首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nef gene of the pathogenic simian immunodeficiency virus (SIV) 239 clone was replaced with primary human immunodeficiency virus type 1 (HIV-1) nef alleles to investigate whether HIV-1 Nef can substitute for SIV Nef in vivo. Initially, two rhesus macaques were infected with the chimeric viruses (Nef-SHIVs). Most of the nef alleles obtained from both animals predicted intact open reading frames. Furthermore, forms containing upstream nucleotide substitutions that enhanced expression of the inserted gene became predominant. One animal maintained high viral loads and slowly progressed to immunodeficiency. nef long terminal repeat sequences amplified from this animal were used to generate a second generation of Nef-SHIVs. Two macaques, which were subsequently infected with a mixture of cloned chimeric viruses, showed high viral loads and progressed to fatal immunodeficiency. Five macaques received a single molecular clone, named SHIV-40K6. The SHIV-40K6 nef allele was active in CD4 and class I major histocompatibility complex downregulation and enhanced viral infectivity and replication. Notably, all of the macaques inoculated with SHIV-40K6 showed high levels of viral replication early in infection. During later stages, however, the course of infection was variable. Three animals maintained high viral loads and developed immunodeficiency. Of the remaining two macaques, which showed decreasing viral loads after the acute phase of infection, only one efficiently controlled viral replication and remained asymptomatic during 1.5 years of follow-up. The other animal showed an increasing viral load and developed signs of progressive infection during later stages. Our data demonstrate that HIV-1 nef can, to a large extent, functionally replace SIVmac nef in vivo.  相似文献   

2.
Adult rhesus macaques infected with nef-defective simian immunodeficiency virus (SIV) exhibit extremely low levels of steady-state virus replication, do not succumb to immunodeficiency disease, and are protected from experimental challenge with pathogenic isolates of SIV. Similarly, rare humans found to be infected with nef-defective human immunodeficiency virus type 1 (HIV-1) variants display exceptionally low viral burdens and do not show evidence of disease progression after many years of infection. HIV-1 Nef induces the rapid endocytosis and lysosomal degradation of cell surface CD4 and enhances virus infectivity in primary human T cells and macrophages. Although expression of SIV Nef also leads to down-modulation of cell surface CD4 levels, no evidence for SIV Nef-induced enhancement of virus infectivity was observed in earlier studies. Thus, it remains unclear whether fundamental differences exist between the activities of HIV-1 and SIV Nef. To establish more clearly whether the SIV and HIV-1 nef gene products are functionally analogous, we compared the replication kinetics and infectivity of variants of SIVmac239 that either do (SIVnef+) or do not (SIV delta nef) encode intact nef gene products. SIVnef+ replicates more rapidly than nef-defective viruses in both human and rhesus peripheral blood mononuclear cells (PBMCs). As previously described for HIV-1 Nef, SIV Nef also enhances virus infectivity within each cycle of virus replication. As a strategy for evaluating the in vivo contribution of HIV-1 nef alleles and long terminal repeat regulatory sequences to the pathogenesis of immunodeficiency disease, we constructed SIV-HIV chimeras in which the nef coding and U3 regulatory regions of SIVmac239 were replaced by the corresponding regions from HIV-1/R73 (SIVR7nef+). SIVR7nef+ displays enhanced infectivity and accelerated replication kinetics in primary human and rhesus PBMC infections compared to its nef-defective counterpart. Converse chimeras, containing SIV Nef in an HIV-1 background (R7SIVnef+) also exhibit greater infectivity than matched nef-defective viruses (R7SIV delta nef). These data indicate that SIV Nef, like that of HIV-1, does enhance virus replication in primary cells in tissue culture and that HIV-1 and SIV Nef are functionally interchangeable in the context of both HIV-1 and SIV.  相似文献   

3.
A molecular clone of the simian immunodeficiency virus SIVSMM isolate PBj14, lacking the ATG initiation codon for Rev protein (PBj-1.5), did not produce virus or large unspliced or singly spliced viral RNA upon transfection of HeLa cells. Low but significant levels of virus and large viral RNA production were observed upon transfection of PBj-1.5 into HeLa Rev cells expressing the rev gene of human immunodeficiency virus type 1. Furthermore, abundant virus and large viral RNA production occurred upon transfection of PBj-1.5 into HeLa Rex cells expressing the rex gene of human T-cell leukemia virus type I. Virus produced from HeLa Rex and HeLa Rev transfections was infectious, produced large amounts of virus, and was cytopathic for Rex-producing MT-4 cells. In contrast, no or only low levels of virus production were observed upon infection of H9 cells. These studies show that a defective SIV rev gene can be transcomplemented with human immunodeficiency virus type 1 Rev and with high efficiency by human T-cell leukemia virus type I Rex, and they suggest that rev-defective viruses could serve as a source for production of a live attenuated SIV vaccine.  相似文献   

4.
The nef genes of human immunodeficiency virus and simian immunodeficiency virus (SIV) overlap about 80% of the U3 region of the 3' long terminal repeat (LTR) and contain several essential cis-acting elements (here referred to as the TPI region): a T-rich region, the polypurine tract, and attachment (att) sequences required for integration. We inactivated the TPI region in the nef reading frame of the pathogenic SIVmac239 clone (239wt) by 13 silent point mutations. To restore viral infectivity, intact cis-regulatory elements were inserted just downstream of the mutated nef gene. The resulting SIV genome contains U3 regions that are 384 bp shorter than the 517-bp 239wt U3 region. Overall, elimination of the duplicated Nef coding sequences truncates the proviral genome by 350 bp. Nonetheless, it contains all known coding sequences and cis-acting elements. The TPI mutant virus expressed functional Nef and replicated like 239wt in all cell culture assays and in vivo in rhesus macaques. Notably, these SIVmac constructs allow us to study Nef function in the context of replication-competent viruses without the restrictions of overlapping LTR sequences and important cis-acting elements. The genomes of all known primate lentiviruses contain a large overlap between nef and the U3 region. We demonstrate that this conserved genomic organization is not obligatory for efficient viral replication and pathogenicity.  相似文献   

5.
The role of the simian immunodeficiency virus (SIV) nef gene in viral replication was investigated in several tissue culture systems. SIVmac1A11 is a molecularly cloned virus which replicates in both peripheral blood mononuclear cells (PBMC) and macrophages, although no disease is observed in infected rhesus macaques. In this report, we demonstrate that SIVmac1A11 contains a full open reading frame for nef which specifies a 37-kDa protein. To investigate the effects of nef on viral replication, a 70-bp deletion was introduced into the nef gene of SIVmac1A11. Analysis of infected cell extracts by immunoblotting revealed that both SIVmac1A11 and nef deletion virus SIVmac1A11 delta nef produced the same viral proteins, except that Nef was absent in the mutant virus. The deletion mutation did not affect viral replication in PBMC, in monocyte-derived and alveolar macrophages obtained from rhesus macaques, and in human cell lines HUT-78 and CEMx-174. In addition, SIVmac1A11 and SIVmac1A11 delta nef exhibited similar patterns of cytopathologic changes and ultrastructural appearances in infected cells. SIVmac1A11 and SIVmac1A11 delta nef did not infect human tumor macrophage cell line U937, GCT, THP-1, or HL-60 cells, although virus was produced after these cells were transfected with either wild-type or nef mutant viral DNA. Similar levels of virus were recovered from U937 and THP-1 cells transfected with mutant and parental proviral DNAs. In transient expression assays in a T-cell line and a macrophage line, the nef protein of SIVmac1A11 did not significantly suppress or enhance expression of the chloramphenicol acetyltransferase reporter gene linked to the SIVmac long terminal repeat. Thus, abrogation of nef did not affect several in vitro properties of SIVmac1A11, including patterns of viral infection in rhesus PBMC, rhesus macrophages, or human T-cell lines.  相似文献   

6.
The replicative, cytopathic, and antigenic properties of simian immunodeficiency virus (SIV) variants influence its replication efficiency in vivo. To further define the viral properties and determinants that may be important for high-level replication in vivo and progression to AIDS, we compared a minimally pathogenic SIVmne molecular clone with two highly pathogenic variants cloned from late stages of infection. Both variants had evolved greater infectivity than the parental clone due to mutations in nef. Interestingly, a pol determinant in one of the highly pathogenic variants also contributed to its increased infectivity. Furthermore, because replication in vivo may also be influenced by the ability of a virus to evade the cellular immune response of the host, we examined whether the variants were more capable of downregulating surface expression of class I major histocompatibility complex (MHC). Decreased MHC class I expression was not observed in cells infected with any of the viruses. Furthermore, the Nef proteins of the highly pathogenic variants only slightly reduced surface MHC class I expression in transfected cells, although they efficiently downregulated CD4. Together, these data demonstrate that mutations which can enhance viral infectivity, as well as CD4 downregulation, may be important for efficient replication of SIV in the host. However, Nef-mediated reduction of MHC class I expression does not appear to be critical for the increased in vivo replicative ability of highly pathogenic late variants.  相似文献   

7.
We have previously shown that human immunodeficiency virus type 1 (HIV-1) virions which have their own nef gene deleted and are trans complemented to contain HIV-2 or simian immunodeficiency virus (SIV) Nef become resistant to treatment with cyclosporin A. To expand and confirm these studies, we have tested an HIV-1 isolate in which the HIV-1 nef gene has been replaced by the nef gene from SIV in a multiround infectivity assay using more physiologically relevant cell types. Our results confirm that HIV-1 virions that contain SIV nef can replicate in a cyclophilin-independent fashion.  相似文献   

8.
We report the construction and characterization of several replication-competent simian immunodeficiency virus (SIV) vectors with a deletion in the viral nef gene (SIV(delta nef)) that express gamma interferon (IFN-gamma). The expression of the cytokine gene was controlled either by the simian virus 40 early promoter or by the SIV 5' long terminal repeat regulatory sequences, utilizing the nef gene splice signals. To enhance the expression of IFN-gamma, the two in-frame nef start codons were mutated without altering the Env amino acid sequence (SIV(HyIFN)). Plasmids containing full-length proviral genomes were used to obtain high-titer stocks of each recombinant virus in cell cultures. Expression of IFN-gamma by SIV(HyIFN) reached levels as high as 10(6) U/ml after 11 days in culture. The IFN-gamma gene was unstable and sustained deletions after serial passage of SIV(delta nef) vectors in CEM-X-174 cells. The degree of instability appears to depend on size and orientation of the insert and the expression of IFN-gamma. Only one virus, SIV(HyIFN), expressed detectable levels of IFN-gamma up to the sixth passage. Prospects for the use of IFN-gamma and other lymphokines to enhance the safety and efficacy of live attenuated vaccines are discussed.  相似文献   

9.
A striking characteristic of the simian immunodeficiency virus (SIV) and of the human immunodeficiency virus type 2 (HIV-2) is the presence of a nonsense mutation in the env gene resulting in the synthesis of a truncated transmembrane protein lacking the cytoplasmic domain. By mutagenesis of an infectious molecular clone of SIVmac142, we investigated the function of the cytoplasmic domain and the significance of the env nonsense mutation. When the nonsense codon (TAG) was replaced by a glutamine codon (CAG), the virus infected HUT78 cells with markedly delayed kinetics. This negative effect was counterselected in vitro as reversion of the slow phenotype frequently occurred. The sequencing of one revertant revealed the presence of a new stop codon three nucleotides 5' to the original mutation. Deletions or an additional nonsense mutation introduced 3' to the original stop codon did not modify SIV infectivity. In contrast, the same deletions or nonsense mutation introduced in the clone in which the stop codon was replaced by CAG abolished infectivity. These results indicated that the envelope domain located 3' to the stop codon is not necessary for in vitro replication. However, the presence of this domain in SIV transmembrane protein leads to a reduced infectivity. This negative effect might correspond to a function controlling the rate of spread of the virus during in vivo infection.  相似文献   

10.
The human and simian immunodeficiency viruses encode at least six gene products that apparently serve regulatory functions. To evaluate the regulation of simian immunodeficiency virus gene expression at the level of RNA splicing, we used the polymerase chain reaction to amplify and clone cDNAs corresponding to a large array of mRNAs from infected cells. We identified mRNAs that used splice acceptor sites upstream of the initiator codons for tat, rev, vpr, nef, vif, and vpx, suggesting that these proteins may be expressed from different mRNAs. We also provide hybridization data suggesting that the same splice acceptor site may be used for both rev and env mRNAs. Furthermore, we isolated both tat and rev cDNAs that utilized three alternative splice acceptor sites at the start of coding exon 2, indicating that different versions of these proteins may be encoded. Finally, approximately 10 to 20% of simian immunodeficiency virus mRNAs spliced an intron from their untranslated 5' ends, and sequences contained within this intron constituted a portion of the tat-responsive TAR element. Thus, alternative pre-mRNA splicing adds a level of complexity to simian immunodeficiency virus expression, which may affect several levels of gene regulation.  相似文献   

11.
To identify the molecular determinants of neurovirulence, we constructed an infectious simian immunodeficiency virus (SIV) molecular clone, SIV/17E-Fr, that contained the 3' end of a neurovirulent strain of SIV, SIV/17E-Br, derived by in vivo virus passage. SIV/17E-Fr is macrophage tropic in vitro and neurovirulent in macaques. In contrast, a molecular clone, SIV/17E-Cl, that contains the SU and a portion of the TM sequences of SIV/17E-Br is macrophage tropic but not neurovirulent. To identify the amino acids that accounted for the replication differences between SIV/17E-Fr and SIV/17E-Cl in primary macaque cells in vitro, additional infectious molecular clones were constructed. Analysis of these recombinant viruses revealed that changes in the TM portion of the envelope protein were required for the highest level of replication in primary macaque macrophages and brain cells derived from the microvessel endothelium. In addition, a full-length Nef protein is necessary for optimum virus replication in both of these cell types. Finally, viruses expressing a full-length Nef protein in conjunction with the changes in the TM had the highest specific infectivity in a sMAGI assay. Thus, changes in the TM and nef genes between SIV/17E-Cl and SIV/17E-Fr account for replication differences in vitro and correlate with replication in the central nervous system in vivo.  相似文献   

12.
Transmission of simian immunodeficiency virus SIVmac239Delta(nef) (Delta(nef)) to macaques results in attenuated replication of the virus in most animals and ultimately induces protection against challenge with some pathogenic, wild-type SIV strains. It has been difficult, however, to identify a culture system in which the replication of Delta(nef) is severely reduced relative to that of the wild type. We have utilized a primary culture system consisting of blood-derived dendritic cells (DCs) and autologous T cells. When the DCs were fully differentiated or mature, the DC-CD4(+) T-cell mixtures supported replication of both the parental SIV strain, 239 (the wild type), and its mutant with nef deleted (Delta(nef)), irrespective of virus dose and the cell type introducing the virus to the coculture. In contrast, when immature DCs were exposed to Delta(nef) and cocultured with T cells, virus replication was significantly lower than that of the wild type. Activation of the cultures with a superantigen allowed both Delta(nef) and the wild type to replicate comparably in immature DC-T-cell cultures. Immature DCs, which, it has been hypothesized, capture and transmit SIV in vivo, are deficient in supporting replication of Delta(nef) in vitro and may contribute to the reduced pathogenicity of Delta(nef) in vivo.  相似文献   

13.
The nef gene of the pathogenic simian immunodeficiency virus (SIV) mac239 clone has been well characterized. Little is known, however, about the function of nef alleles derived from naturally SIVsm-infected sooty mangabeys (Cercocebus atys) and from human immunodeficiency virus type 2 (HIV-2)-infected individuals. Addressing this, we demonstrate that, similarly to the SIVmac239 nef, primary SIVsm and HIV-2 nef alleles down-modulate cell surface expression of human CD4, CD28, CD3, and class I or II major histocompatibility complex (MHC-I or MHC-II, respectively) molecules, up-regulate surface expression of the invariant chain (Ii) associated with immature MHC-II, inhibit early T-cell activation events, and enhance virion infectivity. Both also stimulate viral replication, although HIV-2 nef alleles were less active in this assay than SIVsm nef alleles. Mutational analysis showed that a dileucine-based sorting motif in the C-proximal loop of SIV or HIV-2 Nef is critical for its effects on CD4, CD28, and Ii but dispensable for down-regulation of CD3, MHC-I, and MHC-II. The C terminus of SIV and HIV-2 Nef was exclusively required for down-modulation of MHC-I, further demonstrating that analogous functions are mediated by different domains in Nef proteins derived from different groups of primate lentiviruses. Our results demonstrate that none of the eight Nef functions investigated had been newly acquired after cross-species transmission of SIVsm from naturally infected mangabeys to humans or macaques. Notably, HIV-2 and SIVsm nef alleles efficiently down-modulate CD3 and C28 surface expression and inhibit T-cell activation more efficiently than HIV-1 nef alleles. These differences in Nef function might contribute to the relatively low levels of immune activation observed in HIV-2-infected human individuals.  相似文献   

14.
Previous studies have demonstrated that the genetic determinants of simian immunodeficiency virus (SIV) neurovirulence map to the env and nef genes. Recent studies from our laboratory demonstrated that SIV replication in primary rhesus macaque astrocyte cultures is dependent upon the nef gene. Here, we demonstrate that macrophage tropism is not sufficient for replication in astrocytes and that specific amino acids in the transmembrane (TM) portion of Env are also important for optimal SIV replication in astrocytes. Specifically, a Gly at amino acid position 751 and truncation of the cytoplasmic tail of TM are required for efficient replication in these cells. Studies using soluble CD4 demonstrated that these changes within the TM protein regulate CD4-independent, CCR5-dependent entry of virus into astrocytes. In addition, we observed that two distinct CD4-independent, neuroinvasive strains of SIV/DeltaB670 also replicated efficiently in astrocytes, further supporting the role of CD4 independence as an important determinant of SIV infection of astrocytes in vitro and in vivo.  相似文献   

15.
Different human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) vaccine vectors expressing the same viral antigens can elicit disparate T-cell responses. Within this spectrum, replicating variable vaccines, like SIVmac239Δnef, appear to generate particularly efficacious CD8(+) T-cell responses. Here, we sequenced T-cell receptor β-chain (TRB) gene rearrangements from immunodominant Mamu-A 01-restricted Tat(28-35)SL8-specific CD8(+) T-cell populations together with the corresponding viral epitope in four rhesus macaques during acute SIVmac239Δnef infection. Ultradeep pyrosequencing showed that viral variants arose with identical kinetics in SIVmac239Δnef and pathogenic SIVmac239 infection. Furthermore, distinct Tat(28-35)SL8-specific T-cell receptor (TCR) repertoires were elicited by SIVmac239Δnef compared to those observed following a DNA/Ad5 prime-boost regimen, likely reflecting differences in antigen sequence stability.  相似文献   

16.
The nef gene is important for the pathogenicity associated with simian immunodeficiency virus infection in rhesus monkeys and with human immunodeficiency virus type 1 (HIV-1) infection in humans. The mechanisms by which nef contributes to pathogenesis in vivo remain unclear. We investigated the contribution of nef to HIV-1 replication in human lymphoid tissue ex vivo by studying infection with parental HIV-1 strain NL4-3 and with a nef mutant (DeltanefNL4-3). In human tonsillar histocultures, NL4-3 replicated to higher levels than DeltanefNL4-3 did. Increased virus production with NL4-3 infection was associated with increased numbers of productively infected cells and greater loss of CD4(+) T cells over time. While the numbers of productively infected T cells were increased in the presence of nef, the levels of viral expression and production per infected T cell were similar whether the nef gene was present or not. Exogenous interleukin-2 (IL-2) increased HIV-1 production in NL4-3-infected tissue in a dose-dependent manner. In contrast, DeltanefNL4-3 production was enhanced only marginally by IL-2. Thus, Nef can facilitate HIV-1 replication in human lymphoid tissue ex vivo by increasing the numbers of productively infected cells and by increasing the responsiveness to IL-2 stimulation.  相似文献   

17.
Attenuated simian immunodeficiency viruses (SIVs) have been described that produce low levels of plasma virion RNA and exhibit a reduced capacity to cause disease. These viruses are particularly useful in identifying viral determinants of pathogenesis. In the present study, we show that mutation of a highly conserved tyrosine (Tyr)-containing motif (Yxxphi) in the envelope glycoprotein (Env) cytoplasmic tail (amino acids YRPV at positions 721 to 724) can profoundly reduce the in vivo pathogenicity of SIVmac239. This domain constitutes both a potent endocytosis signal that reduces Env expression on infected cells and a sorting signal that directs Env expression to the basolateral surface of polarized cells. Rhesus macaques were inoculated with SIVmac239 control or SIVmac239 containing either a Tyr-721-to-Ile mutation (SIVmac239Y/I) or a deletion of Tyr-721 and the preceding glycine (DeltaGY). To assess the in vivo replication competence, all viruses contained a stop codon in nef that has been shown to revert during in vivo but not in vitro replication. All three control animals developed high viral loads and disease. One of two animals that received SIVmac239Y/I and two of three animals that received SIVmac239DeltaGY remained healthy for up to 140 weeks with low to undetectable plasma viral RNA levels and normal CD4(+) T-cell percentages. These animals exhibited ongoing viral replication as determined by detection of viral sequences and culturing of mutant viruses from peripheral blood mononuclear cells and persistent anti-SIV antibody titers. In one animal that received SIVmac239Y/I, the Ile reverted to a Tyr and was associated with a high plasma RNA level and disease, while one animal that received SIVmac239DeltaGY also developed a high viral load that was associated with novel and possibly compensatory mutations in the TM cytoplasmic domain. In all control and experimental animals, the nef stop codon reverted to an open reading frame within the first 2 months of inoculation, indicating that the mutant viruses had replicated well enough to repair this mutation. These findings indicate that the Yxxphi signal plays an important role in SIV pathogenesis. Moreover, because mutations in this motif may attenuate SIV through mechanisms that are distinct from those caused by mutations in nef, this Tyr-based sorting signal represents a novel target for future models of SIV and human immunodeficiency virus attenuation that could be useful in new vaccine strategies.  相似文献   

18.
19.
The importance of the vpr gene for simian immunodeficiency virus (SIV) replication, persistence, and disease progression was examined by using the infectious pathogenic molecular clone called SIVmac239. The ATG start codon of the vpr gene was converted to TTG by site-specific mutagenesis. The constructed Vpr- mutant virus is identical with the parental SIVmac239/nef-stop virus with the exception of this one nucleotide. These viruses replicated with similar kinetics and to similar extents in rhesus monkey lymphocyte cultures and in the human CEMX174 cell line. Five rhesus monkeys were inoculated with the Vpr- variant of SIVmac239/nef-stop, and two monkeys received SIVmac239/nef-stop as controls. Both controls showed reversion of the TAA stop signal in nef by 2 weeks postinfection, as has been observed previously. Reversion of the TAA stop codon in nef also occurred in the five monkeys that received the Vpr- variant, but reversion was delayed on average to about 4 weeks. Thus, the mutation in vpr appeared to delay the rapidity with which reversion occurred in the nef gene. Reversion of the TTG sequence in vpr to ATG was observed in three of the five test animals. Reversion in vpr was first observed in these three animals 4 to 8 weeks postinfection. No vpr revertants were found over the entire 66 weeks of observation in the other two test animals that received the vpr mutant. Antibodies to vpr developed in those three animals in which reversion of vpr was documented, but antibodies to vpr were not observed in the two animals in which reversion of vpr was not detected. Antibody responses to gag and to whole virus antigens were of similar strength in all seven animals. Both control animals and two of the test animals in which vpr reverted maintained high virus loads and developed progressive disease. Low virus burden and no disease have been observed in the two animals in which vpr did not revert and in the one animal in which vpr reversion was first detected only at 8 weeks. The reversion of vpr in three of the five test animals indicates that there is significant selective pressure for functional forms of vpr in vivo. Furthermore, the results suggest that both vpr and nef are important for maximal SIV replication and persistence in vivo and for disease progression.  相似文献   

20.
Functional activities that have been ascribed to the nef gene product of simian immunodeficiency virus (SIV) and human immunodeficiency virus (HIV) include CD4 downregulation, major histocompatibility complex (MHC) class I downregulation, downregulation of other plasma membrane proteins, and lymphocyte activation. Monkeys were infected experimentally with SIV containing difficult-to-revert mutations in nef that selectively eliminated MHC downregulation but not these other activities. Monkeys infected with these mutant forms of SIV exhibited higher levels of CD8(+) T-cell responses 4 to 16 weeks postinfection than seen in monkeys infected with the parental wild-type virus. Furthermore, unusual compensatory mutations appeared by 16 to 32 weeks postinfection which restored some or all of the MHC-downregulating activity. These results indicate that nef does serve to limit the virus-specific CD8 cellular response of the host and that the ability to downregulate MHC class I contributes importantly to the totality of nef function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号