首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding of how the plant cell walls of different plant species respond to pretreatment can help improve saccharification in bioconversion processes. Here, we studied the chemical and structural modifications in lignin and hemicellulose in hydrothermally pretreated poplar and wheat straw using wet chemistry and 2D heteronuclear single quantum coherence nuclear magnetic resonance (NMR) and their effects on cellulose conversion. Increased pretreatment severity reduced the levels of β─O─4 linkages with concomitant relatively increased levels of β─5 and β─β structures in the NMR spectra. β─5 structures appeared at medium and high severities for wheat straw while only β─β structures were observed at all pretreatment severities for poplar. These structural differences accounted for the differences in cellulose conversion for these biomasses at different severities. Changes in the hemicellulose component include a complete removal of arabinosyl and 4-O-methyl glucuronosyl substituents at low and medium pretreatment severities while acetyl groups were found to be relatively resistant toward hydrothermal pretreatment. This illustrates the importance of these groups, rather than xylan content, in the detrimental role of xylan in cellulose saccharification and helps explain the higher poplar recalcitrance compared to wheat straw. The results point toward the need for both enzyme preparation development and pretreatment technologies to target specific plant species.  相似文献   

2.
The efficient degradation of complex xylans needs collaboration of many xylan degrading enzymes. Assays for xylan degrading activities based on reducing sugars or PNP substrates are not indicative for the presence of enzymes able to degrade complex xylans: They do not provide insight into the possible presence of xylanase-accessory enzymes within enzyme mixtures. A new screening method is described, by which specific xylan modifying enzymes can be detected.Fermentation supernatants of 78 different fungal soil isolates grown on wheat straw were analyzed by HPLC and MS. This strategy is powerful in recognizing xylanases, arabinoxylan hydrolases, acetyl xylan esterases and glucuronidases.No fungus produced all enzymes necessary to totally degrade the substrates tested. Some fungi produce high levels of xylanase active against linear xylan, but are unable to degrade complex xylans. Other fungi producing relative low levels of xylanase secrete many useful accessory enzyme component(s).  相似文献   

3.
Cellulose and wheat straw degradation by Ruminococcus albus was monitored using NMR spectroscopy. In situ solid-state (13)C-cross-polarization magic angle spinning NMR was used to monitor the modification of the composition and structure of cellulose and (13)C-enriched wheat straw during the growth of the bacterium on these substrates. In cellulose, amorphous regions were not preferentially degraded relative to crystalline areas by R. albus. Cellulose and hemicelluloses were also degraded at the same rate in wheat straw. Liquid state two-dimensional NMR experiments were used to analyse in detail the sugars released in the culture medium, and the integration of NMR signals enabled their quantification at various times of culture. The results showed glucose and cellodextrin accumulation in the medium of cellulose cultures; the cellodextrins were mainly cellotriose and accumulated to up to 2 mm after 4 days. In the wheat straw cultures, xylose was the main soluble sugar detected (1.4 mm); arabinose and glucose were also found, together with some oligosaccharides liberated from hemicellulose hydrolysis, but to a much lesser extent. No cellodextrins were detected. The results indicate that this strain of R. albus is unable to use glucose, xylose and arabinose for growth, but utilizes efficiently xylooligosaccharides. R. albus 20 appears to be less efficient than Fibrobacter succinogenes S85 for the degradation of wheat straw.  相似文献   

4.
The activities of cellulolytic and xylanolytic enzymes produced by an anaerobic fungus (R1) which resembled Neocallimastix sp. were investigated. Carboxymethylcellulase (CMCase), cellobiase, and filter paper (FPase) activities had pH optima of 6.0, 5.5, and 6.0, respectively. CMCase and cellobiase activities both had a temperature optimum of 50 degrees C, whereas FPase had an optimum of 45 degrees C. The pH and temperature optima for xylanase activity were pH 6.0 and 50 degrees C, respectively. Growth of the fungus on wheat straw, wheat straw holocellulose, or cellulose resulted in substantial colonization, with at least 43 to 58% losses in substrate dry matter and accumulation of comparable amounts of formate. This end product was correlated to apparent loss of substrate dry weight and could be used as an indicator of fungal growth. Milling of wheat straw did not enhance the rate or extent of substrate degradation. Growth of the R1 isolate on the above substrates or xylan also resulted in accumulation of high levels of xylanase activity and lower cellulase activities. Of the cellulases, CMCase was the most active and was associated with either low or trace amounts of cellobiase and FPase activities. During growth on xylan, reducing sugars, including arabinose and xylose, rapidly accumulated in the medium. Xylose and other reducing sugars, but not arabinose, were subsequently used for growth. Reducing sugars also accumulated, but not as rapidly, when the fungus was grown on wheat straw, wheat straw holocellulose, or cellulose. Xylanase activities detected during growth of R1 on media containing glucose, xylose, or cellobiose suggested that enzyme production was constitutive.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Combining biological pretreatment with thermal processing may offer an alternative strategy for efficient conversion of lignocellulosic biomass into fuels and chemicals. The thermal decomposition kinetics of biologically pretreated wheat straw by Phanerochaete chrysosporium was investigated in this study using thermogravimetry (TG) - deconvoluted thermogravimetry (DTG) techniques and the Friedman method. This study revealed that biological pretreatment reduced the thermal degradation temperature of the biomass significantly. Relying on the thermal behavior of the biologically pretreated wheat straw, we proposed two biomass degradation phases during the biological degradation of wheat straw. The first phase of biodegradation (within 10 days of biological pretreatment) improved the efficiency of pyrolysis by reducing the temperature demand. In the second phase (after 10 days), although the efficiency of pyrolysis displayed the similar trend as the first phase, it showed a significant increase in activation energy demand. This process is greatly influenced by the residual lignin and cellulose ratios in the biomass. These experimental results will be useful in developing a biological pretreatment based thermochemical conversion process for lignocellulosic biomass.  相似文献   

6.
Wan C  Zhou Y  Li Y 《Bioresource technology》2011,102(10):6254-6259
Soybean straw was pretreated with either liquid hot water (LHW) (170-210 °C for 3-10 min) or alkaline soaking (4-40 g NaOH/100 g dry straw) at room temperature to evaluate the effects on cellulose digestibility. Nearly 100% cellulose was recovered in pretreated solids for both pretreatment methods. For LHW pretreatment, xylan dissolution from the raw material increased with pretreatment temperature and time. Cellulose digestibility was correlated with xylan dissolution. A maximal glucose yield of 70.76%, corresponding to 80% xylan removal, was obtained with soybean straw pretreated at 210 °C for 10 min. NaOH soaking at ambient conditions removed xylan up to 46.37% and the subsequent glucose yield of pretreated solids reached up to 64.55%. Our results indicated LHW pretreatment was more effective than NaOH soaking for improving cellulose digestibility of soybean straw.  相似文献   

7.
Different agricultural wastes, namely tobacco stalk (TS), cotton stalk (CS), sunflower stalk (SS), and wheat straw (WS), were used for the production of xylooligosaccharide (XO). XO production was performed by acid hydrolysis of xylan, which was obtained by alkali extraction from these agricultural wastes. The major component of these agricultural wastes was determined as cellulose (30-42%), followed by xylan (20%) and lignin (20-27%). Xylans from these wastes had mainly xylose (85-96%) with small amount of glucose, while wheat straw xylan contained also arabinose. The best xylan conversion into XOs was achieved with 0.25 M H2SO4 with 30-min reaction time. Under these conditions, the XO yield was between 8% and 13%. The yield of XOs depends on both acid concentration and hydrolysis time, but the yield of monosaccharide depends on the structure and composition of xylan besides acid concentration and the time. The more branched xylan, WSX, gave the highest monosaccharide (∼16%) and furfural (∼49 mg/100 g xylan) yield. This research showed that all xylans from selected agricultural wastes generated XOs with similar profiles, and these oligosaccharides could be used as functional food ingredients or soluble substrates for xylanases.  相似文献   

8.
Recombinant xylanase preparations from Nonomuraea flexuosa (Nf Xyn, GH11) and Thermoascus aurantiacus (Ta Xyn, GH10) were evaluated for their abilities to hydrolyze hydrothermally pretreated wheat straw. The GH family 10 enzyme Ta Xyn was clearly more efficient in solubilizing xylan from pretreated wheat straw. Improvement of the hydrolysis of hydrothermally pretreated wheat straw by addition of the thermostable xylanase preparations to thermostable cellulases was evaluated. Clear synergistic enhancement of hydrolysis of cellulose was observed when cellulases were supplemented even with a low amount of pure xylanases. Xylobiose was the main hydrolysis product from xylan. It was found that the hydrolysis of cellulose increased nearly linearly with xylan removal during the enzymatic hydrolysis. The results also showed that the xylanase preparation from T. aurantiacus, belonging to GH family 10 always showed better hydrolytic capacity of solubilizing xylan and acting synergistically with thermostable cellulases in the hydrolysis of hydrothermally pretreated wheat straw.  相似文献   

9.
The activities of cellulolytic and xylanolytic enzymes produced by an anaerobic fungus (R1) which resembled Neocallimastix sp. were investigated. Carboxymethylcellulase (CMCase), cellobiase, and filter paper (FPase) activities had pH optima of 6.0, 5.5, and 6.0, respectively. CMCase and cellobiase activities both had a temperature optimum of 50 degrees C, whereas FPase had an optimum of 45 degrees C. The pH and temperature optima for xylanase activity were pH 6.0 and 50 degrees C, respectively. Growth of the fungus on wheat straw, wheat straw holocellulose, or cellulose resulted in substantial colonization, with at least 43 to 58% losses in substrate dry matter and accumulation of comparable amounts of formate. This end product was correlated to apparent loss of substrate dry weight and could be used as an indicator of fungal growth. Milling of wheat straw did not enhance the rate or extent of substrate degradation. Growth of the R1 isolate on the above substrates or xylan also resulted in accumulation of high levels of xylanase activity and lower cellulase activities. Of the cellulases, CMCase was the most active and was associated with either low or trace amounts of cellobiase and FPase activities. During growth on xylan, reducing sugars, including arabinose and xylose, rapidly accumulated in the medium. Xylose and other reducing sugars, but not arabinose, were subsequently used for growth. Reducing sugars also accumulated, but not as rapidly, when the fungus was grown on wheat straw, wheat straw holocellulose, or cellulose. Xylanase activities detected during growth of R1 on media containing glucose, xylose, or cellobiose suggested that enzyme production was constitutive.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Untreated and urea-treated straw and straw fractions of seven rice varieties from three cultivation seasons have been evaluated on their DM, OM loss and degradation characteristics from in sacco disappearance and in vitro gas production measurements. Drying temperatures from 45°C to 100°C did not seem to influence the degradability of urea-treated rice straw, whereas urea-treated straw dried at freezing temperatures (−35°C) gave slightly higher degradability than higher temperatures. Untreated early season rice straw showed higher degradability than straw of middle and later season rice. There was a significant increase in the degradation of straw after urea treatment, and greatest for late and middle season rice straw. On average, urea-treatment of rice straw increased the DM and OM in sacco losses after 48 h of incubation (48 h) by 24.0% and 30.7%, respectively. In order to study the kinetics of the degradation of fibre fractions, the disappearance in sacco was also estimated for the loss of hemicellulose, cellulose and extractable biogenic silica (EBSi). There was a great variation in the content of silica between varieties. Rice straw degradation seemed to be related to the biogenic silica content (acid detergent insoluble silica (ADISi)). Urea treatment increased the extraction of biogenic silica and hence increased the degradation of hemicellulose and cellulose. The improvement in sacco disappearance of cellulose due to urea treatment was 36.8%, 19.5% and 5.3% for late, middle, and early rice straw, respectively. The degradability was higher for the stem than for the leaf blades and leaf sheaths. The response to urea treatment, however, was higher for leaf sheaths and leaf blades than for the stems, evening out differences in degradability. Urea treatment tended to increase the production of acetic acid whereas there was no effect on propionic and butyric acid production.  相似文献   

11.
Immunolabeling can be used to locate plant cell wall carbohydrates or other components to specific cell types or to specific regions of the wall. Some antibodies against xylans exist; however, many partly react with the xylan backbone and thus provide limited information on the type of substituents present in various xylans. We have produced a monoclonal antibody which specifically recognizes glucopyranosyl uronic acid (GlcA), or its 4-O-methyl ether (meGlcA), substituents in xylan and has no cross-reactivity with linear or arabinofuranosyl-substituted xylans. The UX1 antibody binds most strongly to (me)GlcA substitutions at the non-reducing ends of xylan chains, but has a low cross-reactivity with internal substitutions as well, at least on oligosaccharides. The antibody labeled plant cell walls from both mono- and dicotyledons, but in most tissues an alkaline pretreatment was needed for antibody binding. The treatment removed acetyl groups from xylan, indicating that the vicinity of glucuronic acid substituents is also acetylated. The novel labeling patterns observed in the xylem of tree species suggested that differences within the cell wall exist both in acetylation degree and in glucuronic acid content.  相似文献   

12.
Specific oligonucleotide probes targeted to sites on the 16S rRNA of Ruminococcus albus 8, Ruminococcus flavefaciens FD-1, and Fibrobacter succinogenes S85 and a domain Bacteria probe were used to study bacterial interactions during the fermentation of cellulose and alkaline hydrogen peroxide-treated wheat straw in monocultures, dicultures, and tricultures. Results showed that R. albus 8 inhibited the growth of R. flavefaciens FD-1 when grown as a diculture with cellulose or alkaline hydrogen peroxide-treated wheat straw as the carbon source. In dicultures containing R. albus 8 and F. succinogenes S85 grown on cellulose or alkaline hydrogen peroxide-treated wheat straw, competition was not detected. R. flavefaciens FD-1 outcompeted F. succinogenes S85 when cellulose was used as the carbon source. In tricultures with cellulose as the carbon source, R. flavefaciens FD-1 was inhibited, R. albus 8 appeared to dominate during the early phase of degradation (12 to 48 h), while F. succinogenes S85 became predominant during the later phase of degradation (60 to 70 h). When alkaline hydrogen peroxide-treated wheat straw was used as a growth substrate, F. succinogenes S85 showed better growth than either R. albus 8 or R. flavefaciens FD-1. However, R. flavefaciens FD-1 was present in small numbers throughout the incubation period, unlike the growth patterns when cellulose was the carbon source.  相似文献   

13.
Wheat straw degradation by Fibrobacter succinogenes was monitored by nuclear magnetic resonance (NMR) spectroscopy and chemolytic methods to investigate the activity of an entire fibrolytic system on an intact complex substrate. In situ solid-state NMR with 13C cross-polarization magic angle spinning was used to monitor the modification of the composition and structure of lignocellulosic fibers (of 13C-enriched wheat straw) during the growth of bacteria on this substrate. There was no preferential degradation either of amorphous regions of cellulose versus crystalline regions or of cellulose versus hemicelluloses in wheat straw. This suggests either a simultaneous degradation of the amorphous and crystalline parts of cellulose and of cellulose and hemicelluloses by the enzymes or degradation at the surface at a molecular scale that cannot be detected by NMR. Liquid-state two-dimensional NMR experiments and chemolytic methods were used to analyze in detail the various sugars released into the culture medium. An integration of NMR signals enabled the quantification of oligosaccharides produced from wheat straw at various times of culture and showed the sequential activities of some of the fibrolytic enzymes of F. succinogenes S85 on wheat straw. In particular, acetylxylan esterase appeared to be more active than arabinofuranosidase, which was more active than alpha-glucuronidase. Finally, cellodextrins did not accumulate to a great extent in the culture medium.  相似文献   

14.
Dilute acid as well as water only (hydrothermal) pretreatments often lead to a significant hemicellulose loss to soluble furans and insoluble degradation products, collectively termed as chars and/or pseudo‐lignin. In order to understand the factors contributing to reducing sugar yields from pretreated biomass and the possible influence of hemicellulose derived pseudo‐lignin on cellulose conversion at the moderate to low enzyme loadings necessary for favorable economics, dilute acid pretreatment of Avicel cellulose alone and mixed with beechwood xylan or xylose was performed at various severities. Following pretreatment, the solids were enzymatically hydrolyzed and characterized for chemical composition and physical properties by NMR, FT‐IR, and SEM imaging. It was found that hemicelluloses (xylan) derived‐pseudo‐lignin was formed at even moderate severities and that these insoluble degradation products can significantly retard cellulose hydrolysis. Furthermore, although low severity (CSF ~ 1.94) dilute acid pretreatment of a xylan–Avicel mixture hydrolyzed most of the xylan (98%) and produced negligible amounts of pseudo‐lignin, enzymatic conversion of cellulose dropped significantly (>25%) compared to cellulose pretreated alone at the same conditions. The drop in cellulose conversion was higher than realized for cellulase inhibition by xylooligomers reported previously. Plausible mechanisms are discussed to explain the observed reductions in cellulose conversions. Biotechnol. Bioeng. 2013; 110: 737–753. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
In this study, raw corn stover was subjected to dilute acid pretreatments over a range of severities under conditions similar to those identified by the National Renewable Energy Laboratory (NREL) in their techno-economic analysis of biochemical conversion of corn stover to ethanol. The pretreated corn stover then underwent enzymatic hydrolysis with yields above 70?% at moderate enzyme loading conditions. The enzyme exhausted lignin residues were characterized by (31)P NMR spectroscopy and functional moieties quantified and correlated to enzymatic hydrolysis yields. Results from this study indicated that both xylan solubilization and lignin degradation are important for improving the enzyme accessibility and digestibility of dilute acid pretreated corn stover. At lower pretreatment temperatures, there is a good correlation between xylan solubilization and cellulose accessibility. At higher pretreatment temperatures, lignin degradation correlated better with cellulose accessibility, represented by the increase in phenolic groups. During acid pretreatment, the ratio of syringyl/guaiacyl functional groups also gradually changed from less than 1 to greater than 1 with the increase in pretreatment temperature. This implies that more syringyl units are released from lignin depolymerization of aryl ether linkages than guaiacyl units. The condensed phenolic units are also correlated with the increase in pretreatment temperature up to 180?°C, beyond which point condensation reactions may overtake the hydrolysis of aryl ether linkages as the dominant reactions of lignin, thus leading to decreased cellulose accessibility.  相似文献   

16.
Wheat straw degradation by Fibrobacter succinogenes was monitored by nuclear magnetic resonance (NMR) spectroscopy and chemolytic methods to investigate the activity of an entire fibrolytic system on an intact complex substrate. In situ solid-state NMR with 13C cross-polarization magic angle spinning was used to monitor the modification of the composition and structure of lignocellulosic fibers (of 13C-enriched wheat straw) during the growth of bacteria on this substrate. There was no preferential degradation either of amorphous regions of cellulose versus crystalline regions or of cellulose versus hemicelluloses in wheat straw. This suggests either a simultaneous degradation of the amorphous and crystalline parts of cellulose and of cellulose and hemicelluloses by the enzymes or degradation at the surface at a molecular scale that cannot be detected by NMR. Liquid-state two-dimensional NMR experiments and chemolytic methods were used to analyze in detail the various sugars released into the culture medium. An integration of NMR signals enabled the quantification of oligosaccharides produced from wheat straw at various times of culture and showed the sequential activities of some of the fibrolytic enzymes of F. succinogenes S85 on wheat straw. In particular, acetylxylan esterase appeared to be more active than arabinofuranosidase, which was more active than α-glucuronidase. Finally, cellodextrins did not accumulate to a great extent in the culture medium.  相似文献   

17.
A xylanase purified from the thermophilic fungus Thermomyces lanuginosus CBS 288.54 was characterized and its potential application in wheat straw pulp biobleaching was evaluated. Xylanase was purified 33.6-fold to homogeneity with a recovery yield of 21.5%. It appeared as a single protein band on SDS-PAGE gel with a molecular mass of approx. 26.2 kDa. The purified xylanase had a neutral optimum pH ranging from pH 7.0 to pH 7.5, and it was also stable over pH 6.5-10.0. The optimal temperature of the xylanase was 70-75 degrees C and it was stable up to 65 degrees C. The purified xylanase was found to be not glycosylated. The xylanase was highly specific towards xylan, but did not exhibit other enzyme activity. Apparent Km values of the xylanase for birchwood, beechwood, soluble oat-spelt and insoluble oat-spelt xylans were 4.0, 4.7, 2.0 and 23.4 mg ml-1, respectively. The potential application of the xylanase was further evaluated in biobleaching of wheat straw pulp. The brightness of bleached pulps from the xylanase pretreated wheat straw pulp was 1.8-7.79% ISO higher than that of the control, and showed slightly lower tensile index and breaking length than the control. Although chlorine consumption was reduced by 28.3% during bleaching, the xylanase pretreated pulp (15 U g-1 pulp) still maintained its brightness at the control level. Besides, pretreatment of pulp with the xylanase was also effective at an alkaline pH as high as pH 10.0.  相似文献   

18.
Commercial cellulase preparations are potentially effective for processing biomass feedstocks in order to obtain bioethanol. In plant cell walls, cellulose fibrils occur in close association with xylans (monocotyls) or xyloglucans (dicotyls). The enzymatic conversion of cellulose/xylans is a complex process involving the concerted action of exo/endocellulases and cellobiases yielding glucose and xylanases yielding xylooligomers and xylose. An overview of commonly measured cellulase-, cellobiase-, and xylanase-activity, using respectively filter paper, cellobiose, and AZCL-dyed xylan as a substrate of 14 commercially available enzyme preparations from several suppliers is presented. In addition to these standardized tests, the enzyme-efficiency of degrading native substrates was studied. Grass and wheat bran were fractionated into a water unsoluble fraction (WUS), which was free of oligosaccharides and starch. Additionally, cellulose- and xylan-rich fractions were prepared by alkaline extraction of the WUS and were enzymatically digested. Hereby, the capability of cellulose and xylan conversion of the commercial enzyme preparations tested was measured. The results obtained showed that there was a large difference in the performance of the fourteen enzyme samples. Comparing all results, it was concluded that the choice of an enzyme preparation is more dependent on the characteristics of the substrate rather than on standard enzyme-activities measured.  相似文献   

19.
Fermentation of xylans by Butyrivibrio fibrisolvens and other ruminal bacteria   总被引:11,自引:0,他引:11  
The ability of Butyrivibrio fibrisolvens and other ruminal bacteria (6 species, 18 strains) to ferment a crude xylan from wheat straw or to ferment xylans from larchwood or oat spelts was studied. Liquid cultures were monitored for carbohydrate utilization, cell growth (protein), and fermentation acid production. B. fibrisolvens 49, H17c, AcTF2, and D1 grew almost as well on one or more of the xylans as they did on cellobiose-maltose. B. fibrisolvens 12, R28, A38, X10C34, ARD22a, and X6C61 exhibited moderate growth on xylans. Partial fermentation of xylans was observed with Bacteroides ruminicola B14, Bacteroides succinogenes S85, Ruminococcus albus 7, Ruminococcus flavefaciens C94 and FD1, and Succinivibrio dextrinosolvens 22B. All xylans tested appeared to have a small fraction of carbohydrate that supported low levels of growth of nonxylanolytic strains such as Selenomonas ruminantium HD4. Compared to growth on hexoses, the same array of fermentation acids was produced upon growth on xylans for most strains; however, reduced lactate levels were observed for B. fibrisolvens 49 and Selenomonas ruminantium HD4. Measurements of enzyme activities of B. fibrisolvens AcTF2, 49, H17c, and D1 indicated that the xylobiase activities were cell associated and that the xylanase activities were predominantly associated with the culture fluid. The pattern of expression of these enzymes varied both between strains and between the carbon sources on which the strains were grown.  相似文献   

20.
R B Hespell  R Wolf    R J Bothast 《Applied microbiology》1987,53(12):2849-2853
The ability of Butyrivibrio fibrisolvens and other ruminal bacteria (6 species, 18 strains) to ferment a crude xylan from wheat straw or to ferment xylans from larchwood or oat spelts was studied. Liquid cultures were monitored for carbohydrate utilization, cell growth (protein), and fermentation acid production. B. fibrisolvens 49, H17c, AcTF2, and D1 grew almost as well on one or more of the xylans as they did on cellobiose-maltose. B. fibrisolvens 12, R28, A38, X10C34, ARD22a, and X6C61 exhibited moderate growth on xylans. Partial fermentation of xylans was observed with Bacteroides ruminicola B14, Bacteroides succinogenes S85, Ruminococcus albus 7, Ruminococcus flavefaciens C94 and FD1, and Succinivibrio dextrinosolvens 22B. All xylans tested appeared to have a small fraction of carbohydrate that supported low levels of growth of nonxylanolytic strains such as Selenomonas ruminantium HD4. Compared to growth on hexoses, the same array of fermentation acids was produced upon growth on xylans for most strains; however, reduced lactate levels were observed for B. fibrisolvens 49 and Selenomonas ruminantium HD4. Measurements of enzyme activities of B. fibrisolvens AcTF2, 49, H17c, and D1 indicated that the xylobiase activities were cell associated and that the xylanase activities were predominantly associated with the culture fluid. The pattern of expression of these enzymes varied both between strains and between the carbon sources on which the strains were grown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号