首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several bismuth compounds are currently used as antiulcer drugs, but their mechanism of action is not well established. Proteins are thought to be target sites. In this work we establish that the competitive binding of Bi(3+) to the blood serum proteins albumin and transferrin, as isolated proteins and in blood plasma, can be monitored via observation of (1)H and (13)C NMR resonances of isotopically labeled [epsilon-(13)C]Met transferrin. We show that Met(132) in the I132M recombinant N-lobe transferrin mutant is a sensitive indicator of N-lobe metal binding. Bi(3+) binds to the specific Fe(3+) sites of transferrin and the observed shifts of Met resonances suggest that Bi(3+) induces similar conformational changes in the N-lobe of transferrin in aqueous solution and plasma. Bi(3+) binding to albumin is nonspecific and Cys(34) is not a major binding site, which is surprising because Bi(3+) has a high affinity for thiolate sulfur. This illustrates that the potential target sites for metals (in this case Bi(3+)) in proteins depend not only on their presence but also on their accessibility. Bi(3+) binds to transferrin in preference to albumin both in aqueous solution and in blood plasma.  相似文献   

2.
Bovine serum albumin inhibits binding of transferrin by hepatocytes in suspension by 60-70%. Iron uptake is inhibited by less than 20%. A Scatchard analysis of the transferrin-binding data reveals a biphasic plot in the absence of bovine serum albumin, but a monophasic plot in the presence of bovine serum albumin. Bovine serum albumin inhibits low-affinity binding of transferrin (125000 molecules/cell), but has no effect on high-affinity binding (38000 molecules/cell). In pronase-treated cells, transferrin binding is reduced by 40%, and when bovine serum albumin is added, the binding is reduced by a further 40%. Corresponding figures for iron uptake are 70 and 10%, respectively. The results are strong evidence that the major part of iron uptake by hepatocytes occurs from transferrin bound to the plasma membrane transferrin receptor.  相似文献   

3.
Several reports have suggested that variations of albumin concentration in the incubation medium can modulate the magnitude of transferrin binding to the cells. We have investigated this problem further using K562 cells. In the absence of human serum albumin, transferrin binding demonstrated a non-saturable curve which, upon Scatchard analysis, showed two components with high and low affinities. In the presence of 0.5% human serum albumin, the low-affinity but not the high-affinity component was totally inhibited and, thus, the binding showed a saturation plateau at transferrin concentration of 6 micrograms/ml. Increasing concentrations of human serum albumin in the incubation medium led to progressive inhibition of transferrin binding, reaching a plateau at 0.2% human serum albumin. At this concentration transferrin binding was about 12 ng/10(6) cells, corresponding to the saturation plateau for high-affinity binding. Low-affinity transferrin binding in the absence of human serum albumin could readily be displaced by subsequent addition of albumin. Similar inhibition was obtained by another serum protein, ceruloplasmin, suggesting that this inhibition is not unique to albumin and may be a common property of all proteins. Incubation at 37 degrees C with 59Fe-labeled transferrin indicated that all iron uptake occurs through high-affinity binding. We conclude that the reported variations in magnitude of transferrin binding by the cell due to variations in albumin concentration are the result of inhibition of low-affinity binding of transferrin by albumin.  相似文献   

4.
The binding of pyridoxal 5'-phosphate to human serum albumin   总被引:1,自引:0,他引:1  
Most of the pyridoxal 5'-phosphate (PLP) in plasma is bound to protein, primarily albumin. Binding to protein is probably important in transporting PLP in the circulation and in regulating its metabolism. The binding of PLP to human serum albumin (HSA) was studied using absorption spectral analysis, equilibrium dialysis, and inhibition studies. The kinetics of the changes in the spectrum of PLP when mixed with an equimolar concentration of HSA at pH 7.4 followed a model for two-step consecutive binding with rate constants of 7.72 mM-1 min-1 and 0.088 min-1. The resulting PLP-HSA complex had absorption peaks at 338 and 414 nm and was reduced by potassium borohydride. The 414-nm peak is probably due to a protonated aldimine formed between PLP and HSA. The binding of PLP to bovine serum albumin (BSA) at equimolar concentrations at pH 7.4 occurred at about 10% the rate of its binding to HSA. The final PLP-BSA complex absorbed maximally at 334 nm and did not appear to be reduced with borohydride. Equilibrium dialysis of PLP and HSA indicated that there were more than one class of binding sites of HSA for PLP. There was one high affinity site with a dissociation constant of 8.7 microM and two or more other sites with dissociation constants of 90 microM or greater. PLP binding to HSA was inhibited by pyridoxal and 4-pyridoxic acid. It was not inhibited appreciably by inorganic phosphate or phosphorylated compounds. The binding of PLP to BSA was inhibited more than its binding to HSA by several compounds containing anionic groups. It is concluded that PLP binds differently to HSA than it does to BSA.  相似文献   

5.
Fluorescent probe N-phenyl-1-amino-8-sulfonaphthalene (ANS) was used for studying pH-dependent structural N-F-transition in human serum albumin of two kinds: in commercial albumin and in natural blood serum. The kinetics of ANS fluorescence decay in albumin solutions was measured. There were found two types of the sites occupied by ANS in albumin under physiological conditions (pH 7.4). In the first binding site ANS fluorescence decay time was 16.6 +/- 0.3 nsec and it was not significantly changed at N-F transition (pH 4.0). In the second binding site the decay time was dependent on pH in commercial albumin and was not significantly changed in serum. In the second binding site there were individual differences of ANS decay time (4.3 +/- 0.6 nsec). The observed ANS fluorescence intensity enhancing (about 40-50%) in N-F transition may be explained by an increase of albumin binding sites capacity for ANS.  相似文献   

6.
Binding of manganese in human and rat plasma   总被引:5,自引:0,他引:5  
Albumin, transferrin and 'transmanganin' have all been proposed as the major Mn-binding ligand in plasma. The present investigations were initiated in order to resolve these discrepancies. Compared to other metals tested (109 Cd2+, 65Zn2+, 59Fe3+), 54Mn2+ bound poorly to purified albumin. The addition of exogenous albumin to plasma did not result in an increased 54Mn radioactivity associated with this protein. Also, incubation of 65Zn-albumin in the presence of excess Mn2+ (1 mM) did not result in the displacement of Zn from albumin or Mn binding. In contrast to these results, 54Mn was bound to purified transferrin, not as readily as Fe3+, but better than Zn2+ or Cd2+. Saturation of transferrin with Fe3+ (1.6 micrograms Fe/mg) prevented the binding of 54Mn indicating that Mn probably binds to Fe-binding sites on the protein. Polyacrylamide gel electrophoresis further demonstrated the association of 54Mn with transferrin rather than with albumin in both human and rat plasma. The amount of 54Mn radioactivity recovered with transferrin increased as incubation time was increased, probably due to oxidation of Mn2+ to Mn3+. Mn binding to transferrin reached a maximum within 5 and 12 h of incubation. About 50% of 54Mn migrated with transferrin, whereas only 5% was associated with albumin. A significant portion (20-55%) of the 54Mn radioactivity migrated with electrophoretically slow plasma components whose identity was not determined. Possibilities include alpha 2-macroglobulin, heavy gamma-globulins and/or heavy lipoproteins.  相似文献   

7.
Binding of vanadate to human serum transferrin   总被引:1,自引:0,他引:1  
Human serum transferrin specifically and reversibly binds 2 equiv of vanadate at the two metal-binding sites of the protein. The vanadium(V)-transferrin complex can be formed either by the addition of vanadate to apotransferrin or by the air oxidation of the vanadyl(IV)-transferrin complex. The formation of the vanadium complex can be blocked by loading the apotransferrin with iron(III), and bound vanadium can be displaced from the protein by the subsequent addition of either gallium(III) or iron(III). The binding constant for the second equiv of vanadate is 10(6.5) in 0.1 M hepes, pH 7.4 at 25 degrees C. The binding constant for the first equiv of vanadate is probably very similar, although no quantitative value could be determined. Although transferrin reacts with the vanadate anion, studies on the transferrin model compound ethylenebis(o-hydroxyphenylglycine) indicate that at pH 9.5, the vanadium is binding at the metal-binding site as a dioxovanadium(V) cation coordinated to two phenolic residues at each binding site. This bound cation appears to be protonated over the pH range 9.5-6.5, as shown by changes in the difference uv spectrum of the transferrin complex, to produce an oxohydroxo species. Further decreases in the pH lead to dissociation of the vanadium-transferrin complex.  相似文献   

8.
The structure and phospholipid-binding properties of human plasma high density apolipoprotein A-I (apoA-I) has been studied at pH 7.4 and 3.1 by microcalorimetry, circular dichroism and density gradient ultracentrifugation. At pH values of 7.4 and 3.1, apoA-I binds to dimyristoyl phosphatidylcholine (DMPC) to form complexes of similar composition (molar ratio of DMPC/apoA-I of 100) and helical content (67%). At pH 7.4, the lipid-protein association is accompanied by an increase in helical content from 58 to 67% and an exothermic enthalpy of binding (deltaHB) of -90 kcal/mol apoA-I. At pH 3.1, the helical content of apoA-I is increased from 48 to 67% on binding to DMPC and the enthalpy of binding was -170 kcal/mol. We suggest that the difference in the enthalpies of binding (-80 kcal/mol) at pH 3.1 compared to 7.4 is due to the greater coil leads to helix transition at the lower pH.  相似文献   

9.
Viable cells of 18 human cell lines, including 15 transformed cell lines of malignant and lymphoblastoid origin, were examined by an indirect immunofluorescence method for their ability to bind purified transferrin and transferrin in normal human serum. The specificity of the reaction was investigated by study of the binding reactions of several other serum proteins, including albumin, α-1-antitrypsin, and α-2-macroglobulin. Membrane binding of human transferrin was demonstrated in less than 5% of normal peripheral blood mononuclear cells or cultured diploid fibroblasts, but in more than 80% of the cells from 13 of the transformed lines, and the data obtained indicated that this binding reaction reflected the presence of specific receptors for transferrin.  相似文献   

10.
Binding of aluminum to human serum albumin and transferrin was investigated using a competitive binding assay incorporating a cation exchange resin, chelex. Both albumin and transferrin were found to produce linear Scatchard plots of aluminum binding data over the aluminum and protein concentration ranges found in humans. Binding constants measured for albumin and transferrin were 1.96 and 0.515 microM, respectively.  相似文献   

11.
The sedimentation behavior of 125I-labeled gastrin has been studied as a function of Fe3+ ion concentration and pH. Both sedimentation velocity and sedimentation equilibrium experiments indicated that high-molecular-weight Fe3+-gastrin complexes were formed at pH 5.0 and pH 7.4. Self-association of gastrin alone was observed at pH values below 5.0. 125I-labeled gastrin bound to human serum apotransferrin at pH 7.4. Scatchard analysis of the gastrin-apotransferrin complex gave a Kd of approximately 6.4 microM at 37 degrees C, with two binding sites per molecule of apotransferrin. No significant binding of gastrin to diferric transferrin was observed under the same conditions. The binding of gastrin to apotransferrin was inhibited by NaCl. The results are consistent with the hypothesis that gastrin and transferrin act synergistically in the uptake of dietary iron by the gastrointestinal tract.  相似文献   

12.
The transferrins are a family of proteins that bind free iron in the blood and bodily fluids. Serum transferrins function to deliver iron to cells via a receptor-mediated endocytotic process as well as to remove toxic free iron from the blood and to provide an anti-bacterial, low-iron environment. Lactoferrins (found in bodily secretions such as milk) are only known to have an anti-bacterial function, via their ability to tightly bind free iron even at low pH, and have no known transport function. Though these proteins keep the level of free iron low, pathogenic bacteria are able to thrive by obtaining iron from their host via expression of outer membrane proteins that can bind to and remove iron from host proteins, including both serum transferrin and lactoferrin. Furthermore, even though human serum transferrin and lactoferrin are quite similar in sequence and structure, and coordinate iron in the same manner, they differ in their affinities for iron as well as their receptor binding properties: the human transferrin receptor only binds serum transferrin, and two distinct bacterial transport systems are used to capture iron from serum transferrin and lactoferrin. Comparison of the recently solved crystal structure of iron-free human serum transferrin to that of human lactoferrin provides insight into these differences.  相似文献   

13.
Binding equilibria for decanoate, octanoate, and hexanoate to defatted human serum albumin were investigated by dialysis exchange rate determinations in 66 mM sodium phosphate buffer, pH 7.4, 37 degrees C. The binding isotherms for decanoate and octanoate could not be fitted by the general binding equation. It was necessary to assume the presence of two albumin components, one with high affinity and one with low affinity, about 0.65 of the albumin having high binding affinity. The first stoichiometric binding constants for the high- and low-affinity albumin components were 1.1 X 10(7) and 1.4 X 10(5) M-1, respectively, for decanoate; 1.6 X 10(6) and 3.5 X 10(4) for octanoate; and 7.1 X 10(4) and 8.0 X 10(2) M-1 for hexanoate. The high-affinity albumin component binds 1 mol decanoate, 1 mol octanoate, or 2 mol hexanoate more than is bound to the low-affinity component. Chloride ions compete with the high-affinity binding of all three ligands. Albumin dimer, present in the commercial human serum albumin, has approximately the same binding properties as the monomer. Mercaptalbumin, isolated from the preparation, also consists of two proteins, with first stoichiometric binding constants 8.0 X 10(6) and 1.4 X 10(5) M-1 for decanoate, approximately 0.5 of the mercaptalbumin having high affinity.  相似文献   

14.
Elevated plasma MB creatine kinase (CK) is considered the most sensitive and specific diagnostic indicator of myocardial infarction. However, attempts to purify human MB CK have been unsuccessful. The need for purified human MB CK was further enhanced with the development of a radioimmunoassay for CK isoenzymes which would provide more prompt and specific detection of myocardial infarction. The major protein contaminant of MB CK is albumin which has been difficult to separate due to their similar electrophoretic mobility. Human hearts were obtained within 2 h postmortem and the tissue homogenized in 50 mm Tris-HCl (pH 7.4), 2 mm mercaptoethanol. The CK was recovered from the supernatant (31,000g) by ethanol extraction (50–70%). The resuspended pellet was fractionated on DEAE Sephadex A-50 with a salt gradient (50–500 mm, pH 8.0). The MB fraction contained about 90% albumin. The preparation was bound to an Affigel blue column and contaminating proteins other than albumin were eluted with 50 mm Tris-HCl (pH 8.0), 2 mm mercaptoethanol. MB CK was eluted with 250 mm NaCl, but the albumin remained bound. The MB fraction with a specific activity of 453 IU/mg represented an 80-fold increase in purity and exhibited a single protein band on polyacrylamide gels. Purified MB CK labeled with 125I exhibited no binding to human albumin antiserum, but bound to MB CK antiserum, and unlabeled MB CK competitively inhibited binding of 125I-MB CK in the radioimmunoassay system exhibiting a sensitivity for detection of plasma MB CK at the nanogram level.  相似文献   

15.
We generated an anti-albumin antibody, CA645, to link its Fv domain to an antigen-binding fragment (Fab), thereby extending the serum half-life of the Fab. CA645 was demonstrated to bind human, cynomolgus, and mouse serum albumin with similar affinity (1–7 nM), and to bind human serum albumin (HSA) when it is in complex with common known ligands. Importantly for half-life extension, CA645 binds HSA with similar affinity within the physiologically relevant range of pH 5.0 – pH 7.4, and does not have a deleterious effect on the binding of HSA to neonatal Fc receptor (FcRn). A crystal structure of humanized CA645 Fab in complex with HSA was solved and showed that CA645 Fab binds to domain II of HSA. Superimposition with the crystal structure of FcRn bound to HSA confirmed that CA645 does not block HSA binding to FcRn. In mice, the serum half-life of humanized CA645 Fab is 84.2 h. This is a significant extension in comparison with < 1 h for a non-HSA binding CA645 Fab variant. The Fab-HSA structure was used to design a series of mutants with reduced affinity to investigate the correlation between the affinity for albumin and serum half-life. Reduction in the affinity for MSA by 144-fold from 2.2 nM to 316 nM had no effect on serum half-life. Strikingly, despite a reduction in affinity to 62 µM, an extension in serum half-life of 26.4 h was still obtained. CA645 Fab and the CA645 Fab-HSA complex have been deposited in the Protein Data Bank (PDB) with accession codes, 5FUZ and 5FUO, respectively.  相似文献   

16.
This study systematically examined the characteristics of specific binding of adult diferric transferrin to its receptor using a Triton X-100 solubilized preparation from human placentas as the receptor source. The following information was obtained. The ionic strength for maximal binding is in the range of 0.1-0.3 M NaCl. The pH optimum for specific binding extends over the range, from pH 6.0-10.0. Specific binding of diferric transferrin is not affected by 2.5 approximately 50 mM CaCl2 or by 10 mM EDTA. Triton X-100 in the concentration range of 0.02-3.0% does not affect specific binding. Specific binding is saturated within 10 min at 25 or 37 degrees C in the presence of excess amounts of diferric transferrin. The binding is reversible and the dissociation of diferric transferrin from the transferrin receptor is complete within 40 min at 25 degrees C. Apotransferrin, both adult and fetal, showed less binding than the holotransferrin species by competitive binding assay in the presence of 10 mM EDTA independent of up to 20 mM CaCl2. A 1500-fold molar excess of adult and fetal apotransferrin is required to give 40% inhibition for 125I-labeled diferric transferrin binding. Since calcium ion is not a factor, and since apotransferrin has such high binding affinity for iron (Ka = 1 X 10(24], this experiment suggests that the EDTA was necessary to prevent conversion of apotransferrin to holotransferrin from available iron in the reaction system. The specificity of the transferrin receptor for transferrin was examined by competitive binding studies in which 125I-diferric transferrin binding was measured in the presence of a series of other proteins. The proteins tested in the competitive binding studies were classified into three groups; in the first group were human serum albumin and ovalbumin; in the second group were proteins containing iron ions, such as hemoglobin, hemoglobin-haptoglobin complex, heme-hemopexin complex, ferritin, and diferric lactoferrin; in the third group were the metal-binding serum proteins, ceruloplasmin and metallothionein. None of these proteins except ferritin showed inhibition of diferric transferrin binding to the receptor. The effect of ferritin was small since a 700- to 1500-fold molar excess of ferritin is required for 50% inhibition of binding of diferric transferrin to the receptor.  相似文献   

17.
Enantioselectivity in the burst phase of the reactions of d- and l-p-nitrophenyl α-methoxyphenyl acetates with human and bovine serum albumin was investigated kinetically in pH 7.4 phosphate buffer and at 25 °C. The burst phase was measured under the conditions of excess albumin over the enantiomer. Both albumins reacted with d enantiomer about threefold faster than l enantiomer, mainly due to the catalytic step and not due to the binding step. The reactivity of human serum albumin toward the enantiomers was four- to fivefold higher than that of bovine serum albumin.  相似文献   

18.
Myatt D  Johnson L  Baumli S  Siligardi G 《Chirality》2010,22(Z1):E40-E43
Flavopiridol is a potent cyclin-dependant kinase (CDK) inhibitor and is in clinical trials for anticancer treatment. A limiting factor in its drug development has been the high dosage required in human clinical trials. The high dosage is suggested to be necessary because of significant flavopiridol binding to human blood serum. Albumin is the major protein component of blood serum and has been suggested as a likely high affinity binding target. We characterized the binding of human serum albumin to flavopiridol using circular dichroism (hereafter CD). Flavopiridol bound to human serum albumin has a diagnostic CD binding peak at 284 nm. The diagnostic CD binding peak was unobservable for flavopiridol with bovine serum albumin, using the same experimental conditions. However, under higher albumin concentrations a small CD signal is observed confirming, flavopiridol binds to bovine serum albumin as well.  相似文献   

19.
The influence of pH and long-chain fatty acids on the interaction between aflatoxin B1 and human albumin was investigated by fluorescence spectroscopy. Both the binding of aflatoxin B1 to albumin and the fluorescence of albumin-bound aflatoxin are pH-dependent over the pH range of 6-9.5. The data indicates that the carcinogen has a higher affinity for the basic(B) than for the neutral(N) conformation of human albumin. Palmitic, stearic and oleic acids up to a molar ratio of 2 over albumin, increases the binding strength of aflatoxin B1 by means of an allosteric mechanism. Furthermore, the pH-dependence of the aflatoxin-albumin interaction is affected by the presence of oleic acid by narrowing the pH range over which the dependence occurs. At molar ratios of oleic acid to albumin in excess of 4.25 at pH6, 3.1 at pH7.4 and 2.4 at pH9 cause a decrease in aflatoxin B1 fluorescence as a result of reduced binding to albumin.  相似文献   

20.
W R Harris 《Biochemistry》1986,25(4):803-808
Equilibrium constants for the successive binding of 2 equiv of Ga3+ to human lactoferrin have been measured by difference ultraviolet spectroscopy in 0.1 M 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid containing 5 mM bicarbonate at pH 7.4 and 25 degrees C. Ethylenediamine-N,N'-diacetic acid was used as the competing chelating agent. Values of the effective binding constants for the stated experimental conditions are log K1 = 21.43 +/- 0.18 and log K2 = 20.57 +/- 0.16. Comparison of these results with literature values for the gallium-transferrin binding constants indicates that lactoferrin binds gallium more strongly by a factor of approximately 90. The ratios of successive binding constants for the two proteins are essentially identical. A linear free energy relationship (LFER) for the complexation of gallium(III) and iron(III) has been prepared and used to estimate an iron(III)-lactoferrin binding constant for pH 7.4. The LFER prediction is compared with thermodynamic data on iron binding at pH 6.4 and gallium binding at pH 7.4. The results indicate that the ratio of iron binding constants for lactoferrin and transferrin is likely in the range of 50-90.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号