首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since the sympathetic nervous system has been shown to exert a trophic influence on vascular smooth muscle cells (SMC), we studied the growth regulating effects of neuropeptide Y (NPY) in cooperation with the sympathetic co-transmitters noradrenaline and adenosine triphosphate (ATP) in human vascular SMC. NPY stimulated DNA synthesis in human SMC grown from subcutaneous arteries and veins (diameter: 0.4 mm) measured by [3H]thymidine incorporation. Also cell number and protein synthesis were stimulated. The effect was mediated through the Y1-receptor and not Y2 or Y3 since the Y1-selective NPY analogue Pro34-NPY and peptide YY stimulated mitogenesis in the same magnitude as NPY while the NPY-fragment NPY13–36 only had minor effects. The effect was blocked by pretreating the cells with pertussis toxin indicating a G1/o-coupled effect. The other sympathetic co-transmitters, noradrenaline and ATP, also stimulated mitogenesis in the human SMC in a similar magnitude as NPY. When added together NPY and noradrenaline potentiated each other in the mitogenic response. ATP had mainly additive effects. This is the first demonstration that NPY, noradrenaline and ATP stimulates growth in human vascular SMC. This suggests a role of the sympathetic co-transmitters in modulating vascular tone, but also by inducing hypertrophy/hyperplasia with possible clinical consequences.  相似文献   

2.
Neuropeptide Y (NPY)-immunoreactive nerve fibers were numerous around arteries and few around veins. NPY probably co-exists with noradrenaline in such fibers since chemical or surgical sympathectomy eliminated both NPY and noradrenaline from perivascular nerve fibers and since double staining demonstrated dopamine-beta-hydroxylase, the enzyme that catalyzes the conversion of dopamine to noradrenaline, and NPY in the same perivascular nerve fibers. Studies on isolated blood vessels indicated that NPY is not a particularly potent contractile agent in vitro. NPY greatly enhanced the adrenergically mediate contractile response to electrical stimulation and to application of adrenaline, noradrenaline or histamine, as studied in the isolated rabbit gastro-epiploic and femoral arteries. The potentiating effect of NPY on the response to electrical stimulation is probably not presynaptic since NPY affected neither the spontaneous nor the electrically evoked release of [3H]noradrenaline from perivascular sympathetic nerve fibers.  相似文献   

3.
Neuropeptide Y (NPY) is widely distributed in central and peripheral neurons. In sympathetic postganglionic neurons, NPY coexists with noradrenaline. NPY and its structural relative peptide YY (PYY) appear to exert three principally different effects at the sympathetic neuroeffector junction. Firstly, NPY has a direct postjunctional effect; this effect is manifested as a vasoconstriction when studied on the guinea pig iliac vein. Secondly, NPY has an indirect postjunctional effect in that it potentiates the response to various vasoconstrictors; this was studied on the rabbit femoral artery and vein, using noradrenaline and histamine, respectively, as vasoconstrictors. Thirdly, NPY acts prejunctionally in that it suppresses the release of noradrenaline from sympathetic nerve terminals; this was studied in the rat vas deferens. The aim of the investigation was to examine whether the three effects of NPY were mediated by the same type of receptor. For this purpose, we examined the effects of a series of NPY-related peptides, namely NPY, PYY, desamido-NPY, and five C-terminal fragments (NPY 19-36, NPY 24-36, PYY 13-36, PYY 24-36 and PYY 27-36). NPY and PYY were active in all three assay systems. The C-terminal amide appears to be crucial for maintaining the biological activity, since desamido-NPY was inactive in the three test systems. Interestingly, PYY 13-36 was almost as active as NPY and PYY in suppressing the electrically evoked contractions of the vas deferens; PYY 13-36 was inactive in the two other test systems. None of the shorter fragments had any biological activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effects of neuropeptide Y (NPY), peptide YY (PYY), desamido-NPY and five C-terminal fragments of NPY or PYY were tested on different smooth muscle preparations in vitro. The fragments were NPY 19-36, NPY 24-36, PYY 13-36, PYY 24-36 and PYY 27-36. NPY and PYY appear to exert three principally different effects at the level of the sympathetic neuroeffector junction. Firstly, they have a direct post-junctional effect, leading to constriction of certain blood vessels; this was studied on the guinea-pig iliac vein. Secondly, they potentiate the response to various vasoconstrictors; this was studied on the rabbit femoral artery and vein, using noradrenaline and histamine, respectively, as agonists. Thirdly, NPY and PYY act prejunctionally in that they suppress the release of noradrenaline from sympathetic nerve endings upon stimulation; this was studied in the rat vas deferens. NPY and PYY were approximately equipotent in constricting the guinea-pig iliac vein, while desamido-NPY and the fragments were without effect. Desamido-NPY and the fragments were ineffective also in potentiating the response to noradrenaline in the rabbit femoral artery, nor did they potentiate the response to histamine in the rabbit femoral vein. NPY and PYY potentiated the response to noradrenaline in the artery, as well as the response to histamine in the vein. The NPY- and PYY-induced suppression of noradrenaline release from the prostatic portion of the rat vas deferens was reproduced by PYY 13-36 but not by the shorter fragments nor by desamido-NPY. In conclusion, a C-terminal portion seems to be sufficient for exerting the prejunctional effect of NPY and PYY, while the whole sequence seems to be required for post-junctional (direct and modulatory) effects. An amidated C-terminal is crucial for maintaining the biological activity of NPY. Desamido-NPY and the fragments that were inactive as agonists also seemed inactive as antagonists.  相似文献   

5.
Neuropeptide Y and sympathetic vascular control in man   总被引:7,自引:0,他引:7  
A parallel increase in systemic plasma levels of neuropeptide Y (NPY)-like immunoreactivity (LI) and noradrenaline (NA) was found during thoracotomy and surgery involving cardiopulmonary bypass in man. Thus, plasma levels of NPY-LI increased from 29 +/- 4 pmol/l before anaesthesia to 59 +/- 10 after thoracotomy and to 87 +/- 8 pmol/l upon cardiopulmonary bypass. The corresponding NA levels increased from 1.3 +/- 0.1 nmol/l before anaesthesia to 3.0 +/- 0.6 and 4.2 +/- 5 nmol/l after thoracotomy and cardiopulmonary bypass, respectively. A significant correlation was found between plasma levels of NPY-LI and NA during the operation but not between NPY-LI and adrenaline. The NPY-LI in human plasma was found to be similar to synthetic porcine NPY on reversed phase high performance liquid chromatography. Human submandibular arteries contained high levels of NPY-LI (24 +/- 3 pmol/g). In in vitro experiments on isolated human submandibular arteries, NPY in low concentrations (1000 pmol/l) was found to potentiate the contractile effects of NA or transmural nerve stimulation and to exert vasoconstrictor activity per se in higher concentrations. The calcium-entry antagonist nifedipine abolished both the NPY-induced contractions and the enhancement of NA-evoked contractions. NPY depressed the nerve stimulation-evoked 3H-NA release from human submandibular arteries via a prejunctional mechanism which was resistant to nifedipine. NPY contracted human mesenteric veins and renal arteries, but not mesenteric arteries. In conclusion, NPY seems to be co-released with NA upon sympathetic activation in man. Furthermore, NPY exerts both pre- and postjunctional effects on sympathetic control of human blood vessels.  相似文献   

6.
The effects of electrical stimulation of the stellate ganglia on the arterio-venous concentration differences of neuropeptide Y (NPY)-like immunoreactivity (LI) over the pig heart were studied in vivo in relation to changes in heart rate and left ventricular pressure. Furthermore, the effects of NPY on coronary vascular tone were analysed in vivo and in vitro. Stellate ganglion stimulation at a high frequency (10 Hz) caused a clear-cut, long lasting increase in plasma levels of NPY-LI in the coronary sinus compared to the aorta, suggesting release of this peptide from sympathetic terminals within the heart. The stimulation-evoked overflow of NPY-LI from the heart was enhanced about 3-fold by alpha-adrenoceptor blockade using phenoxybenzamine, suggesting that NPY release is under prejunctional inhibitory control by noradrenaline (NA). Combined alpha- and beta-adrenoceptor blockade abolished most of the positive inotropic response of the heart upon stellate ganglion stimulation, while a considerable positive chronotropic effect remained. After guanethidine treatment, stellate ganglion stimulation still produced a small positive inotropic and chronotropic effect on the heart. The stimulation evoked NPY overflow was markedly reduced by guanethidine indicating an origin from sympathetic nerve terminals. Injection of NPY into the constantly perfused left anterior descending artery in vivo caused a long lasting, adrenoceptor antagonist resistant increase in perfusion pressure, suggesting coronary vasoconstriction. NPY contracted coronary arteries in vitro via a nifedipine-sensitive mechanism. NA dilated coronary vessels both in vivo and in vitro via beta-adrenoceptor activation. It is concluded that sympathetic nerve stimulation increases overflow of NPY-LI from the heart suggesting release from cardiac nerves in vivo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Abstract: Neuropeptide Y (NPY) appears to be involved in the sympathetic regulation of vascular tone. To assess the putative role of NPY in mesenteric circulation, the release and biological effect of NPY were examined after electrical stimulation of perimesenteric arterial nerves. Nerve stimulation with trains of 2–30 Hz increased the perfusion pressure of the arterially perfused rat mesenteric bed in a frequency- and time-dependent fashion. Trains of 15–30 Hz significantly displaced to the left, approximately threefold, the noradrenaline (NA)-induced pressor concentration-response curve, in addition to increasing significantly its efficacy. Perfusion with 10 nM exogenous NPY mimicked the electrical stimulation effect, causing a threefold leftward shift of the NA concentration-response curve and increasing the maximal NA response. These effects were antagonized by 100 nM BIBP 3226, indicating the activity of NPY-Y1 receptors. Electrical stimulation of the perimesenteric nerves released immunoreactive NPY (ir-NPY) in a frequency-dependent fashion; the ir-NPY coelutes with synthetic NPY as confirmed by HPLC. Both the electrically induced pressor response and the calcium-dependent release of NPY were obliterated in preparations perfused with 1 µM guanethidine or in rats pretreated intravenously for 48 h with 6-hydroxydopamine, thus revealing the sympathetic origin of these phenomena. Only a small proportion of the total NPY content in the perimesenteric arterial nerves is released after electrical stimulation. Chromatographic studies of the physiological sources of the ir-NPY support that NPY fragments are generated via peptidase degradation. The present findings demonstrate that NPY is released from the perimesenteric arterial sympathetic nerves and acts, via the activation of NPY-Y1 receptors, as the mediator responsible for the potentiation of NA's effect on perfusion pressure in the isolated rat mesenteric bed.  相似文献   

8.
The electrically evoked release of radioactivity from mouse vas deferens and rat hypothalamic slices preloaded with [3H]noradrenaline was measured. In addition the release of [3H]acetylcholine from longitudinal muscle strip of guinea-pig ileum was also measured. Neurochemical evidence has been obtained that neuropeptide Y (NPY), although it co-exists and is released with (-)-noradrenaline (NA), it behaves differently as far as its effect on presynaptic modulation of chemical neurotransmission is concerned. It exerts a frequency-dependent presynaptic inhibitory effect on noradrenaline release from mouse vas deferens but has no effect on the electrically evoked release of NA from rat hypothalamus. Unlike NA, NPY does not influence the release of [3H]acetylcholine from the longitudinal muscle strip of guinea-pig ileum and does not potentiate the presynaptic effect of NA. It seems very likely, that the inhibitory effect of NPY is mediated via receptors. Its action is concentration dependent. While exogenous noradrenaline inhibited the release of noradrenaline by 91%, the maximum inhibition reached with NPY was not higher than 60%, indicating that either the intrinsic activity of NPY is lower or much less axon terminals are equipped with NPY receptors. Peptide YY (PYY) also reduced the release of NA from mouse vas deferens.  相似文献   

9.
The effect of neuropeptide Y (NPY) on the increase in skeletal muscle vascular resistance caused by exogenous noradrenaline and by sympathetic stimulation was examined in gracilis muscles of anaesthetised dogs. NPY potentiated the increases in resistance caused by both of these to similar degrees. Although NPY itself often caused an elevation in the basal resistance, correlation coefficients for the percentage increase in basal resistance due to NPY and the percentage increase in the evoked sympathetic and noradrenergic responses in the presence of NPY indicated that it was the NPY itself (rather than the increase in basal resistance per se) which was responsible for the potentiation. The potentiation was apparently biphasic, with an initial peak in response during the first 20 min following administration of NPY followed by a secondary peak between 30 and 60 min. Radioimmunoassay for plasma levels of NPY indicated that the secondary increase of vascular resistance was not associated with a secondary peak in the plasma level of NPY.  相似文献   

10.
Neurotransmitters and neuropeptides play important roles in the regulation of various neuroendocrine functions particularly feeding. The aim of this study was to investigate whether a functional interaction occurs among neuropeptide Y (NPY) at NPY Y1 receptors and noradrenaline overflow, as this may contribute to the regulation of appetite. The release of endogenous noradrenaline and its metabolite 3,4-dihydroxyphenylglycol (DHPG) were examined from hypothalamic and medullary prisms using the technique of in vitro superfusion and high performance liquid chromatography (HPLC) with coulometric detection. Noradrenaline and DHPG overflow was investigated at rest, in response to NPY (0.1 μM) and in response to the NPY Y1 receptor agonist, [Leu31,Pro34]NPY (0.1 μM). Perfusion with NPY and [Leu31,Pro34]NPY significantly reduced noradrenaline overflow from the hypothalamus and medulla. Perfusion with NPY and [Leu31,Pro34]NPY was without significant effect on hypothalamic DHPG overflow, while medullary DHPG overflow was significantly reduced by NPY and [Leu31,Pro34]NPY. Results from this study provide evidence of NPY Y1 receptor-mediated inhibition of noradrenaline release in the hypothalamus and medulla, further illustrating a complex interaction between neurotransmitters and neuropeptides within the rat brain.  相似文献   

11.
The roles of neuropeptide Y (NPY) and noradrenaline (NA) in sympathetic neurotransmission to large arteries and veins were studied in vitro using the thoracic portions of the aorta and inferior vena cava from guinea-pigs. Both vessels are densely innervated by axons containing NA and NPY. Repetitive transmural stimulation at 2-30 Hz produced contractions of the aorta, which were abolished by prazosin. NPY did not have significant postsynaptic or presynaptic effects on vascular tone of the aorta. Transmural stimulation of the vena cava produced long-lasting contractions which were enhanced by alpha- and beta-adrenoceptor antagonists, and were blocked by guanethidine. Precontracted venae cavae responded to sympathetic stimulation with beta-adrenoceptor-mediated relaxation, followed by contraction. alpha-Adrenoceptor blockade delayed the onset of neurogenic contractions. NPY was a potent contractile agent of the vena cava (EC50 approximately 1.5 x 10(-8) M). A high concentration (3 x 10(-6) M) of NPY, or the specific NPY Y1 receptor agonist, [Leu31, Pro34]NPY, caused parallel, and reversible, desensitization of contractions produced by sympathetic nerve stimulation, and by low concentrations of exogenous NPY. This provides good evidence that NPY is the mediator of the non-adrenergic sympathetic contractions of the vena cava. Furthermore, these results demonstrate that differential location or coupling of postsynaptic receptors for NA and NPY in the aorta and vena cava, leads to differential participation by these substances in sympathetic vasomotor responses. This is likely to be related to the different functions of these two parts of the systemic circulation.  相似文献   

12.
Neuropeptide Y (NPY) and noradrenaline (NA) are co-transmitters at many sympathetic synapses, but it is not yet clear if their release is independently regulated. To address this question, we quantified the electrically evoked release of these co-transmitters from perivascular nerve terminals to the mesenteric circulation in control and drug-treated rats. 6-Hydroxydopamine reduced the tissue content and the electrically evoked release of ir-NPY and NA as well as the rise in perfusion pressure. A 0.001 mg/kg reserpine reduced the content of ir-NPY and NA, but did not modify their release nor altered the rise in perfusion pressure elicited by the electrical stimuli. However, 0.1mg/kg reserpine reduced both the content and release of NA but decreased only the content but not the release of ir-NPY; the rise in perfusion pressure was halved. Clonidine did not affect the release of ir-NPY while it lowered the outflow of NA, not altering the rise in perfusion pressure elicited by the electrical stimuli. Yohimbine, did not modify the release of ir-NPY but increased the NA outflow, it antagonized the clonidine effect. Therefore, presynaptic alpha2-adrenoceptors modulate the release of NA but not NPY, implying separate regulatory mechanisms.  相似文献   

13.
The presence of neuropeptide Y (NPY)-like immunoreactivity (-LI) in sympathetic perivascular nerves and the functional effects of NPY and noradrenaline (NA) on vascular tone were studied in skeletal muscle of various species. A dense network of NPY-LI was found around arteries and arterioles but not venules in the gluteus maximus muscle of man, gracilis muscle of dog, tenuissimus muscle of rabbit and quadriceps muscle of cat, rat, guinea pig and pig. The distribution of NPY-immunoreactive (-IR) nerves was closely correlated to the presence of tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH)-positive fibers, two markers for noradrenergic neurons. Double-staining experiments revealed that NPY- and TH-IR as well as NPY- and DBH-IR nerve fibers around arteries and arterioles were identical. The veins and venules, however, lacked or had a very sparse innervation of NPY-, TH- and DBH-positive fibers. The NPY- and TH-IR nerves in quadriceps muscle of the guinea pig were absent after treatment with 6-hydroxydopamine. Lumbosacral sympathetic ganglia from the same species contained many NPY-positive cells which were also TH- and DBH-IR. NPY-LI was also detected by radioimmunoassay in extracts of skeletal muscle from guinea pig, rabbit, dog, pig and man as well as of lumbosacral sympathetic ganglia. The content of NPY-LI in skeletal muscle was relatively low (0.1-0.4 pmol/g), whereas lumbosacral sympathetic ganglia had a much higher content (48-88 pmol/g). NPY (10(-7) M) contracted arterioles in the tenuissimus muscle of the rabbit to a similar extent (by 65%) as NA (10(-6) M), as studied by intravital microscopy in vivo. NPY had no effect on the corresponding venules while NA caused a slight contraction of these vessels. In vitro studies of small human skeletal muscle arteries and veins revealed that NPY was more potent than NA in contracting the arteries, and the highest concentration of NPY (5 x 10(-7) M) caused a contraction of a similar magnitude as NA 10(-5) M. NA contracted veins from human skeletal muscle, while NPY had only small effects. It is suggested that NPY, together with NA, could be of importance for sympathetic control of skeletal muscle blood flow.  相似文献   

14.
The sympathetic nervous system is an important determinant of vascular function. The effects of the sympathetic nervous system are mediated via release of neurotransmitters and neuropeptides from postganglionic sympathetic neurons. The present study tests the hypothesis that vascular smooth muscle cells (VSM) maintain adrenergic neurotransmitter/neuropeptide expression in the postganglionic sympathetic neurons that innervate them. The effects of rat aortic and tail artery VSM (AVSM and TAVSM, respectively) on neuropeptide Y (NPY) and tyrosine hydroxylase (TH) were assessed in cultures of dissociated sympathetic neurons. AVSM decreased TH (39 +/- 12% of control) but did not affect NPY. TAVSM decreased TH (76 +/- 10% of control) but increased NPY (153 +/- 20% of control). VSM expressed leukemia inhibitory factor (LIF) and neurotrophin-3 (NT-3), which are known to modulate NPY and TH expression. Sympathetic neurons innervating blood vessels expressed LIF and NT-3 receptors. Inhibition of LIF inhibited the effect of AVSM on TH. Inhibition of neurotrophin-3 (NT-3) decreased TH and NPY in neurons grown in the presence of TAVSM. These data suggest that vascular-derived LIF decreases TH and vascular-derived NT-3 increases or maintains NPY and TH expression in postganglionic sympathetic neurons. NPY and TH in vascular sympathetic nerves are likely to modulate NPY and/or norepinephrine release from these nerves and are thus likely to affect blood flow and blood pressure. The present studies suggest a novel mechanism whereby VSM would modulate sympathetic control of vascular function.  相似文献   

15.
Neuropeptide Y (NPY) is a cotransmitter with noradrenaline in guinea pig inferior mesenteric vein. Tyrosine hydroxylase-like immunoreactivity and NPY-like immunoreactivity were colocalized in a dense network of fibers within the adventitial layer of guinea-pig inferior mesenteric vein. Vasoconstrictor responses to electrical field stimulation (0.2-64 Hz, 0.1 ms, 12 V, for 10 s) appear to be mediated primarily by norepinephrine at 0.2 to 4 Hz and by NPY at 8 to 64 Hz. NPY Y1 receptors mediate the contractile responses to both endogenous and exogenous NPY. Norepinephrine and NPY are involved in neuromuscular transmission in guinea pig mesenteric vein suggesting that the sympathetic nervous system requires the coordinated action of norepinephrine and NPY to serve capacitance.  相似文献   

16.
在外周交感神经系统内;神经递质或神经肽类物质主要存在于大、小囊泡内;递质共存的现象在交感神经内不断得以发现,去甲肾上腺素和乙酰胆碱、神经肽Y、脑啡肽、P物质、血管活性肠肽、生长抑素、神经降压素、降钙素基因相关肽等物质共存的证实,扩大了交感神经递质的调节范围,递质之间网络式的相互调节作用有着重要的生理意义。  相似文献   

17.
在外周交感神经系统内,神经递质或神经肽类物质主要存在于大、小囊泡内;递质共存的现象在交感神经内不断得以发现.去甲肾上腺素和乙酰胆碱、神经肽Y、脑啡肽、P物质、血管活性肠肽、生长抑素、神经降压素、降钙素基因相关肽等物质共存的证实,扩大了交感神经递质的调节范围,递质之间网络式的相互调节作用有着重要的生理意义。  相似文献   

18.
Nerves containing noradrenaline were studied by formaldehyde-induced fluorescence and neuropeptide Y (NPY) was visualised by immunohistochemistry in the human ovary, Fallopian tube and uterus. All structures were richly supplied with noradrenergic fibres closely associated with the vascular and non-vascular smooth musculature. NPY-containing nerve terminals were consistently fewer, particularly in the ovary. The best developed nerve supply was found in the tubal isthmus and uterine cervix. Vessels were usually innervated by plexuses of nerves, containing NPY as well as noradrenaline. The discrepancy between the number of the two types of histochemically distinguishable nerves suggests that, if noradrenaline and NPY are co-localised in one and the same nerve, this is not a constant phenomenon in the human female reproductive tract.  相似文献   

19.
Vasoactive intestinal peptide (VIP), peptide histidine isoleucine (PHI) and neuropeptide Y (NPY) are neuropeptides present in all layers of the small intestine. NPY-immunoreactive fibres in the gut seem to derive from two sources. One population is of extramural (sympathetic) origin and contains noradrenaline, another is of intramural origin and does not contain noradrenaline. In the present study of mouse, rat and pig, immunocytochemistry showed immunoreactive PHI to coexist completely with immunoreactive VIP. This was predictable, since VIP and PHI derive from the same precursor. In addition, however, VIP and PHI were found to coexist with immunoreactive NPY in non-adrenergic (but not in adrenergic) nerve fibres and nerve cell bodies. This coexistence was unexpected, since the VIP precursor does not contain NPY-like sequences.  相似文献   

20.
The release of noradrenaline (NA) together with its possible cotransmitter neuropeptide Y (NPY) was investigated in the perfused dog spleen. The splenic nerve was stimulated electrically at high frequency with bursts, which evoked a simultaneous release of both substances. Infusion of the alpha 2-adrenergic blocking agents idazoxan or hydergine enhanced the amount of NA and NPY in the venous effluent. The present results demonstrate the concomitant release of a classical neurotransmitter and a neuropeptide, and suggest that at high frequency stimulation, regulation of their release operates very similarly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号