首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucose utilization in primary cell cultures of mouse cerebral astrocytes was studied by measuring uptake of tracer concentrations of [3H]2-deoxyglucose ([3H]2-DG). The resting rate of glucose utilization, estimated at an extracellular K+ concentration ([K+]o) of 5.4 mM, was high (7.5 nmol glucose/mg protein/min) and was similar in morphologically undifferentiated and "differentiated" (dibutyryl cyclic AMP-pretreated) cultures. Resting uptake of [3H]2-DG was depressed by ouabain, by reducing [K+]o, and by cooling. These observations suggest that resting glucose utilization in astrocytes was dependent on sodium pump activity. Sodium pump-dependent uptake in 2-3-week-old cultures was about 50% of total [3H]2-DG uptake but this fraction declined with culture age from 1 to 5 weeks. Uptake was not affected by changes in extracellular bicarbonate concentration ([HCO3-]o) in the range of 5-50 mM but was significantly reduced in bicarbonate-free solution. At high [HCO3-]o (50 mM) uptake was insensitive to pH (pH 6-8), whereas at low [HCO3-]o (less than 5 mM) uptake was markedly pH-dependent. Elevation of [K+]o from 2.3 mM to 14.2-20 mM (corresponding to extremes of the physiological range of [K+]o) resulted in a 35-43% increase in [3H]2-DG uptake that was not affected by culture age or by morphological differentiation. Our results indicate a high apparent rate of glucose utilization in astrocytes. This rate is dynamically responsive to changes in extracellular K+ concentration in the physiological range and is partially dependent on sodium pump activity.  相似文献   

2.
To elucidate the role of acetyl-l-carnitine in the brain, we used a novel method, ‘Bioradiography,’ in which the dynamic process could be followed in living slices by use of positron-emitter labeled compounds and imaging plates. We studied the incorporation of 2-[18F]fluoro-2-deoxy-d-glucose ([18F]FDG) into rat brain slices incubated in oxygenated Krebs-Ringer solution. Under the glucose-free condition, [18F]FDG uptake rate decreased with time and plateaued within 350 min in the cerebral cortex and cerebellum, and the addition of 1 or 5 mM acetyl-l-carnitine did not alter the [18F]FDG uptake rate. When a glutaminase inhibitor, 0.5 mM 6-diazo-5-oxo-l-norleucine (DON), was added under the normal glucose condition, [18F]FDG uptake rate decreased. Acetyl-l-carnitine (1 mM), which decreased [18F]FDG uptake rate, reversed this DON-induced decrease in [18F]FDG uptake rate in the cerebral cortex. These results suggest that acetyl-l-carnitine can be used for the production of releasable glutamate rather than as an energy source in the brain.  相似文献   

3.
The phosphate uptake rate of Neurospora crassa germlings growing exponentially in media containing phosphate at concentrations between 10 mM and 50 micronM was virtually constant. The uptake characteristics of these germlings were studied in detail assuming the simultaneous operation of two uptake systems, one of low affinity and one of high affinity. The Km of the low-affinity system was constant after growth at phosphate concentrations greater than 1 mM but became progressively lower as the concentration was reduced below 1 mM. In contrast, the Km of the high-affinity system was independent of the phosphate concentration of the growth medium. The Vmax of each system was highest after growth at low phosphate concentrations. As the phosphate concentration was increased to a maximum of 100 mM, the Vmax of the low-affinity system fell gradually, whereas that of the high-affinity system at first fell rapidly but then reached a constant minimum value at concentrations of 2.5 mM and higher. The differences in the kinetic parameters fully account for the constancy of uptake rate shown by the germlings.  相似文献   

4.
A self-regulatory mechanism of the glucose transport in rat skeletal muscle cells is described. In isolated rat soleus muscles and rat skeletal myocytes and myotubes in culture, pre-exposure to varying glucose concentrations modulated the rate of 2-deoxyglucose uptake. Maximal uptake was observed at glucose concentrations below 3 mM. Between 2.5 and 4.0 mM glucose it was reduced by 25-35%; further elevation of the glucose concentration resulted in a gradual decrease of the transport rate by approximately 2% for each millimolar glucose. The effect of glucose was time-dependent and fully reversible. Insulin rapidly increased the 2-deoxyglucose uptake in the soleus muscle; however, the insulin effect depended on the glucose concentration of the preincubation. Insulin was totally ineffective in muscles pre-exposed to 1.0-3.0 mM glucose, whereas its stimulatory action increased with increasing glucose concentrations above 4 mM. The effect of low glucose and insulin were not additive, and the maximal 2-deoxyglucose uptake rates induced by both conditions were of identical magnitude. It is postulated that glucose may "up- and down-regulate" its transport by affecting the number of active glucose transporters in the plasma membrane, and that insulin exerts its stimulatory effect only when the extracellular glucose reaches a threshold concentration.  相似文献   

5.
The fate of [3H]glucose released from a wide range of [3H]phlorizin concentrations by phlorizin hydrolase has been studied under conditions where the Na+-dependent glucose transport system in hamster intestine is profoundly inhibited by the glucoside. At 0.2-2.0 mM phlorizin, the [3H]glucose uptake was a constant 11-12% of that generated by the enzyme and at the highest level, it was reduced to that of passive diffusion. Glucose liberated from 0.2 mM [3H]phlorizin is accumulated at a rate nearly equal to that found for 0.2 mM [14C]glucose when this free sugar uptake is measured in a medium containing 0.2 mM unlabeled phlorizin. Furthermore, without sodium, the accumulation rates of hydrolase-derived or exogenous glucose are both reduced to the rate of [14C]mannitol. Our results indicate that the glucose released from phlorizin enters the tissue via the small fraction of the Na+-dependent glucose carriers which escape phlorizin blockade together with a mannitol-like passive diffusion. It enjoys a kinetic advantage for tissue entry over free glucose in the medum by virtue of the position of the site where it is formed, i.e inside the unstirred water layer and near normal entry portals. No special hydrolase-related transport system, like the one proposed for disaccharides, needs to be considered to account for our findings.  相似文献   

6.
Failure to account for the effect of the unstirred water layer and the contribution of passive permeation will lead to errors in the estimation of the kinetic constants of glucose uptake into the intestine. It is widely accepted that variations in the concentration of sodium in the bulk phase profoundly influence the rate of uptake of glucose in the intestine, but the kinetic basis for this effect remains in dispute. Accordingly, a previously validated in vitro technique was used to assess the effect of Na+ on the uptake of glucose into rabbit jejunum under conditions selected to reduce the unstirred layer resistance. Varying Na+ had no effect on the uptake of lauryl alcohol and therefore on unstirred layer resistance. The passive permeability coefficient for glucose uptake was estimated from the uptake of L-glucose, of D-glucose at 4 degrees C, or in the presence of 1 mM phlorizin or 40 mM galactose. The permeability for glucose increased as Na+ rose. The values of both the maximal transport rate and the Michaelis constant (Km) were influenced by Na+. A linear relationship was noted between Na+ and the maximal transport rate; the value of Km fell as Na+ was increased to 75 mequiv./L, but Km did not decline further with higher values of Na+. These results support the theoretical predictions of the presence of both an affinity and a velocity effect of the sodium gradient on the intestinal transport system for glucose.  相似文献   

7.
T J Wheeler  J D Whelan 《Biochemistry》1988,27(5):1441-1450
It has been claimed that the Km for infinite-cis uptake of glucose in human erythrocytes is so low that the carrier model for transport must be rejected. We redetermined this parameter for three experimental conditions and found instead that the Km values were in good agreement with the model. For each of a variety of cis glucose concentrations, cells were preequilibrated with various concentrations of glucose, and the apparent Km was determined as the intracellular concentration reducing the initial rate of net uptake by half. The dependence of the apparent Km values on the cis glucose was as predicted by the carrier model; the infinite-cis Km was determined from both this concentration dependence and the extrapolated value at infinite cis glucose. The resulting values were 15 mM for fresh blood at 0 degrees C, 39 mM for outdated blood at 0 degrees C, and 11 mM for outdated blood at 25 degrees C. Previous measurements of the Km at room temperature yielded values of 2-3 mM. These earlier studies used a time course procedure that indicated rapid changes in rates during the initial 10 s of uptake but did not directly measure such changes. We examined the uptake of 60 mM glucose at 20 degrees C into cells containing 0 and 5 mM glucose; rapid changes in rates were not observed in the first few seconds, and the time courses were more consistent with our higher Km values. Our new values, together with other initial rate measurements in the literature, support the adequacy of the carrier model to account for the kinetics of glucose transport in human erythrocytes.  相似文献   

8.
In 30 experiments performed on 5 pregnant sheep, the rate of glucose transfer from the placenta to fetus via the umbilical circulation was measured while varying uterine blood flow by means of a cuff-type occluder and while maintaining a constant maternal glucose concentration by means of a 'glucose clamp'. Over the range of uterine blood flows obtained, there was no significant effect on the simultaneously measured umbilical blood flow. Fetal glucose uptake and arterial glucose concentration remained normal as the uterine blood flow rate decreased from 600 to 300 ml per min per kg of fetus. At blood flow rates less than 300 ml.min-1.kg-1, the fetal glucose uptake decreased and became negative in one instance while the arterial glucose concentration became variable and markedly increased in 2 animals. This increase in fetal glucose concentration was associated with a decrease in the uterine oxygen delivery rate, a decrease in fetal oxygen content and a decrease in fetal oxygen uptake. These observations support the concept that fetal glucose metabolism is altered by severe hypoxia and demonstrate that there is little effect of uterine blood flow on fetal glucose uptake in the normal physiological range.  相似文献   

9.
Glucose transport kinetics were quantified in isolated bovine mammary epithelial cells using 3-O-methyl-D-glucose. Isolated cells retained satisfactory viability and glucose uptake activity, which was inhibited by cytochalasin B, phloretin, HgCl2, and low temperature. Initial rates of entry were measured over a 15-s interval at 37 degrees C under zero-trans, equilibrium-exchange, high-cis, and high-trans concentrations of 3-O-methyl-D-glucose between 0 and 20 mM. The combined set of rate measurements from all experimental conditions was fit to the fixed-site carrier model by nonlinear regression to estimate parameters of transport. For the regression between predicted and observed initial rates, r2 was 0.97. Forward Vmax was estimated at 18.2 nmol.min-1.mg protein-1, and the Michaelis constant was 8.29 mM. The cooperativity parameter was 1.63, trans-stimulation was 2.13-fold, and asymmetry was 2.06-fold. On the basis of the kinetic parameters, variations in intracellular glucose concentrations are not responsible for the range of glucose uptakes by bovine mammary glands observed in vivo.  相似文献   

10.
The kinetic parameters for transport of the nonmetabolizable glucose analogue 3-O-methyl-D-glucose and the relationship between transport and metabolism of D-glucose and D-fructose were determined in isolated rat hepatocytes at 37 degrees C and pH 7.4. 3-O-Methylglucose at a very low concentration (0.1 mM) equilibrated with the intracellular water with a rate constant of 0.41 s-1. Km for equilibrium exchange entry was 5.5 mM and Vmax was 2.2 mM X s-1 and similar results were obtained when using the zero-trans entry protocol. The rate constant for entry of tracer D-glucose was 0.15 s-1 and Km for glucose was about 20 mM. The phosphorylation rate for D-glucose was much slower than the transport rate. The rate constant for D-fructose entry was about 0.04 s-1, the apparent Km was about 100 mM and Vmax about 5 mM X s-1. The concentration dependence of 3-O-methylglucose inhibition of labelled fructose transport revealed biphasic kinetics indicating that fructose was transferred by both the glucose transporter and a fructose transporter. At concentrations lower than 1 mM, fructose metabolism appeared to be limited by the transport step.  相似文献   

11.
Glucose is the primary fuel for brain function, and determining the kinetics of cerebral glucose transport and utilization is critical for quantifying cerebral energy metabolism. The kinetic parameters of cerebral glucose transport, K(M)(t) and V(max)(t), in humans have so far been obtained by measuring steady-state brain glucose levels by proton ((1)H) NMR as a function of plasma glucose levels and fitting steady-state models to these data. Extraction of the kinetic parameters for cerebral glucose transport necessitated assuming a constant cerebral metabolic rate of glucose (CMR(glc)) obtained from other tracer studies, such as (13)C NMR. Here we present new methodology to simultaneously obtain kinetic parameters for glucose transport and utilization in the human brain by fitting both dynamic and steady-state (1)H NMR data with a reversible, non-steady-state Michaelis-Menten model. Dynamic data were obtained by measuring brain and plasma glucose time courses during glucose infusions to raise and maintain plasma concentration at ~17 mmol/l for ~2 h in five healthy volunteers. Steady-state brain vs. plasma glucose concentrations were taken from literature and the steady-state portions of data from the five volunteers. In addition to providing simultaneous measurements of glucose transport and utilization and obviating assumptions for constant CMR(glc), this methodology does not necessitate infusions of expensive or radioactive tracers. Using this new methodology, we found that the maximum transport capacity for glucose through the blood-brain barrier was nearly twofold higher than maximum cerebral glucose utilization. The glucose transport and utilization parameters were consistent with previously published values for human brain.  相似文献   

12.
The interaction between glucose and galactose during transport across the cerebral capillary endothelium was studied in anesthetized rats. Although galactose is present in the diet of suckling mammals and is a potential substrate for brain metabolism in adult mammals, its effect on glucose transport in adult rats is unknown. A kinetic model was formulated to analyze the effect of chronically elevated galactose levels on glucose transport in adult rats. The analysis indicated that galactose and glucose compete for the same transport mechanism in the cerebral capillary endothelium. The Tmax of glucose and galactose were both about 380 mumol 100 g-1 min-1 and the Kt of galactose (30 mM) was about three times that of glucose (10 mM). During prolonged galactosemia in adult rats, neither the Tmax, nor the Kt of either competitor changed substantially when compared with rats subjected to acute galactosemia. At 10 mM galactose in plasma in rats with acute galactosemia, the inhibition of glucose transport, simulated a 25% reduction of plasma glucose, and in rats with chronic galactosemia a 20% reduction. This moderate effect is in contrast to the effect of galactose in suckling rats in which 10 mM galactose in plasma reduced the glucose transport to a level corresponding to a 50% reduction of the plasma glucose concentration.  相似文献   

13.
The objective of this investigation was to determine whether the rate of glucose uptake by mouse 3T3 cells was a primary determinant of growth rate. The experimental approach was to control the rate of glucose uptake into intracellular pools by supplying this sugar at varying concentration in minimal Eagle's medium with dialyzed serum in the absence and presence of 6-deoxy-D-glucose, a metabolically inert homomorphic analog of D-glucose that competitively inhibits the uptake of D-glucose. Total hexose (D-glucose and 6-deoxy-D-glucose) concentration was maintained at the physiological concentration of 5.5 mM, in order to maintain saturation and maximum activity of the D-glucose transport system; thus the flux of D-glucose into the cell was controlled by adjusting its concentration relative to its competing nonmetabolizable analog. It was found that even when the concentration of D-glucose was reduced to 0.7 mM, one eighth of the “normal” level of 5.5 mM. and 6-deoxy-D-glucose was present in sevenfold excess (4.8 mM), conditions under which glucose uptake was reduced to 20% of that shown by cells in the presence of 5.5 mM D-glucose, and intracellular pools of glucose and phosphorylated sugars derived from glucose were reduced to approximately 14% of normal, there was not a significant decrease in growth rate. These data support the view that the rate of glucose uptake is not a primary determinant of growth rate under the usual conditions of cell culture.  相似文献   

14.
The glucose metabolism and embryonic development of rat embryos during organogenesis was studied using embryo culture. Glucose uptake and embryonic growth and differentiation of 10.5-day explants (embryos + membranes) were limited by the decreasing glucose concentration, but not the increasing concentration of metabolites, in the culture media during the second 24 h of a 48 h culture. No such limitations were found on the embryonic development of 9.5-day explants during a 48 h culture although glucose uptake was slightly reduced at very low concentrations of glucose. From the head-fold stage to the 25-somite stage of development, glucose uptake was characteristic of the stage of development of the embryo and not the time it had been in culture. Embryonic growth of 9.5-day explants was similar to that previously observed in vivo. Glucose uptake by 9.5-day explants was dependent on the surface area of the yolk sac and was independent of the glucose concentration in the culture media (within the range of 9.4 to 2.5 mM). The proportion of glucose converted to lactate was 100% during the first 42h of culture then fell to about 50% during the final 6h. The protein contents of both the extraembryonic membranes and the embryo were dependent on the glucose uptake.  相似文献   

15.
Quantitative 2-[(18)F]fluoro-2-deoxy-D-glucose ([(18)F]FDG) positron emission tomography (PET) has been widely used to calculate glucose utilization in skeletal muscle. FDG-PET results depend partly on the lumped constant (LC), which accounts for the differences in the transport and phosphorylation between [(18)F]FDG and glucose. In this study, we estimated the LC for [(18)F]FDG directly in normal and in insulin-resistant obese subjects by combining FDG PET with the microdialysis technique. Eight obese [age 29.4 +/- 1.0 yr, body mass index (BMI) 33.6 +/- 1.0 kg/m(2)] and eight nonobese (age 25.0 +/- 1.0 yr, BMI 23.1 +/- 1.0 kg/m(2)) males were studied during euglycemic hyperinsulinemia (1 mU. kg(-1).min(-1) for 150 min). Muscle blood flow was measured using (15)O-labeled water and PET. Muscle [(18)F]FDG uptake (rGU(FDG)) was calculated with Patlak graphic analysis. Interstitial glucose concentration of the quadriceps femoris muscle was measured simultaneously with [(18)F]FDG scanning using microdialysis. Muscle glucose uptake (by microdialysis, rGU(MD)) was calculated by multiplying glucose extraction by regional muscle blood flow. A significant correlation was found between rGU(MD) and rGU(FDG) (r = 0.78, P < 0.01). The LC was determined as the ratio of the rGU(FDG) to the rGU(MD). The LC averaged 1.16 +/- 0.16 and was similar in the obese and nonobese subjects (1.15 +/- 0.11 vs. 1.16 +/- 0.07, respectively, not significant). In conclusion, the microdialysis technique can be reliably combined with FDG PET to measure glucose uptake in skeletal muscle. Direct measurements with these two independent techniques suggest an LC value of 1.2 for [(18)F]FDG in human skeletal muscle during insulin stimulation, and the LC appears not to be sensitive to insulin resistance.  相似文献   

16.
2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) may be used to predict glucose kinetics when the factor relating differences in transport and phosphorylation between compounds remains constant ("lumped constant"). It is not clear whether hyperemia alters that factor. In anesthetized swine, myocardial FDG uptake was estimated by positron emission tomography, during an intracoronary infusion of either adenosine, ATP, or bradykinin (40 microg x kg(-1) x min(-1), 40 microg x kg(-1) x min(-1), and 2 nmol x kg(-1) x min(-1), respectively; n = 6 for all groups). In controls during normal perfusion (n = 6), FDG uptake was 0.78 +/- 0.32 micromol x g(-1) x min(-1), whereas glucose uptake by Fick was 0.71 +/- 0.25 micromol x g(-1) x min(-1) (r = 0.73; P < 0.05). Adenosine increased blood flow from 1.29 +/- 0.43 to 4.80 +/- 2.19 ml x g(-1) x min(-1) (P < 0.05) and glucose uptake from 1.16 +/- 1.10 to 3.35 +/- 2.12 micromol x g(-1) x min(-1) (P < 0.05), whereas FDG uptake in the hyperemic region was lower than remote regions (0.46 +/- 0.29 and 0.95 +/- 0.55 micromol x g(-1) x min(-1), respectively; P < 0.05). In the ATP and bradykinin groups, blood flow increased four- and twofold, respectively, with no net change in glucose uptake. FDG uptake in the hyperemic region was also significantly lower than remote regions. For all animals, the ratio of blood flow in the hyperemic region relative to remote region was inversely proportional to the ratio of FDG uptake in the same regions (r(2)=0.73; P < 0.001). Because nitric oxide elaboration during hyperemia could potentially alter substrate preference and FDG kinetics, six additional swine were studied during maximal adenosine before and after intracoronary N(G)-monomethyl-L-arginine (1.5 mg/kg). Inhibition of nitric oxide had no effect on either regional myocardial substrate uptake or FDG accumulation. In conclusion, hyperemia decreased regional myocardial FDG uptake relative to normally perfused regions and this effect on the lumped constant was independent of nitric oxide.  相似文献   

17.
Abstract: The kinetics of transport across the blood-brain barrier and metabolism in brain (hemisphere) of [14C]2-fluoro-2-deoxy-d -glucose (FDG) were compared to that of [3H]2-deoxy-d -glucose (DG) and d -glucose in the pentobarbital-anesthetized adult rat. Saturation kinetics of transport were measured with the brain uptake index (BUI) method. The BUI for FDG was 54.3 ± 5.6. Nonlinear regression analysis gave a Km of 6.9 ± 1.1 mM and a Vmax of 1.70 ± 0.32 μmol/min/g. The K1 for glucose inhibition of FDG transport was 10.7 ± 4.4 mM. The kinetic constants of influx (k1) and efflux (K2) for FDG were calculated from the Km, Vmax, and glucose concentrations of the hemisphere and plasma (2.3 ± 0.2 μmol/g and 9.9 ± 0.4 mM, respectively). The transport coefficient (k1 FDG/k1glucose) was 1.67 ± 0.07 and the phosphorylation constant was 0.55 ± 0.16. The predicted lumped constant for FDG was 0.89, whereas the measured hexose utilization index for FDG was 0.85 ± 0.16. Conclusion: The value for the lumped constant can be predicted on the basis of the known kinetic constants of FDG and glucose transport and metabolism, as well as brain and plasma glucose levels. Knowledge of the lumped constant is crucial in interpreting data obtained from 18FDG analysis of regional glucose utilization in human brain in pathological states. We propose that the lumped constant will rise to a maximum equal to the transport coefficient for FDG under conditions of transport limitation (hypoglycemia) or elevated glycolysis (ischemia, seizures), and will fall to a minimum equal to the phosphorylation coefficient during phosphorylation limitation (extreme hyperglycemia).  相似文献   

18.
The fate of [3H]glucose released from a wide range of [3H]phlorizin concentrations by phlorizin hydrolase has been studied under conditions where the Na+-dependent glucose transport system in hamster intestine is profoundly inhibited by the glucoside. At 0.2–2.0 mM phlorizin, the [3H]glucose uptake was a constant 11–12% of that generated by the enzyme and at the highest level, it was reduced to that of passive diffusion. Glucose liberated from 0.2 mM [3H]phlorizin is accumulated at a rate nearly equal to that found for 0.2 mM [14C]glucose when this free sugar uptake is measured in a medium containing 0.2 mM unlabeled phlorizin. Furthermore, without sodium, the accumulation rates of hydrolase-derived or exogenous glucose are both reduced to the rate of [14C]mannitol. Our results indicate that the glucose released from phlorizin enters the tissue via the small fraction of the Na+-dependent glucose carriers which escape phlorizin blockade together with a mannitol-like passive diffusion. It enjoys a kinetic advantage for tissue entry over free glucose in the medium by virtue of the position of the site where it is formed, i.e. inside the unstirred water layer and near normal entry portals. No special hydrolase-related transport system, like the one proposed for disaccharides, needs to be considered to account for our findings.  相似文献   

19.
J Krieglstein  T Beck  A Seibert 《Life sciences》1986,39(24):2327-2334
The purpose of the present investigation was to examine the effects of an extract of Ginkgo biloba (EGB) on blood glucose levels, on local cerebral blood flow as well as on cerebral glucose concentration and consumption. The local cerebral blood flow (LCBF) was measured in conscious rats by means of the 14C-iodoantipyrine technique and local cerebral glucose utilization (LCGU) by 14C-2-deoxy-glucose autoradiography. EGB increased the LCBF in 39 analyzed, anatomically defined brain structures by 50 to 100 per cent. No influence of EGB on LCGU was demonstrable. However, EGB enhanced the blood glucose level dose-dependently. Substrates and metabolites of energy metabolism were measured in the cortex of the isolated rat brain perfused at constant rate and with 7 mmol/l glucose added to the perfusion medium. In these experiments EGB decreased the cortical glucose concentration without other substrate levels being changed. These results suggest that glucose uptake may be inhibited by EGB. It is argued that the effects of EGB on brain glucose concentration and blood flow may contribute to its protection of brain tissue against ischemic or hypoxic damage.  相似文献   

20.
Metabolic rhythms have been studied in six insulin-dependent diabetics during subcutaneous insulin therapy, and during control of blood glucose concentration by a glucose-controlled insulin infusion system (GCIIS). In none of the subjects was blood glucose concentration consistently within the normal range during subcutaneous insulin therapy. In contrast, blood glucose concentration was within the normal range after 3.5 h of insulin delivery by the glucose-controlled insulin infusion system and remained in the normal range for the following 8 h through lunch and dinner. Mean blood glucose concentration during this time ranged from 5.31 to 7.90 mM. Following normalisation of blood glucose concentration, blood lactate and pyruvate were similar with both the GCIIS and subcutaneous insulin therapy. Post-prandial lactate peaks were delayed with the GCIIS. Alanine levels were consistently higher during control with the GCIIS compared with subcutaneous therapy, while blood ketone body and plasma NEFA levels were lower, and the premeal peaks in the lipid metabolites were delayed. It is not possible to conclude that attainment of normoglycaemia with the present generation of glucose-controlled insulin infusion systems in insulin-dependent diabetics is accompanied by total normalisation of intermediary metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号