首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Singlet oxygen production by human eosinophils   总被引:2,自引:0,他引:2  
Human eosinophils, stimulated with phorbol myristate acetate, were found to produce 1268 nm chemiluminescence characteristic of singlet oxygen. Singlet oxygen generation required the presence of bromide ion. A bromide ion concentration of 100 microM, comparable to the total bromine content of whole blood, was sufficient for the eosinophils to generate measurable amounts of singlet oxygen. For the conditions used (10(7) cells/ml and 10 micrograms/ml phorbol myristate acetate), the duration of the singlet oxygen generation was brief, about 5 min, and the total yield of singlet oxygen was modest, 1.0 +/- 0.1 microM. The cells remained viable after the singlet oxygen production ceased. This is the first demonstration of singlet oxygen production from living cells. The singlet oxygen generated by eosinophils likely results from a peroxidase-catalyzed mechanism, since a purified eosinophil peroxidase-hydrogen peroxide-bromide system was also shown to produce singlet oxygen. The unique properties of eosinophil peroxidase are illustrated by the fact that at p2H 7.0 and with 100 microM bromide, eosinophil peroxidase generated 20 +/- 2% of the theoretical yield of singlet oxygen, whereas under identical conditions, myeloperoxidase and lactoperoxidase produced only 1.0 +/- 0.1% and -0.1 +/- 0.1%, respectively.  相似文献   

2.
The kinetics of the singlet oxygen production in the hydrogen peroxide plus hypochlorous acid reaction were studied by measuring the time course of the singlet oxygen emission at 1268 nm. The addition of 1,4-diazabicyclo[2.2.2]octane (DABCO) increased the peak intensity of the chemiluminescence, but decreased its duration. The increased rate of singlet oxygen production likely accounts for the enhancement of singlet oxygen dimol emission reported in 1976 by Deneke and Krinsky (J. Am. Chem. Soc. 98, 3041-3042). This phenomenon was not seen when singlet oxygen was generated with the reaction of hypobromous acid and hydrogen peroxide. Thus, the enhancement of red chemiluminescence by DABCO should not be regarded as a general test for the production of singlet oxygen in complex biochemical systems.  相似文献   

3.
Genotoxicity of singlet oxygen   总被引:9,自引:0,他引:9  
Singlet oxygen, 1O2(1Δg), fulfills essential prerequisites for a genotoxic substance, like hydroxyl radicals and other oxygen radicals: it can react efficiently with DNA and it can be generated inside cells, e.g. by photosensitization and enzymatic oxidation. As might be anticipated from the non-radical character of singlet oxygen, the pattern of DNA modifications it produces is very different from that caused by hydroxyl radicals. While hydroxyl radicals produce DNA strand breaks and sites of base loss (AP sites) in high yield and react with all four bases of DNA, singlet oxygen generates predominantly modified guanine residues and few strand breaks and AP sites. There is now convincing evidence that a major product of base modification caused by singlet oxygen is 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). Indeed, the recently reported miscoding properties of 8-hydroxyguanine can explain the predominant type of mutations observed when DNA modified by singlet oxygen is replicated in cells. There are also strong indications that singlet oxygen generated by photosensitization can act as an ultimate DNA modifying species inside cells. However, indirect genotoxic mechanisms involving other reactive oxygen species produced from singlet oxygen are also possible and appear to predominate in some cases. The cellular defense system against oxidants consists of effective singlet oxygen scavengers such as carotenoids. The observation that carotenoids can inhibit neoplastic cell transformation when administered not only together with but also after the application of chemical or physical carcinogens might indicate a role of singlet oxygen in tumor promotion that could be independent of the direct or indirect DNA damaging properties.  相似文献   

4.
The photosensitized oxidation of cholest-4-en-3β-ol in which singlet molecular oxygen is implicated yielded cholest-4-en-3-one and the isomeric epoxides 4α,5-epoxy-5α-cholestan-3-one and 4β,5-epoxy-5β-cholestan-3-one, the epoxides being formed in the ratio 3 : 1. Oxidation of cholest-4-en-3-one by alkaline hydrogen peroxide likewise yielded the isomeric 4,5-epoxides but in the ratio 1 : 7.4. Attempted use of cholest-4-en-3β-ol to intercept singlet molecular oxygen putatively generated in the disproportionation of hydrogen peroxide gave a very complex product mixture of over 50 components from which only cholest-4-en-3-one could be identified. However, neither isomeric 4,5-epoxycholestan-3-one was detected among the products. These data establish that it is unwarranted to infer the action of single molecular oxygen in systems containing cholest-4-en-3β-ol merely by product analysis where the product 4α,5-epoxy-5α-cholestan-3-one is formed.  相似文献   

5.
Nishide N  Miyoshi N 《Life sciences》2002,72(3):321-328
Recently, 4.4'-bis(1-p-carboxyphenyl-3-methyl-5-dydroxyl)-pyrazol (DRD156) has been developed as a new sensitive reagent that reacts specifically with singlet oxygen. The specificity of DRD156 for singlet oxygen in a biomimetic solution (micellar solution) and the effects of its coexistence with other reagent were examined with electron spin resonance (ESR). Singlet oxygen was generated using photosensitization reaction. The ESR spectrum of the radical derived from DRD156 after the reaction with singlet oxygen in phosphate buffered salines (PBS) was comprised of twenty-nine lines, whereas that in cetyltrimethylammonium bromide (CTAB) micelles was comprised of nine lines. Both 2,2,6,6-tetramethyl-4-piperidine (TMPD) and 1,3-diphenyl-isobenzofuran (DPBF) reduced the singlet oxygen-DRD156 signal intensity, and TMPD-mediated decrease in PBS (to 62%) was almost the same as that in CTAB micelle (to 65%). In contrast, DPBF reduced the DRD156 signal intensity more effectively in CTAB micelle (to 12%) than PBS (to 38%). These results indicate that the specificity of DRD156 for singlet oxygen is dependent on microenvironment.  相似文献   

6.
The aerobic oxidation of indole-3-acetic acid catalyzed by horseradish peroxidase produces 1268 nm emission characteristic of singlet oxygen. Lactoperoxidase also oxidizes indole-3-acetic acid to produce singlet oxygen, but in contrast to horseradish peroxidase, this enzyme system requires hydrogen peroxide. In both of these systems, the intensity of the 1268 nm emission is small due to quenching of the singlet oxygen by indole-3-acetic acid and by reaction products derived from indole-3-acetic acid. The biomolecular reaction of peroxyl radicals via a Russell mechanism is a plausible mechanism for the singlet oxygen generation in these systems. Under typical conditions of p2H 4.0, 1 microM horseradish peroxidase, 1 mM indole-3-acetic acid, and 240 microM oxygen, the singlet oxygen yield was 15 +/- 1 microM or 13% of the amount predicted by the Russell mechanism.  相似文献   

7.
Photooxidation of cholesterol in liposomes with hematoporphyrin sensitization has been studied. With liposomal samples in which the hematoporphyrin is incorporated in the membrane, the yield of the characteristic singlet oxygen product, 3β-hydroxycholest-6-ene 5α-hydroperoxide, was approximately 6 times greater than that observed in the samples in which the hematoporphyrin was outside the membrane. Small amounts of 3β-hydroxycholest-5-ene 7α- and 7β-hydroperoxides, radical autoxidation products, were formed in both samples. Photolysis of a dispersion of cholesterol in an aqueous solution of hematoporphyrin gave no singlet oxygen products. It is concluded from these results that endogenous singlet oxygen when formed in the phospho-lipid membrane has a sufficiently long lifetime to effect oxygenation of cholesterol; whereas exogenous singlet oxygen generated outside the membrane is quenched by solvent before appreciable diffusion into the membrane can occur.  相似文献   

8.
DPH和N-(3芘)马来酰亚胺标记光敏氧化反应及黄嘌呤/黄嘌呤氧化酶反应生成外源性单线态氧(O_2)和超氧阴离子自由基(O_2)作用人多形核白细胞膜脂及膜蛋白质、荧光激发发射光谱形状、峰位未发生改变,荧光强度减小,其中以N-(3芘)马来酰亚胺标记O_2作用的膜蛋白质更为明显.荧光偏振度增大,相应清除剂L-组氨酸、超氧化物歧化酶和过氧化氢酶有抑制效应.调理的酵母多糖刺激中性粒细胞呼吸爆发产生膜、胞内活性氧损伤膜脂、膜蛋白质,测定荧光参数变化与前者不尽相同,DPH荧先强度显著增加,L-组氨酸,超氧化物歧化酶和过氧化氢酶似无抑制效果.  相似文献   

9.
Bases, nucleosides, nucleotides, and polynucleotides were exposed to chemically generated singlet oxygen to determine whether the species oxidized paralleled those oxidized in photodynamic reactions. In neutral or basic aqueous solution guanine, guanosine, deoxyguanosine, guanylic acid, deoxyguanylic acid, thymine, and uracil reacted with singlet oxygen. Since these compounds are oxidized in photodynamic processes, this study provides further evidence that singlet oxygen is the active intermediate in the photodynamic oxidation of nucleic acid constituents. Dienophilic attack by singlet oxygen is considered to be a plausible mechanism in these reactions.  相似文献   

10.
Proteins comprise approximately 68% of the dry weight of cells and tissues and are therefore potentially major targets for oxidative damage. Two major types of processes can occur during the exposure of proteins to UV or visible light. The first of these involves direct photo-oxidation arising from the absorption of UV radiation by the protein, or bound chromophore groups, thereby generating excited states (singlet or triplets) or radicals via photo-ionisation. The second major process involves indirect oxidation of the protein via the formation and subsequent reactions of singlet oxygen generated by the transfer of energy to ground state (triplet) molecular oxygen by either protein-bound, or other, chromophores. Singlet oxygen can also be generated by a range of other enzymatic and non-enzymatic reactions including processes mediated by heme proteins, lipoxygenases, and activated leukocytes, as well as radical termination reactions. This paper reviews the data available on singlet oxygen-mediated protein oxidation and concentrates primarily on the mechanisms by which this excited state species brings about changes to both the side-chains and backbone of amino acids, peptides, and proteins. Recent work on the identification of reactive peroxide intermediates formed on Tyr, His, and Trp residues is discussed. These peroxides may be important propagating species in protein oxidation as they can initiate further oxidation via both radical and non-radical reactions. Such processes can result in the transmittal of damage to other biological targets, and may play a significant role in bystander damage, or dark reactions, in systems where proteins are subjected to oxidation.  相似文献   

11.
Reactivities of chromium compounds with DNA were investigated by the DNA sequencing technique using 32P 5'-end-labeled DNA fragments, and the reaction mechanism was investigated by ESR spectroscopy. Incubation of double-stranded DNA with sodium chromate(VI) plus hydrogen peroxide or potassium tetraperoxochromate(V) led to the cleavage at the position of every base, particularly of guanine. Even without piperidine, the formation of oligonucleotides was observed, suggesting the breakage of the deoxyribose-phosphate backbone. ESR studies using hydroxyl radical traps demonstrated that hydroxyl radical is generated both during the reaction of sodium chromate(VI) with hydrogen peroxide and the decomposition of potassium tetraperoxochromate(V), and that hydroxyl radical reacts significantly not only with mononucleotides but also with deoxyribose 5-phosphate. ESR studies using a singlet oxygen trap demonstrated that singlet oxygen is also generated both by the same reaction and decomposition, and reacts significantly with deoxyguanylate, but scarcely reacts with other mononucleotides. Furthermore, ESR studies suggested that tetraperoxochromate(V) is formed by the reaction of sodium chromate(VI) with hydrogen peroxide. These results indicate that sodium chromate(VI) reacts with hydrogen peroxide to form tetraperoxochromate(V), leading to the production of the hydroxyl radical, which causes every base alteration and deoxyribose-phosphate backbone breakage. In addition, sodium chromate(VI) plus hydrogen peroxide generates singlet oxygen, which subsequently oxidizes the guanine residue. The mechanism by which both hydroxyl radical and singlet oxygen are generated during the reaction of sodium chromate(VI) with hydrogen peroxide was presented. Finally, the possibility that this reaction may be one of the primary reactions of carcinogenesis induced by chromate(VI) is discussed.  相似文献   

12.
The relationship between superoxide and singlet oxygen in PSⅡ particle of spinach under strong illumination was studied with spin-trap ESR technique. The generation of superoxide was increased under D2 environment which prolonged the half life of singlet oxygen. The generation of superoxide was decreased when histidine existed as a scavenger of singlet oxygen. It is highly possible that the superoxide generated in PSⅡ particle originates from singlet oxygen.  相似文献   

13.
The biological significance of singlet oxygen (1O2), an electronically excited species of oxygen, has been realized only in the last two decades. This was mainly due to the lack of proper methodology to generate this reactive oxygen species (ROS) in pure form and its reactions with biological molecules. Recent studies, using newly developed detection methods, show that 1O2 being generated in many biological systems, can significantly and quite often adversely alter several crucial biomolecules including DNA, proteins and lipids with undesirable consequences including cytotoxicity and/or disesase development. The reactions of 1O2 with the biological molecules are rather specific, as compared to other ROS. There are various compounds, mainly derived from natural sources that offer protection against damage induced by 1O2. Among the antioxidants carotenoids are the most effective singlet oxygen quenchers followed by tocopherols and others. The same reactive species if generated specifically in diseased states such as cancer can lead to the cure of the disease, and this principle is utilized in the newly developing modality of cancer treatment namely photodynamic therapy. Singlet oxygen, in low concentrations can also act as signaling molecule with several biological implications. This review clearly brings out the biological significance of 1O2.  相似文献   

14.
High-light illumination of photosynthetic organisms stimulates the production of singlet oxygen by photosystem II (PSII) and causes photo-oxidative stress. In the PSII reaction centre, singlet oxygen is generated by the interaction of molecular oxygen with the excited triplet state of chlorophyll (Chl). The triplet Chl is formed via charge recombination of the light-induced charge pair. Changes in the midpoint potential of the primary electron donor P(680) of the primary acceptor pheophytin or of the quinone acceptor Q(A), modulate the pathway of charge recombination in PSII and influence the yield of singlet oxygen formation. The involvement of singlet oxygen in the process of photoinhibition is discussed. Singlet oxygen is efficiently quenched by beta-carotene, tocopherol or plastoquinone. If not quenched, it can trigger the up-regulation of genes, which are involved in the molecular defence response of photosynthetic organisms against photo-oxidative stress.  相似文献   

15.
In the present study, we have shown that hydroxy‐plastochromanol and plastoquinone‐C, the hydroxy derivatives of plastochromanol and plastoquinone‐9, respectively, are specifically formed from the parent compounds upon action of singlet oxygen and can be regarded as stable, specific, natural products of singlet oxygen action during photo‐oxidative stress in vivo. The presented data indicate that plastoquinone‐C formation dominates mainly during relatively short periods of high light stress where efficient production of singlet oxygen takes place, whereas hydroxy‐plastochromanol is rather formed under conditions of long‐term, less pronounced generation of singlet oxygen. An interesting observation was that hydroxy‐plastochromanol is formed even at very low light conditions (5–10 μmol photons m?2 s?1), indicating that singlet oxygen is generated not only during high light stress but also its formation by photosystem II is inseparably connected with the functioning of this photosystem even at the lowest light intensities.  相似文献   

16.
Singlet oxygen ( 1 O 2 ) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. Recently, we have shown that NADP + -dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study, we investigated the role of cytosolic form of NADP + -dependent isocitrate dehydrogenase (IDPc) against singlet oxygen-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to singlet oxygen generated from photoactivated dye, the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against singlet oxygen, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against singlet oxygen-induced oxidative injury.  相似文献   

17.
Optical traps or “tweezers” use high-power, near-infrared laser beams to manipulate and apply forces to biological systems, ranging from individual molecules to cells. Although previous studies have established that optical tweezers induce photodamage in live cells, the effects of trap irradiation have yet to be examined in vitro, at the single-molecule level. In this study, we investigate trap-induced damage in a simple system consisting of DNA molecules tethered between optically trapped polystyrene microspheres. We show that exposure to the trapping light affects the lifetime of the tethers, the efficiency with which they can be formed, and their structure. Moreover, we establish that these irreversible effects are caused by oxidative damage from singlet oxygen. This reactive state of molecular oxygen is generated locally by the optical traps in the presence of a sensitizer, which we identify as the trapped polystyrene microspheres. Trap-induced oxidative damage can be reduced greatly by working under anaerobic conditions, using additives that quench singlet oxygen, or trapping microspheres lacking the sensitizers necessary for singlet state photoexcitation. Our findings are relevant to a broad range of trap-based single-molecule experiments—the most common biological application of optical tweezers—and may guide the development of more robust experimental protocols.  相似文献   

18.
A reporter system for the assay of reactive oxygen species (ROS) was developed in Chlamydomonas reinhardtii, a plant model organism well suited for the application of inhibitors and generators of various types of ROS. This system employs various HSP70A promoter segments fused to a Renilla reniformis luciferase gene as a reporter. Transformants with the complete HSP70A promoter were inducible by both hydrogen peroxide and singlet oxygen. Constructs that lacked upstream heat-shock elements (HSEs) were inducible by hydrogen peroxide, indicating that this induction does not require such HSEs. Rather, downstream elements located between positions -81 to -149 with respect to the translation start site appear to be involved. In contrast, upstream sequences are essential for the response to singlet oxygen. Thus, activation by singlet oxygen appears to require promoter elements that are different from those used by hydrogen peroxide. ROS generated endogenously by treatment of the alga with metronidazole, protoporphyrin IX, dinoterb or high light intensities were detected by this reporter system, and distinguished as production of hydrogen peroxide (metronidazole) and singlet oxygen (protoporphyrin IX, dinoterb, high light). This system thus makes it possible to test whether, under varying environmental conditions including the application of abiotic stress, hydrogen peroxide or singlet oxygen or both are produced.  相似文献   

19.
Singlet oxygen ( 1 O 2 ) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. Recently, we have shown that NADP + -dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study, we investigated the role of cytosolic form of NADP + -dependent isocitrate dehydrogenase (IDPc) against singlet oxygen-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to singlet oxygen generated from photoactivated dye, the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against singlet oxygen, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against singlet oxygen-induced oxidative injury.  相似文献   

20.
Singlet oxygen is known to be produced by cells in response to photo-oxidative stresses and wounding. Due to singlet oxygen being highly reactive, it is thought to have a very short half-life in biological systems and, consequently, it is difficult to detect. A new commercially available reagent (singlet oxygen sensor green, SOSG), which is highly selective for singlet oxygen, was applied to a range of biological systems that are known to generate singlet oxygen. Induction of singlet oxygen production by the addition of myoglobin to liposome preparations demonstrated that the singlet oxygen-induced increases in SOSG fluorescence closely followed the increase in the concentration of conjugated dienes, which is stoichiometrically related to singlet oxygen production. Applications of photo-oxidative stresses to diatom species and leaves, which are known to result in the production of singlet oxygen, produced large increases in SOSG fluorescence, as did the addition of 3-(3',4'-dichlorophenyl)1,1-dimethylurea (DCMU) to these systems, which inhibits electron transport in photosystem II and stimulates singlet oxygen production. The conditional fluorescent (flu) mutant of Arabidopsis produces singlet oxygen when exposed to light after a dark period, and this coincided with a large increase in SOSG fluorescence. Wounding of leaves was followed by an increase in SOSG fluorescence, even in the dark. It is concluded that SOSG is a useful in vivo probe for the detection of singlet oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号