to 2000 baseline data) of moderate to severe heat stress are likely across much of the study region. By 2050, larger increases in severity and occurrence of heat stress are likely (i.e. an additional 31–42 moderate to severe heat stress days compared with baseline data). This increasing trend will have a negative impact on milk production among dairy cattle in the region. The results from this study provide useful insights on the trends in THI in the region. Dairy farmers and the dairy industry could use these results to devise and prioritise adaptation options to deal with projected increases in heat stress frequency and severity.  相似文献   

3.
The objective of this study was to investigate the relationship between temperature–humidity index (THI) and rumination time (RT) in order to possibly exploit it as a useful tool for animal welfare improvement. During summer 2015 (1 June to 31 August), data from an Italian Holstein dairy farm located in the North of Italy were collected along with environmental data (i.e. ambient temperature and relative humidity) recorded with a weather station installed inside the barn. Rumination data were collected through the Heatime® HR system (SCR Engineers Ltd., Hadarim, Netanya, Israel), an automatic system composed of a neck collar with a Tag that records the RT and activity of each cow. A significant negative correlation was observed between RT and THI. Mixed linear models were fitted, including animal and test day as random effects, and parity, milk production level and date of last calving as fixed effects. A statistically significant effect of THI on RT was identified, with RT decreasing as THI increased.  相似文献   

4.
The study was undertaken during spring and summer months in a territory representative of the Mediterranean climate to assess the effects of season on some immunological parameters of dairy cows. Twenty Holstein cows were used. Eleven of those cows gave birth during spring; the remaining nine cows gave birth in summer. The two groups of cows were homogeneous for parity. Values of air temperatures and relative humidity were recorded both during spring and summer, and were utilized to calculate the temperature humidity index (THI). One week before the expected calving, rectal temperatures and respiratory rates of the cows were recorded (1500 hours), and cell-mediated immunity was assessed by measuring the proliferation of mitogen-stimulated peripheral blood mononuclear cells (PBMC). Within 3 h of calving, one colostrum sample was taken from each cow and analysed to determine content of immunoglobulin (Ig) G1, IgG2, IgM and IgA. At 48 h after birth, passive immunization of the calves was assessed by measuring total serum IgG. During summer, daytime (0900-2000 hours) THI values were above the upper critical value of 72 [75.2, (SD 2.6)] indicating conditions that could represent moderate heat stress. That THI values were able to predict heat stress was confirmed by the values of rectal temperatures and respiratory rates, which were higher (P < 0.05 and P < 0.001 respectively) during summer. Proliferation of PBMC, the colostral concentration of Ig fractions and serum levels of IgG in their respective off-spring did not differ between spring and summer cows. Results indicated that moderate heat stress due to the hot Mediterranean summer does not modify cell-mediated immunity, the protective value of colostrum and passive immunization of the offspring in dairy cows.  相似文献   

5.
In the present study, the relationship between the temperature–humidity index (THI) and the incidence of medical treatments in lactating dairy cows in Lower Saxony, Germany, was investigated. Records of all veterinary-treated cases over 2 years (2003 and 2005) from eight Holstein–Friesian dairy herds raised in loose-housing systems (55 to 170 cows per herd) were evaluated. After exclusion of management-dependent and climate-independent cases, a total of 5547 treatments were analyzed. Treatments were clustered into the following groups: metabolism, fertility, udder and foot/leg. Meteorological data were compiled from the nearest weather station (average distance ± s.d. 39 ± 13 km). Hourly temperatures and relative humidity values were used to calculate the THI, which was divided into classes. Out of the total number of treatments, 37.4%, 32.9%, 21.6% and 8.1% belonged to metabolism, udder, fertility and foot/leg, respectively. Data were analyzed with a mixed model that included THI class, season and year as fixed effects and farm as random effect. In general, incidences were neither affected by the year (P > 0.05) and season (P > 0.05) nor by THI classes (P > 0.05). In tendency, incidences of metabolic treatments increased with increasing THI and incidences of udder treatments increased with decreasing THI. In conclusion, indications of moderate heat stress during summer months in Central Europe were found in the present study, although THI and season did not affect the different disease complexes significantly.  相似文献   

6.
Although the climate in Germany is moderate, heat stress conditions may occur during summer months. However, it is unknown to what extent sow fertility and piglet survival are affected under moderate climatic conditions in indoor systems. Therefore, this study estimated effects of temperature and temperature–humidity index (THI) on sow fertility and piglet survival under practical husbandry conditions. Temperature and relative humidity were recorded in six piglet-producing farms in Lower Saxony, Germany, from July 2011 to August 2012. Based on that, the THI was calculated. In one farrowing, waiting and servicing unit of each farm two data loggers were installed. Reproductive parameters of 8279 successful inseminations and 10 369 litters including total number of piglets born, liveborn, stillborn and weaned piglets as well as pre-weaning mortality were evaluated. The effects of temperature and THI on reproductive parameters were estimated for varying periods after breeding and before and after farrowing, respectively. Average daily temperature across all units ranged from 15.6°C to 29.0°C, and average THI from 62.4 to 75.1. Season and parity significantly affected total number of piglets born, number of liveborn, stillborn and weaned piglets (P<0.001). The number of piglets born increased with rising temperature and THI in the 1st week post breeding. Higher temperatures and THI values before farrowing resulted in a reduced number of liveborn piglets. Elevated temperature and THI values after farrowing were associated with a greater number of weaned piglets. The pre-weaning mortality significantly decreased with increasing temperature and THI values after farrowing (P<0.05). In conclusion, temperature and THI affected the reproductive performance of the sows and the survival of the piglets in different ways. While increased climatic values at the time of breeding positively affected the total number of piglets born, increased values at the time of farrowing had negative impacts on the reproductive performance of the sows. Piglets benefited from higher temperature and THI values after farrowing.  相似文献   

7.
A retrospective study on seasonal variations in the characteristics of cow’s milk and temperature–humidity index (THI) relationship was conducted on bulk milk data collected from 2003 to 2009. The THI relationship study was carried out on 508 613 bulk milk data items recorded in 3328 dairy farms form the Lombardy region, Italy. Temperature and relative humidity data from 40 weather stations were used to calculate THI. Milk characteristics data referred to somatic cell count (SCC), total bacterial count (TBC), fat percentage (FA%) and protein percentage (PR%). Annual, seasonal and monthly variations in milk composition were evaluated on 656 064 data items recorded in 3727 dairy farms. The model highlighted a significant association between the year, season and month, and the parameters analysed (SCC, TBC, FA%, PR%). The summer season emerged as the most critical season. Of the summer months, July presented the most critical conditions for TBC, FA% and PR%, (52 054±183 655, 3.73%±0.35% and 3.30%±0.15%, respectively), and August presented higher values of SCC (369 503±228 377). Each milk record was linked to THI data calculated at the nearest weather station. The analysis demonstrated a positive correlation between THI and SCC and TBC, and indicated a significant change in the slope at 57.3 and 72.8 maximum THI, respectively. The model demonstrated a negative correlation between THI and FA% and PR% and provided breakpoints in the pattern at 50.2 and 65.2 maximum THI, respectively. The results of this study indicate the presence of critical climatic thresholds for bulk tank milk composition in dairy cows. Such indications could facilitate the adoption of heat management strategies, which may ensure the health and production of dairy cows and limit related economic losses.  相似文献   

8.
Monitoring and predicting the microclimate in naturally ventilated barns (NVB) is important given the adverse effects of high summer temperatures on dairy cows in the context of global climate change. The aim of the work was to verify the accuracy of the microclimate forecast in a NVB using linear regression (LR). Our working hypothesis suggested that multiple periodic measurements of air temperature and relative humidity outside and inside the barns at the same time will allow us to build LR models for predicting the temperature-humidity index (THI). This was done not only for a specific dairy barn based on this indicator outside, but also in other dairy barns with a similar design, located in similar weather conditions. The results of the research indicate that the use of LR had a high accuracy of forecasting (93–96%) the THI in NVB of various designs during the summer heat. At the same time, differences were found between traits (air temperature, relative humidity as well as resulting THI) provided by meteorological weather stations and these data measured simultaneously next to the dairy barns. The proposed LR models can be used to predict THI in NVBs of different designs.  相似文献   

9.
A study of thermal stress risk for cattle and buffalo was made in the Northeast Region of Thailand. Three-hourly air and dew-point temperatures from 15 selected meteorological stations for the period 1990 to 1999 were used to compute values of the temperature/humidity index (THI). Maps of isolines of THI values were generated by geographical software. A THI 84 was assumed to represent conditions where production losses would be likely to occur. Across the study area, the mean total number of days with THI 84 was 56. However, there was a strong north to south gradient across the region. The results suggest that the highest risk of loss to production in the cattle and buffalo industries is in the southern part of this region.  相似文献   

10.
Temperature and humidity conditions affect livestock production in Central Argentina. This study evaluates the risk of thermal stress affecting dairy production. The temperature-humidity index (THI) was used to analyze the regional and seasonal effects of temperature and humidity. Statistically, the THI was found to be normally distributed. The probability of occurrence of a daily THI higher than 72 was 40% for Río Cuarto during January. Regional variability of THI indicates a low risk of harmful extreme thermal stress conditions. The probability of THI being 78 or above ranges between 4% and 10% for the main dairy region of Córdoba during January. Also, in January and February, dairy production losses between 3 and 4 l cow(-1) day(-1) could be expected with a frequency of 5% in Río Cuarto and 15% in Villa de María de Río Seco.  相似文献   

11.
Climate change has intensified the frequency of heat waves in the world, thereby exposing farm animals to stressful conditions. For better productive performance it is important to identify the most resilient genotypes. Thus, our objective was to evaluate the thermoregulatory responses of rams of tropical indigenous (Morada Nova and Santa Inês) and exotic breeds (Dorper and Texel), by monitoring the environmental and physiological indicators related to heat tolerance. The experiment was carried out in a tropical climate region (Cwa), in Brazil, for twelve months, which comprised spring, summer, autumn and winter. Thirty-three rams were divided into groups: Morada Nova (MN; n=8, red-coat), Santa Inês (SI; n=9, black-coat), Dorper (DO; n=8, white-coat) and Texel (TX; n=8, white-coat). The microclimatic variables were monitored, and the THI and BGHI comfort indices were calculated. Coat thickness and body surface temperatures were measured monthly, and serum triiodothyronine-T3 measurements and complete blood tests were performed. The physiological variables were evaluated every fifteen days and skin micro-biopsies were performed in the summer and winter for histological evaluation. During the warmer seasons, the THI and BGHI reached values that indicated thermal discomfort. TX showed higher coat thickness throughout the year, increased physiological variables related to thermolysis, and reduced T3 (P < 0.05). The internal temperature was permanently lower in the MN, SI and DO (P < 0.05). The body surface temperatures were affected by the coat characteristics and wool length. Hematological parameters varied in the seasons with the highest thermal conditions (P < 0.05). The MN showed larger sweat glands, while the area occupied by the sweat glands was higher in the SI. The DO showed higher hair density in the summer and winter (P < 0.05). The results indicated that the MN, SI and DO breeds overcome the thermal challenge more easily throughout the seasons due to specific adaptive morphological and physiological characteristics.  相似文献   

12.
A better understanding of how livestock respond to weather is essential to enable farming to adapt to a changing climate. Climate change is mainly expected to impact dairy cattle through heat stress and an increase in the frequency of extreme weather events. We investigated the effects of weather on milk yield and composition (fat and protein content) in an experimental dairy herd in Scotland over 21 years. Holstein Friesian cows were either housed indoors in winter and grazed over the summer or were continuously housed. Milk yield was measured daily, resulting in 762 786 test day records from 1369 individuals, and fat and protein percentage were sampled once a week, giving 89 331 records from 1220 cows/trait. The relative influence of 11 weather elements, measured from local outdoor weather stations, and two indices of temperature and humidity (THI), indicators of heat stress, were compared using separate maximum likelihood models for each element or index. Models containing a direct measure of temperature (dry bulb, wet bulb, grass or soil temperature) or a THI provided the best fits to milk yield and fat data; wind speed and the number of hours of sunshine were most important in explaining protein content. Weather elements summarised across a week’s timescale from the test day usually explained milk yield and fat content better than shorter-scale (3 day, test day, test day −1) metrics. Then, examining a subset of key weather variables using restricted maximum likelihood, we found that THI, wind speed and the number of hours of sunshine influenced milk yield and composition. The shape and magnitude of these effects depended on whether animals were inside or outside on the test day. The milk yield of cows outdoors was lower at the extremes of THI than at average values, and the highest yields were obtained when THI, recorded at 0900 h, was 55 units. Cows indoors decreased milk yield as THI increased. Fat content was lower at higher THIs than at intermediate THIs in both environments. Protein content decreased as THI increased in animals kept indoors and outdoors, and the rate of decrease was greater when animals were outside than when they were inside. Moderate wind speeds appeared to alleviate heat stress. These results show that milk yield and composition are impacted at the upper extreme of THI under conditions currently experienced in Scotland, where animals have so far experienced little pressure to adapt to heat stress.  相似文献   

13.
This research aimed at assessing the effects of a ceiling fan ventilation system on health, feeding, social behaviour and growth response of finishing young bulls fattened indoors during a mild summer season. A total of 69 Charolais young bulls were housed in six pens without any mechanical ventilation system (Control) and in six pens equipped with ceiling fans. The experimental period lasted 98 days from June until mid-September 2014. Four experimental days were considered in order to assess the effect of the ventilation system under two different microclimatic conditions: 2 alert days at monthly interval with temperature humidity index (THI) between 75 and 78, and 2 normal days with THI⩽74. Health and behaviour of the bulls were evaluated through 8-h observation sessions starting after morning feed delivery. The study was carried out during a rather cool summer with a climate average THI of 68.9 and 4 days with average THI>75. Despite these mild climate conditions, ceiling fans lowered litter moisture and acted as a preventive measure for bulls’ dirtiness (odd ratio=47.9; 95% CI 19.6 to 117.4). The risk of abnormal breathing was increased for Control bulls (odd ratio=40.7; 95% CI 5.4 to 304.2). When exposed to alert THI conditions, respiration rate and panting scores increased and rumination duration dropped in Control bulls compared with bulls provided with a ceiling fan. During observations under alert THI, bulls spent less time eating, more time being inactive and consumed more water compared with normal THI conditions. Bulls’ daily dry matter intake measured during the observation sessions decreased on alert compared with normal THI days (P<0.001) due to a drop of intake during the daylight hours. Ceiling fan treatment had no effect on bulls’ growth performance or water consumption but these results most likely depended on the mild climate conditions. Ceiling fans proved to mitigate some of the negative effects of heat stress on bulls’ behaviour (rumination, lying down and drinking water) and respiration rate, however. The lack of a significant improvement of bulls’ growth response should not discourage beef farmers from using ceiling fans in indoor systems, considering the likely increase in frequency and intensity of heat waves in the planet’s temperate areas induced by global warming.  相似文献   

14.
The erstwhile developed temperature-humidity index (THI) has been popularly used to indicate heat stress in dairy cattle and often in buffaloes. However, scientific literature suggests differences in thermotolerance and physiological responses to heat stress between cattle and buffalo. Therefore, THI range used to indicate degree of heat stress (mild, moderate, and severe) in cattle should be recalibrated for indicating heat stress in buffaloes. The present study was carried out to delineate THI range to indicate onset and severity of heat stress in buffaloes based on physiological, biochemical, and expression profiling of heat shock response (HSR) genes in animals at different THI. The result indicated early onset of heat stress in buffaloes as compared to cattle. Physiological and biochemical parameters indicated onset of mild signs of heat stress in buffaloes at THI 68-69. Significant deviation in these parameters was again observed at THI range 73-76. At THI 77-80, the physiological and biochemical responses of animals were further intensified indicating extreme alteration in homeostasis. The in vivo expression profiling of HSR genes indicated that members of Hsp70 gene family are expressed in a temporal pattern over different THIs, whereas expressions of Hsf genes were evident during intense heat stress. Overall, the study established that amplitude of heat shock response and THI range for indicating severity of thermal stress for buffaloes are not in unison to cattle. The study also suggests skin temperature of the poll region could be used as non-invasive tool for monitoring heat stress in dairy buffaloes.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12192-021-01209-1.  相似文献   

15.
Agroforestry systems can minimize heat stress and improve cattle welfare, but the influence of the forest component in microclimatic changes in the southern Amazon remains unclear. This study aimed to compare the thermal comfort indices in grass monoculture and integrated systems. The three systems were pasture under full sunlight (PFS), integrated (triple-row) livestock-forestry (ILFT), and integrated (single-row) livestock-forestry (ILFs), across four seasons, for two years, from June 2017 to June 2019. We assessed photosynthetically active radiation (PAR), air temperature, relative humidity, black globe temperature, and wind speed. Thermal comfort indices such as temperature-humidity index (THI), black globe temperature-humidity index (BGHI), and radiant thermal load (RTL) were calculated based on microclimate data daily-collected from 8:00 to 16:00. The ILFT mean THI (76.8) was slightly lower than ILFS and PFS. The BGHI and RTL values decreased as shading increased (PFS > ILFs > ILFT). The most challenging heat stress conditions for grazing animals occurred predominately during winter and autumn. In conclusion, the presence of trees in pastures of the southern Amazon improved the microclimate and, consequently, the thermal comfort indices. Agroforestry systems can foster an environment with a more suitable thermal comfort or less restrictive to animal performance, which contribute to mitigating global climate change for forage-livestock systems in Brazilian Amazon.  相似文献   

16.
This study was carried out to examine the impact of several climate variables on the pregnancy rate after cervical artificial insemination (AI) of Rasa Aragonesa ewes. Data were derived from 8,977 inseminations in 76 well-managed flocks performed during the first month of the breeding season (July to October). The following data were recorded for each animal: farm, year, month of AI, parity, lambing–treatment interval, inseminating ram, AI technician, and climatic variables such as mean, maximum and minimum temperature, mean and maximum relative humidity, rainfall, and mean and maximum temperature–humidity index (THI) for each day from day 12 before AI to day 14 post-AI. Means were furthermore calculated for the following periods around AI (day 0): ?12 to 0, ?2 to 0, AI day, 0 to 2, and 0 to 14. Logistic regression analysis indicated that the likelihood of pregnancy decreased when maximum temperature in the 2 days prior to AI was higher than 30 °C (by a factor of 0.81). Fertility was also lower for primiparous ewes and in multiparous ewes with more than five previous parturitions. Other factors with significant impact on fertility were flock, technician, inseminating ram, and a lambing–AI interval longer than 240 days. It was concluded that the 2 days prior to AI seems to be the period when heat stress had the greatest impact on pregnancy rate in Rasa Aragonesa ewes.  相似文献   

17.
Satellite data show a steady increase, in the last decades, of the surface temperature (upper few millimetres of the water surface) of the Mediterranean Sea. Reports of mass mortalities of benthic marine invertebrates increased in the same period. Some local studies interpreted the two phenomena in a cause-effect fashion. However, a basin-wide picture of temperature changes combined with a systematic assessment on invertebrate mass mortalities was still lacking. Both the thermal structure of the water column in the Mediterranean Sea over the period 1945–2011 and all documented invertebrate mass mortality events in the basin are analysed to ascertain if: 1- documented mass mortalities occurred under conditions of positive temperature trends at basin scale, and 2- atypical thermal conditions were registered at the smaller spatial and temporal scale of mass mortality events. The thermal structure of the shallow water column over the last 67 years was reconstructed using data from three public sources: MEDAR-MEDATLAS, World Ocean Database, MFS-VOS programme. A review of the mass mortality events of benthic invertebrates at Mediterranean scale was also carried out. The analysis of in situ temperature profiles shows that the Mediterranean Sea changed in a non-homogeneous fashion. The frequency of mass mortalities is increasing. The areas subjected to these events correspond to positive thermal anomalies. Statistically significant temperature trends in the upper layers of the Mediterranean Sea show an increase of up to 0.07°C/yr for a large fraction of the basin. Mass mortalities are consistent with both the temperature increase at basin scale and the thermal changes at local scale, up to 5.2°C. Our research supports the existence of a causal link between positive thermal anomalies and observed invertebrate mass mortalities in the Mediterranean Sea, invoking focused mitigation initiatives in sensitive areas.  相似文献   

18.
1.
Continuous body temperature records from dairy cows for 46 days of summer and contemporary data for climate temperature humidity index (THI) were analysed.  相似文献   

19.
Mortality and morbidity indices are known to depend on changes in meteorological conditions. In Athens, severe adverse health effects following extreme heat conditions have been reported. The usefulness has been investigated of the complex thermohygrometric index (THI), a simple index based on maximum daily temperature and relative humidity, in predicting the health effects of specific meteorological conditions. The values of THI were found to correlate well with more complex bioclimatic indices; the THI could successfully replace temperature and humidity in predicting the daily number of deaths through multiple linear regression modelling. Thus the introduction of THI levels more than 28.5° C and between 26.5 and 28.5° C, through dummy variables, in a regression model explained 40% of the variability in the number of deaths during the months of July and August. During days with THI values less than 26.5° C the mean number of deaths was 33.5, compared to 41.8 when THI was between 26.5 and 28.5° C. The daily number of deaths increased to 108.2 when THI exceeded 28.5° C. From this study, the exact level of THI at which public health measures must be taken was not clear and more work is needed to identify it. However, given its simplicity, the use of THI for predicting meteorological conditions which are adverse to health would appear to be promising in preventive medicine and in health services planning.  相似文献   

20.
The major factor in the induction of physiological stress during road transportation of livestock is the complex fluctuations of the thermal transport microenvironment, encountered when animals are transported across different ecological zones. Recommended guidelines on optimum “on-board” conditions in which goats should be transported are lacking, and there are no acceptable ranges and limits for the thermal loads to which goats may be subjected during long-distance road transportation in hot-dry conditions. Panting score (PS), rectal temperature (RT), heart rate (HR) and respiratory rate (RR) were employed as reliable stress indices to assess the effects of different thermal loads, measured as temperature humidity index (THI), encountered in the vehicle during 12 h of road transportation of 40 goats, and to suggest the administration of 100 mg/kg body weight of ascorbic acid (AA) as an ameliorating agent. The results obtained showed that the PS, RT, HR and RR rose above normal reference values with increase in the THI and journey duration. The rise in PS value, which is a visual indicator of the severity of thermal load, was the most pronounced. The results suggest that values of THI in the vehicle up to 94.6 constitute no risk, while at of 100 it presents a moderate risk and above 100 may result in severe stress. The relationships between the thermal load and the physiological variables were positive and significant (P < 0.05). They reflect the degree of stress imposed by each THI value during the transportation, and may be used as recommended ranges and limit thermal load values in transported goats. The results demonstrated that administration of 100 mg/kg body weight of AA before road transportation mitigated the risk of adverse effects of high THI values and other stress factors due to road transportation in goats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号