首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The slow outward current (IK2) recorded in crab muscle fibre using the double sucrose gap method decreases when high and maintained depolarizations are applied. This decrease corresponds to a true inactivation of the potassium conductance rather than to a shift in the reversal potential of the charge carrying ion following local accumulation.  相似文献   

2.
Voltage clamp experiments, which determine the kinetic parameters of calcium conductance of cardiac muscle, (d ,f , τ d and τ f ) are analyzed with a generally accepted expression for slow inward currentI s=g sdf (E-E R). Activation (d) and inactivation (f) reach the final valuesd andf with time constants τ d and τ f respectively. The analysis indicates that the measuredf agrees with the theoreticalf , but the measuredd differs from the theoreticald by a factor which depends on τ d . The peak tension can be made to correlate closely with the theoreticald after a correction factor is applied to the raw measurements of activation. It can be shown that experiments designed to measure τ f can also be used to determine τ d with greater accuracy.  相似文献   

3.
4.
Granule cells were dissociated from rat cerebella with a procedure that yields a 98% pure cell population. Potassium currents in these cells were studied using the patch-clamp technique. Depolarizing pulses of 10 mV step and 100 ms duration from a holding potential of –80 mV elicited two different potassium outward currents: a transient, low-voltage activated component and a long lasting, high-voltage activated component. At +30 mV, the total current reached an amplitude of 2 nA (mean value of 15 experiments). The reversal potential of the transient current, estimated by measuring tail currents, was –77 mV, close to that predicted by the Nernst equation. The transient current was half inactivated with a holding potential of –78 mV and completely inactivated with –50 mV or more positive holding potentials. Finally, the current decay could be fitted by the sum of two exponentials with time constants of about 20 and 250 ms.  相似文献   

5.
A calcium-dependent transient outward current in Xenopus laevis oocytes   总被引:40,自引:0,他引:40  
Membrane currents were investigated in Xenopus laevis oocytes under voltage clamp. Depolarizing pulses, given from a holding potential of about-100 mV, elicited a transient outward current when the membrane potential was made more positive than about-20 mV. As the potential was made increasingly positive the transient outward current first increased and then decreased. The amplitude of the transient current increased when the external Ca2+ concentration was raised; and the current was abolished by Mn2+. It appears that when the membrane is depolarized Ca2+ ions enter the oocyte and trigger an outward current, possibly by opening C1- channels.  相似文献   

6.
Raschke K 《Planta》2003,217(4):651-657
In previous investigations two anion conductances were discovered in guard-cell protoplasts: the quickly activating anion conductance (QUAC, R-type) and the slowly activating anion conductance (SLAC, S-type). In this investigation, effects of malate on the two anion conductances were tested in whole guard cells of Vicia faba L. by the use of the discontinuous single-electrode voltage-clamp method. Application of 1-s voltage ramps proved that QUAC displayed the malate shift of the activation threshold toward hyperpolarization also in complete guard cells. The sensitivity of SLAC to external malate was determined by responses to voltage pulses of 20 s duration at Cl- concentrations of 0.1, 3 or 50 mM. At no voltage were the currents measured at the end of the pulses in the presence and absence of malate significantly different from each other; the current-voltage relationship of SLAC appeared not to be affected by malate. However, in 32% of the cells exposed to malate, current activation in response to voltage steps occurred within 0.1 s, faster than was typical for SLAC, and activation was followed by inactivation with a half-time similar to 10 s: SLAC apparently had changed to QUAC. Simultaneously, the free-running membrane voltage depolarized at 0.1 mM Cl-, did not change at 3 mM Cl- and polarized at 50 mM Cl-, indicating that activation of QUAC increased the membrane conductance for anions and thereby drove the membrane voltage toward the equilibrium voltage of Cl-. The malate-induced changes were fully reversible at Cl- concentrations of 0.1 and 3 mM. These results reinforce the proposition that SLAC and QUAC represented two switching modes of the same anion channel (however, they do not suffice as proof); they also show that this interconvertibility can enable guard cells to control their membrane voltage rapidly.  相似文献   

7.
The effects of caffeine, ryanodine, and rapid cooling were tested on the depolarization-induced contraction and the apamin-insensitive slow outward current (Iso) of voltage-clamped (double mannitol gap) single frog muscle fibers. Subthreshold caffeine concentrations (0.5-2 mM) induced a monotonic increase in contractile and Iso amplitude. Whatever the concentration, the increase in contraction was roughly twice the one in current. Similar results were obtained upon rapid cooling (20-4 degrees C) in the presence of 0.5 mM caffeine. In the absence of external Na+ (choline-substituted) 10(-5) M ryanodine induced a delayed increase (approximately 30 min) in contraction and in current, shortly before the development of a drastic and irreversible contracture. Here again, the increase in contraction was twice that in current. In the presence of 5 mM tetraethylammonium (TEA) and (or) 25 nM charybdotoxin, 2 mM caffeine still induced a strong facilitating effect on contraction but the parallel increase in current was strongly reduced. The linear relationship between the increase in current and contractile amplitude has a slope approximately 0.5 (whatever the drug used to increase contractility); it is approximately 0.1 in the presence of TEA and (or) charybdotoxin. In conclusion, provided the changes in contractile amplitude are caused by parallel changes in depolarization-induced sarcoplasmic reticulum Ca2+ release, about 50% of the apamin-insensitive Iso is controlled by internal Ca2+ release. The main part of this current corresponds to the TEA- and charybdotoxin-sensitive component of Iso.  相似文献   

8.
The current of the outward K+ channel in the cell of horseradish treated with La3+ and the direct interaction between La3+ and the K+ channel protein were investigated using the whole-cell patch-clamp technique, molecular dynamics simulation, and quantum chemistry calculation methods. It was found for the first time that La3+ decreases the current of the K+ channel in the horseradish mesophyll cell. The decrease results from the formation of a coordination bond and hydrogen bond between La3+ and the K+ channel protein in the plasma membrane. The direct interaction destroys the native structure of the K+ channel protein, disturbing the function of the K+ channel protein in the cells. The results can provide the theoretical foundation for understanding the interaction between metal ions (especially high-valence metal ions) and the channel protein in organisms, including animal and plant cells.  相似文献   

9.
Studies on ion channel currents in freshly isolated murine B lymphocytes with the patch clamp technique revealed the presence of a non-selective anion channel of large conductance in inside-out (i/o) patches. This channel is characterized here according to its unitary conductance, ion selectivity, regulatory factors, distribution and kinetic behaviour. With a unitary conductance of 348 +/- 4.4 pS in a normal physiological ion gradient, it exhibited an indiscriminate selectivity to cations (Na+ and K+). Selectivity to chloride over sodium was established by substitution of high concentrations of NaCl (450 mM) in the bath (i/o patches), resulting in a selectivity ratio (PCl/PNa) of 33. Selectivity to chloride over potassium was confirmed in a similar manner by substitution of TEA-Cl for KCl, yielding a selectivity ratio (PCl/Pk) greater than 80. Conductance of aspartate through the channel demonstrated the non-selective nature of this anion channel. Voltage proved to be a regulatory factor but other influences on channel activity were also present, including the configuration of the patch (channel is inactive in cell attached patches), and the enhancement of activity at negative membrane voltages by previous pulsing. Intracellular levels of calcium (i/o patches) did not appear to control channel conductances or regulate kinetic activity. Kinetic behaviour of this channel was complex, with periods of bursting and flickering activity interspersed with prolonged closed/open intervals. Multiple subconductance states were also present. The complex properties and behaviour of this channel suggest a possible role in signal transduction in B cell activation.  相似文献   

10.
Mutations at many sites within the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel pore region result in changes in chloride conductance. Although chloride binding in the pore – as well as interactions between concurrently bound chloride ions – are thought to be important facets of the chloride permeation mechanism, little is known about the relationship between anion binding and chloride conductance. The present work presents a comprehensive investigation of a number of anion binding properties in different pore mutants with differential effects on chloride conductance. When multiple pore mutants are compared, conductance appears best correlated with the ability of anions to bind to the pore when it is already occupied by chloride ions. In contrast, conductance was not correlated with biophysical measures of anion:anion interactions inside the pore. Although these findings suggest anion binding is required for high conductance, mutations that strengthened anion binding had very little effect on conductance, especially at high chloride concentrations, suggesting that the wild-type CFTR pore is already close to saturated with chloride ions. These results are used to support a revised model of chloride permeation in CFTR in which the overall chloride occupancy of multiple loosely-defined chloride binding sites results in high chloride conductance through the pore.  相似文献   

11.
Isolated Ca currents in cultured dorsal root ganglion (DRG) cells were studied using the patch clamp technique. The currents persisted in the presence of 30 microM tetrodotoxin (TTX) or when external Na was replaced by choline. They were fully blocked by millimolar additions of Cd2+ and Ni2+ to the bath. Two components of an inward-going Ca current were observed. In 5 mM external Ca, a current of small amplitude, turned on already during steps changes to -60 mV membrane potential, leveled off at -30 mV to a value of approximately 0.2 nA. A second, larger current component, which resembled the previously described Ca current in other cells, appeared at more positive voltages (-20 to -10 mV) and had a maximum approximately 0 mV. The current component activated at the more negative membrane potentials showed the stronger dependence on external Ca. The presence of a time- and a voltage-dependent activation was indicated by the current's sigmoidal rise, which became faster with increased depolarization. Its tail currents were generally slower than those associated with the Ca currents of larger amplitude. From -60 mV holding potential, the maximum obtainable amplitude of the low depolarization-activated current was only one-tenth of that achieved from a holding potential of -90 mV. Voltage-dependent inactivation of this current component was fast compared with that of the other component. The properties of this low voltage-activated and fully inactivating Ca current suggest it is the same as the inward current that has been postulated in several central neurons (Llinas, R., and Y. Yarom, 1981, J. Physiol. (Lond.), 315:569-584), which produce depolarizing potential waves and burst-firing only when membrane hyperpolarization precedes.  相似文献   

12.
Abstract The cell membranes of the corpora allata of the cockroach Diploptera punctata contain voltage-dependent calcium channels. Depolarizing current injection into cells of the corpora allata in the presence of the calcium channel blockers, cadmium, cobalt or verapamil allows the production of multiple action potentials, as does treatment with the intracellular calcium chelator, BAPTA/AM. These results suggest that calcium currents are involved both in decreasing the excitability and in activating an outward current in cells of the corpora allata. Electrophysiological measurements also suggest a concomitant reduction in outward conductance following the multiple action potentials produced in the presence of the channel blockers or BAPTA/ AM. We hypothesize that the calcium current may play an important role in the regulation of intracellular calcium concentration and Juvenile Hormone biosynthesis.  相似文献   

13.
Summary Ionic conductances of rabbit osteoclasts were investigated using both whole-cell and cell-attached configurations of the patch-clamp recording technique. The predominant conductance found in these cells was an inwardly rectifying K+ conductance. Whole-cell currents showed an N-shaped current-voltage (I–13;V) relation with inward current activated at potentials negative to EK. When external K+ was varied, I-V curves shifted 53 mV/10-fold change in [K+]out, as predicted for a K+-selective channel. Inward current was blocked by Ba2+ and showed a time-dependent decline at negative potentials, which was reduced in Na+-free external solution. Inward single-channel currents were recorded in the cell-attached configuration. Single-channel currents were identified as inward-rectifier K+ channels based on the following observations: (i) Unitary I-V relations rectified, with only inward current resolved. (ii) Unitary conductance () was 31 pS when recorded in the cell-attached configuration with 140 mm K+ in the pipette and was found to be dependent on [K+]. (iii) Addition of Ba2+ to the pipette solution abolished single-channel events. We conclude that rabbit osteoclasts possess inwardly rectifying K+ channels which give rise to the inward current recorded at negative potentials in the whole-cell configuration. This inwardly rectifying K+ current may be responsible for setting the resting membrane potential and for dissipating electrical potential differences which arise from electrogenic transport of protons across the osteoclast ruffled border.This work was supported by The Arthritis Society and the Medical Research Council of Canada. M.E.M.K. was supported by a fellowship, S.J.D. a development Grant and S.M.S. a scholarship from the Medical Research Council. We thank Dr. Zu Gang Zheng for help with scanning microscopy.  相似文献   

14.
15.
Voltage-dependent membrane currents were studied in dissociated hepatocytes from chick, using the patch-clamp technique. All cells had voltage-dependent outward K+ currents; in 10% of the cells, a fast, transient, tetrodotoxin-sensitive Na+ current was identified. None of the cells had voltage-dependent inward Ca2+ currents. The K+ current activated at a membrane potential of about -10 mV, had a sigmoidal time course, and did not inactivate in 500 ms. The maximum outward conductance was 6.6 +/- 2.4 nS in 18 cells. The reversal potential, estimated from tail current measurements, shifted by 50 mV per 10-fold increase in the external K+ concentration. The current traces were fitted by n2 kinetics with voltage-dependent time constants. Omitting Ca2+ from the external bath or buffering the internal Ca2+ with EGTA did not alter the outward current, which shows that Ca2+-activated K+ currents were not present. 1-5 mM 4-aminopyridine, 0.5-2 mM BaCl2, and 0.1-1 mM CdCl2 reversibly inhibited the current. The block caused by Ba was voltage dependent. Single-channel currents were recorded in cell-attached and outside-out patches. The mean unitary conductance was 7 pS, and the channels displayed bursting kinetics. Thus, avian hepatocytes have a single type of K+ channel belonging to the delayed rectifier class of K+ channels.  相似文献   

16.
Early inactivation of the slow potassium conductance system (GK), responsible for the spike afterhyperpolarization (AHP) in spinal alpha motoneurones, has been introduced in a motoneurone model whose G K kinetics give rise to an exponentially decaying AHP conductance. After this modification, the model displays a plateau shaped time-course of the AHP conductance and a faster shortening of the first interval during repetitive firing induced by current steps of increasing intensities. Both features increase the resemblance between the model and the motoneurone behaviour. Comparison with real motoneurones also suggests that G K inactivation may be more developed in slow than in fast motoneurones.  相似文献   

17.
18.
Previously undescribed high conductance single anion channels from frog skeletal muscle sarcoplasmic reticulum (SR) were studied in native membrane using the "sarcoball" technique (Stein and Palade, 1988). Excised inside-out patches recorded in symmetrical 200 mM TrisCl show the conductance of the channel''s predominant state was 505 +/- 25 pS (n = 35). From reversal potentials, the Pcl/PK ratio was 45. The slope conductance vs. Cl- ion concentration curve saturates at 617 pS, with K0.5 estimated at 77 mM. The steady-state open probability (Po) vs. holding potential relationship produces a bell-shaped curve, with Po values reaching a maximum near 1.0 at 0 mV, and falling off to 0.05 at +/- 25 mV. Kinetic analysis of the voltage dependence reveals that while open time constants are decreased somewhat by increases in potential, the largest effect is an increase in long closed times. Despite the channel''s high conductance, it maintains a moderate selectivity for smaller anions, but will not pass larger anions such as gluconate, as determined by reversal-potential shifts. At least two substates different from the main open level are distinguishable. These properties are unlike those described for mitochondrial voltage- dependent anion channels or skeletal muscle surface membrane Cl channels and since SR Ca channels are present in equally high density in sarcoball patches, we propose these sarcoball anion channels originate from the SR. Preliminary experiments recording currents from frog SR anion channels fused into liposomes indicate that either biochemical isolation and/or alterations in lipid environment greatly decrease the channel''s voltage sensitivity. These results help underline the potential significance of using sarcoballs to study SR channels. The steep voltage sensitivity of the sarcoball anion channel suggests that it could be more actively involved in the regulation of Ca2+ transport by the SR.  相似文献   

19.
Osteoclasts are hematopoietic cells essential for bone resorption. To understand the process of osteoclastogenesis, we have developed a culture system that employs a stromal cell line, in which differentiation of osteoclasts from single embryonic stem (ES) cells occurs. This culture, which did not require any cell passaging or other manipulations, enabled us to investigate the temporal and spatial localization of the osteoclast lineage in the colonies formed from ES cells. Cells expressing tartrate-resistant acid phosphatase, a specific marker of the osteoclast lineage, were first detected on day 8, and subsequently became localized at the periphery of colonies and matured into multinucleated cells to resorb bone. Addition of macrophage colony-stimulating factor and osteoprotegerin-ligand, which are produced by stromal cells, promoted osteoclastogenesis in whole colonies, indicating that the location and maintenance of mature osteoclasts as well as the growth and differentiation of osteoclast precursors are regulated by these two factors.  相似文献   

20.
Summary The outward potassium current of rat cerebellar granule cells in culture was studied with the whole-cell patch-clamp method. Two voltage-dependent components were identified: a slow current, resembling the classical delayed rectifier current, and a fast component, similar to anI A-type current. The slow current was insensitive to 4-aminopyridine and independent of external Ca2+, but significantly inhibited by 3mM tetraethylammonium. The fast current was depressed by external 4-aminopyridine, with an ED50=0.7mM, and it was abolished by removal of divalent cations from the external medium. The sensitivity of the transient outward current to different divalent cations was investigated by equimolar substitution of Ca2+, Mn2+ and Mg2+. In 2.8mM Mn2+, the transient potassium conductance was comparable to that in 2.8mM Ca2+, while in 2.8mM Mg2+ the transient component was drastically reduced, as in the absence of any divalent cations. However, when Ca2+ was present, Mg2+ up to 5mM had no effect. The transient current increased with increasing concentrations of external Ca2+, [Ca2+] o , and the maximum conductancevs. [Ca2+] o curve could be approximated by a one-site model. In addition, the current recorded with 5.5mM BAPTA in the intracellular solution was not different from that recorded in the absence of any Ca2+ buffer. These results suggest that divalent cations modulate the potassium channel interacting with a site on the external side of the cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号