首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adult mouse brain contains at least two distinct spectrin subtypes, both consisting of 240-kD and 235-kD subunits. Brain spectrin(240/235) is found in neuronal axons, but not dendrites, when immunohistochemistry is performed with antibody raised against brain spectrin isolated from enriched synaptic/axonal membranes. A second spectrin subtype, brain spectrin(240/235E), is exclusively recognized by red blood cell spectrin antibody. Brain spectrin(240/235E) is confined to neuronal cell bodies and dendrites, and some glial cells, but is not present in axons or presynaptic terminals.  相似文献   

2.
In a companion review1 we discussed the data supporting the conclusion that at least two subtypes of spectrin exist in mammalian brain. One form is found in the cell bodies, dendrites, and post-synaptic terminals of neurons (brain spectrin(240/235E)) and the other subtype is located in the axons and presynaptic terminals (brain spectrin(240/235)). Our recent understanding of brain spectrin subtype localization suggests a possible explanation for a conundrum concerning brain 4.1 localization. Amelin, an immunoreactive analogue of red blood cell (rbc) cytoskeletal protein 4.1, is localized in neuronal cell bodies and dendrites when brain sections are stained with antibody against rbc protein 4.1. However, it has recently been suggested that synapsin I, a neuron-specific phosphoprotein associated with the cytoplasmic surface of small synaptic vesicles, is related to erythrocyte 4.1. In this review we hypothesize that there are at least two forms of brain 4.1: a cell body/dendritic form (amelin) which is detected with rbc protein 4.1 antibody, and a unique form found exclusively in the presynaptic terminal (synapsin I). The binding of synapsin I to brain spectrin(240/235), and its ability to stimulate the spectrin/F-actin interaction in a phosphorylation-dependent manner suggests a model for the regulation of synaptic transmission mediated by the neuronal cytoskeleton.  相似文献   

3.
The effects of aldehyde fixatives on immunochemical detection of cytoskeletal proteins were demonstrated by applying several quantitative assays to evaluate antigen conservation. Immunologically detectable brain spectrin (240/235) was measured by dot-immunobinding and quantitative immunodot assay using a polyclonal antibody. Paraformaldehyde fixation led to a 43-66% reduction in brain spectrin (240/235) immunodetection, and increasing glutaraldehyde concentrations decreased the immunological detection even more. Quantitative cryosection immunoassay and immunocytochemical localization confirmed the aldehyde sensitivity of brain spectrin (240/235). Brain spectrin (240/235) immunoreactivity decreased with increasing protein crosslinking and was dependent on glutaraldehyde concentration and post-fixation period. The assays were also used to test for conservation of antigenicity of neurofilament proteins by two monoclonal antibodies. Neurofilament detection was abolished in brain tissue after aldehyde fixation. The described methods allow screening within 24 hr of many fixation conditions by use of purified proteins as well as brain tissue samples, and allow an estimate of fixative influence on the conservation of protein antigenicity.  相似文献   

4.
The distribution of two isoforms of spectrin in the adult mouse heart was investigated by Western blotting and immunocytochemistry by use of monospecific antibodies to erythrocyte spectrin and nonerythroid brain spectrin (240/235). Western blotting revealed proteins analogous to both isoforms of -spectrin in adult heart. Light-microscopic immunocytochemistry indicated that erythroid spectrin was distributed throughout the myocardium, with immunofluorescence localized to plasma membranes, Z-lines, and intercalated discs. Antibodies to brain spectrin (240/235) exhibited staining throughout the heart, with a generally diffuse distribution except for the prominent immunoreactivity associated with the intercalated discs. Nonerythroid spectrin immunofluorescence was detected in the endothelial cells of the endocardium and the mesothelial cell lining of the epicardium. Erythrocyte spectrin was not detected in the endocardium or the epicardium. The identification and localization of spectrin isoforms in the mammalian heart suggest the importance of spectrin proteins in the structural integrity and proper function of cardiac cells and tissues. This is the first demonstration of two different -spectrin subunits in the mammalian heart.  相似文献   

5.
The in vitro degradation of microtubule-associated protein 2 (MAP-2) and spectrin by the calcium-dependent neutral protease calpain was studied. Five major results are reported. First, MAP-2 isolated from twice-cycled microtubules (2 X MT MAP-2) was extremely sensitive to calpain-induced hydrolysis. Even at an enzyme-to-substrate ratio (wt/wt) of 1:200, 2 X MT MAP-2 was significantly degraded by calpain. Second, MAP-2 purified from the total brain heat-stable fraction (total MAP-2) was significantly more resistant to calpain-induced hydrolysis compared with 2 X MT MAP-2. Third, MAP-2a and MAP-2b were proteolyzed similarly by calpain, although some relative resistance of MAP-2b was observed. Fourth, the presence of calmodulin significantly increased the extent of calpain-induced hydrolysis of the alpha-subunit of spectrin. Fifth, the two neuronal isoforms of brain spectrin (240/235 and 240/235E, referred to as alpha/beta N and alpha/beta E, respectively) showed different sensitivities to calpain. alpha N-spectrin was significantly more sensitive to calpain-induced degradation compared to alpha E-spectrin. Among other things, these results suggest a role for the calpain-induced degradation of MAP-2, as well as spectrin, in such physiological processes as alterations in synaptic efficacy, dendritic remodeling, and in pathological processes associated with neurodegeneration.  相似文献   

6.
Brain spectrin reassociates in in vitro binding assays with protein(s) in highly extracted brain membranes quantitatively depleted of ankyrin and spectrin. These newly described membrane sites for spectrin are biologically significant and involve a protein since (a) binding occurs optimally at physiological pH (6.7-6.9) and salt concentrations (50 mM), (b) binding is abolished by digestion of membranes with alpha-chymotrypsin, (c) Scatchard analysis is consistent with a binding capacity of at least 50 pmol/mg total membrane protein, and highest affinity of 3 nM. The major ankyrin-independent binding activity of brain spectrin is localized to the beta subunit of spectrin. Brain membranes also contain high affinity binding sites for erythrocyte spectrin, but a 3-4 fold lower capacity than for brain spectrin. Some spectrin-binding sites associate preferentially with brain spectrin, some with erythrocyte spectrin, and some associate with both types of spectrin. Erythrocyte spectrin contains distinct binding domains for ankyrin and brain membrane protein sites, since the Mr = 72,000 spectrin-binding fragment of ankyrin does not compete for binding of spectrin to brain membranes. Spectrin binds to a small number of ankyrin-independent sites in erythrocyte membranes present in about 10,000-15,000 copies/cell or 10% of the number of sites for ankyrin. Brain spectrin binds to these sites better than erythrocyte spectrin suggesting that erythrocytes have residual binding sites for nonerythroid spectrin. Ankyrin-independent-binding proteins that selectively bind to certain isoforms of spectrin provide a potentially important flexibility in cellular localization and time of synthesis of proteins involved in spectrin-membrane interactions. This flexibility has implications for assembly of the membrane skeleton and targeting of spectrin isoforms to specialized regions of cells.  相似文献   

7.
The retinal pigmented epithelium (RPE) is a simple cuboidal epithelium with apical processes which, unlike many epithelia, do not extend freely into a lumen but rather interdigitate closely with the outer segments of the neural retina. To determine whether this close association was reflected in the cytoskeletal organization of the RPE, we studied the components of the cytoskeleton of the RPE and their localization in the body of the cell and in the apical processes. By relative mobility on SDS gels and by immunoblotting, we identified actin, vimentin, myosin, spectrin (240/235), and alpha-actinin as major components, and vinculin as a minor component. In addition, the RPE cytoskeleton contains polypeptides of Mr 280,000 and 250,000; the latter co-electrophoreses with actin-binding protein. By immunofluorescence, the terminal web region appeared similar to the comparable region of the intestinal epithelium that consists of broad belts of microfilaments containing myosin, actin, spectrin, and alpha-actinin. However, the components of the apical processes were very different from those of intestinal microvilli. We observed staining along the process for myosin, actin, spectrin, alpha-actinin, and vinculin. The presence in the apical processes of contractile proteins and also of proteins typically found at sites of cell attachments suggests that the RPE may actively adhere to, and exert tension on, the neural retina.  相似文献   

8.
Contributions of the beta-subunit to spectrin structure and function   总被引:6,自引:0,他引:6  
The three avian spectrins that have been characterized consist of a common alpha-subunit (240 kD) paired with an isoform-specific beta-subunit from either erythrocyte (220 or 230 kD), brain (235 kD), or intestinal brush border (260 kD). Analysis of avian spectrins, with their naturally occurring "subunit replacement" has proved useful in assessing the relative contribution of each subunit to spectrin function. In this study we have completed a survey of avian spectrin binding properties and present morphometric analysis of the relative flexibility and linearity of various avian and human spectrin isoforms. Evidence is presented that, like its mammalian counterpart, avian brain spectrin binds human erythroid ankyrin with low affinity. Cosedimentation analysis demonstrates that 1) avian erythroid protein 4.1 stimulates spectrin-actin binding of both mammalian and avian erythrocyte and brain spectrins, but not the TW 260/240 isoform, 2) calpactin I does not potentiate actin binding of either TW 260/240 or brain spectrin, and 3) erythrocyte adducin does not stimulate the interaction of TW 260/240 with actin. In addition, a morphometric analysis of rotary-shadow images of spectrin isoforms, individual subunits, and reconstituted complexes from isolated subunits was performed. This analysis revealed that the overall flexibility and linearity of a given spectrin heterodimer and tetramer is largely determined by the intrinsic rigidity and linearity of its beta-spectrin subunit. No additional rigidity appears to be imparted by noncovalent associations between the subunits. The scaled flexural rigidity of the most rigid spectrin analyzed (human brain) is similar to that reported for F-actin.  相似文献   

9.
V. Bennett  J. Steiner  J. Davis 《Protoplasma》1988,145(2-3):89-94
Summary The purpose of this review is to summarize recent progress in understanding interactions of spectrin with membranes from brain and other tissues. Spectrin has at least two choices in linkages with the membrane, one through ankyrin, which in turn is associated with integral membrane proteins, and another linkage directly with integral membrane sites identified recently in brain membranes. Some of the integral membrane protein sites in brain bind preferentially with one spectrin isoform, while some can interact with both erythroid and the general isoform of spectrin. Ankyrin also has different isoforms, and these exhibit specificity in binding to spectrin isoforms and associate with distinct integral membrane proteins. The membrane binding sites for ankyrin include several integral membrane proteins, which are differentially expressed in different cells: the anion exchanger of intercalated cells of mammalian kidney, the sodium/potassium ATPase of kidney, and the voltage-dependent sodium channel of neurons. Ankyrin is present in many other cell types and it is likely that additional ankyrin-binding proteins will be identified. Each of the proteins that now are candidates for ankyrin binding proteins are ion channels or transporters and are localized in specialized cellular domains. The polarized localization of the ankyrin-associated membrane proteins is an essential aspect of their function at a physiological level. Spectrin and ankyrin thus exhibit an unsuspected diversity in protein linkages and have the potential for cell domain-specific interactions with a variety of membrane proteins.  相似文献   

10.
Annexins 1 and 2 are Ca(2+)-binding proteins related to the cytoskeletal proteins which have been reported to bind in a calcium-dependent manner of F-actin and phospholipids in vitro. Proteins immunologically related to the brain 37-kDa annexin 1 and 36-kDa annexin 2 were characterized by immunoblotting epithelial ciliated cells from quail oviduct. They were detected by immunofluorescence in ciliated as well as glandular cells, using antisera and purified antibodies directed against pig brain annexins. The pattern of labeling was found in the apical part of both cell types, with close membrane association. However, a wider distribution was observed in mature ciliated cells: annexins were localized in the well developed cytoskeletal meshwork in which the ciliary apparatus is tightly anchored. After immunogold labeling, annexins 1 and 2 were located in the same area as spectrin 240/235 and at the connection sites of F-actin; both these cytoskeletals proteins were associated with the appendages of the basal body. In contrast, annexins were not detected in immature epithelial cells, while actin and spectrin were present. During ciliogenesis, the staining gradually appeared associated with the lateral and apical membranes. In this cellular model, the annexins may function during exocytosis in gland epithelial cells, where a close cytoskeleton-membrane association is observed; moreover, in ciliated cells, a relationship between cytoskeletal elements of the terminal web and annexins may exist.  相似文献   

11.
We have purified from a membrane fraction of bovine brain a calmodulin-binding protein (calspectin) that shares a number of properties with erythrocyte spectrin: It has a heterodimeric structure with Mr 240 000 and 235 000 and binds to (dimeric form) or crosslinks (tetrameric form) F-actin. We show that calspectin (tetramer) is capable of inducing the polymerization of G-actin to actin filaments by increasing nucleation under conditions where actin alone polymerizes at a much slower rate. Thus, brain calspectin behaves in the same manner as erythrocyte spectrin, supporting the idea that, in conjunction with actin oligomers it comprises the cytoskeletal meshwork underlying the cytoplasmic surface of the nerve cell.  相似文献   

12.
Spectrin and related molecules   总被引:14,自引:0,他引:14  
  相似文献   

13.
The membrane of chromaffin granule, the secretory vesicle of adrenal medullary cells storing catecholamines, enkephalins, and many other components, interacts with F-actin. Using low shear falling ball viscometry to estimate actin binding to membranes, we demonstrated that mitochondrial and plasma membranes from chromaffin cells also provoked large increases in viscosity of F-actin solutions. Mitochondrial membranes also had the capacity to cause complete gelation of F-actin. In addition, vasopressin-containing granules from neurohypophysial tissue were shown to bind F-actin and to increase the viscosity of F-actin solutions. Using an antibody directed against human erythrocyte spectrin, it was found that a spectrin-like protein was associated with secretory granule membrane, mitochondrial membrane, and plasma membrane. The chromaffin granule membrane-associated spectrin-like protein faces the cytoplasmic side, is composed of two subunits (240 kD and 235kD ), the alpha-subunit (240 kD, pHi5 .5) being recognized by the antibody. Nonionic detergents such as Triton X-100 or Nonidet P40 failed to release fully active spectrin-like protein. In contrast, Kyro EOB , a different nonionic detergent, was found to release spectrin-like protein while keeping intact F-actin binding capacity, at least below 0.5% Kyro EOB concentration. Chromaffin cells in culture were stained with antispectrin antibody, showing the presence of spectrin-like protein in the cell periphery close to the cell membrane but also in the cytoplasm. We conclude that in living cells the interaction of F-actin with chromaffin granule membrane spectrin observed in vitro is important in controlling the potential function of secretory vesicles.  相似文献   

14.
Higher eukaryotic ribosome biogenesis takes place in the nucleolus and requires the import of ribosomal proteins from the cytoplasm. The ribosomal protein S6 is essential for the formation of ribosome subunits, and in mice S6 heterozygosity triggers embryonal lethality. Downstream of the mTOR (mammalian target of rapamycin) and MAPK (mitogen-activated protein kinase) signalling pathways S6 protein is phosphorylated at clustered residues S235/236 and S240/244 upon numerous physiological and pathological stimuli. Here, we show that S240/244-phosphorylated S6 is predominantly nuclear but also detectable in the cytoplasm, whereas S235/236-phosphorylated S6 is almost exclusively localized to the nucleus of primary human cells and virtually undetectable in the cytoplasm. However, in transformed cells the latter can also be detected in the cytoplasm. Experiments with the mTOR inhibitor rapamycin revealed that neither blocking the phosphorylation of S6 at S235/236 and S240/244 nor arresting the cell cycle affects the cytoplasmic/nuclear localization of S6 protein. Our findings provide new insights into the regulation of S6 phosphorylation and S6 protein localization in mammalian cells.  相似文献   

15.
《The Journal of cell biology》1983,96(5):1491-1496
Previous studies have shown that molecules related to erythrocyte spectrin are present in the cortical cytoplasm of nonerythroid cells. We report here the localization by immunoelectron microscopy of one such molecule, TW-260/240, in the brush border of intestinal epithelial cells. Using highly specific antibodies against TW-260 and TW-240 as well as antibodies against fodrin, another spectrinlike molecule, we have found that the TW-260/240 molecules are displayed between rootlets at all levels of the terminal web. Occasionally, extended structures appear labeled suggestive of the fine filaments known to cross-link actin bundles. These results are in line with previous in vitro studies showing that TW-260/240 binds to, and cross-links, actin filaments. The results are discussed in terms of a model in which rootlets are immobilized in the terminal web in a matrix of TW-260/240.  相似文献   

16.
J R Glenney  P Glenney 《Cell》1983,34(2):503-512
Spectrin and related proteins are made up of a common calmodulin-binding subunit tightly associated with a variant subunit. We have analyzed the distribution of the variant subunits in various cell types using subunit-specific antibodies in immunofluorescence as well as western blotting and in some cases have compared the subunits by two-dimensional peptide mapping. We have found that in the majority of cell types (lymphocytes, hepatocytes, neurons, fibroblasts) fodrin 235 K is present in the absence of the other two variant subunits, spectrin 220 K and TW260. Two cell types were found (skeletal muscle and erythrocytes) which contained only the spectrin variant. Two cell types display two distinct variant subunits. Both fodrin 235 K and spectrin 220 K are detected in cardiac muscle whereas TW260 is present in addition to fodrin 235 K in intestinal epithelial cells. During the early stages of embryonic development of the chicken intestine, fodrin 235 K is expressed in the epithelial cells whereas TW260 and spectrin are not detectable. TW260 is expressed relatively late in development (15-16 days) and is inserted only in the apical (brush border) membrane compartment whereas fodrin 235 K is present in these same cells and underlies the entire plasma membrane. These results suggest that fodrin provides the general linkage system between microfilaments and the membrane in nonerythroid and nonmuscle cells.  相似文献   

17.
Fodrin (nonerythroid spectrin) from porcine brain was found to be phosphorylated on tyrosine residues by the purified insulin receptor kinase. The phosphorylation occurred in an insulin-sensitive manner with a physiologically relevant km. The beta(235 K) subunit of fodrin, but not the alpha(240 K) subunit, was phosphorylated by the kinase. Neither the alpha(240 K) subunit nor the beta(220 K) subunit of erythrocyte spectrin was phosphorylated under the same conditions. Fodrin phosphorylation by the purified insulin receptor kinase was markedly inhibited by F-actin. These data raise the possibility that tyrosine phosphorylation of fodrin plays some roles in the regulation of plasma membrane-microfilament interaction.  相似文献   

18.
Comparison of spectrin isolated from erythroid and non-erythroid sources   总被引:13,自引:0,他引:13  
Spectrin from erythrocytes and two other tissues (brain and intestine) were isolated from two distant species, pig and chicken; some structural and functional properties were compared. A quantitative antibody inhibition assay was used to determine that antibodies to mammalian red cell spectrin cross-react very poorly, if at all, with their non-erythroid (brain) counterpart and similarly antibodies to pig brain spectrin (fodrin) cross-react very weakly with erythroid spectrin. By contrast, antibodies which were directed against the 240000-Mr subunit of avian fodrin were completely inhibited with avian spectrin and vice versa. To analyze the structural relatedness of these molecules further we compared the chymotryptic iodinated peptide maps generated from each individual subunit. Consistent with the antibody results, we find little (less than 10%) homology between peptides derived from mammalian fodrin and spectrin, but complete homology (100%) of the peptides derived from the 240000-Mr subunits of chicken fodrin, spectrin and another related molecule from intestine, TW260/240. Whereas the peptide maps of fodrin (brain spectrin) revealed striking similarity between divergent species, suggesting a high degree of structural conservation, the peptide maps of erythrocyte spectrin was highly variable between species, indicating that it has diverged considerably in mammalian evolution. In addition we have compared a functional activity of mammalian spectrins, the ability to bind calmodulin, using two different assays. Both results show that, whereas fodrin-calmodulin interaction can be readily demonstrated, the binding to mammalian erythroid spectrin is negligible. This suggests that the high-affinity calmodulin site present on fodrin has been lost from spectrin in mammalian evolution.  相似文献   

19.
Clostridium botulinum D (strain South Africa) produces ADP-ribosyltransferase which modifies eukaryotic 24-26-kDa proteins. ADP-ribosyltransferase activity was associated with a neurotoxin of 150 kDa (Dsa toxin) as confirmed by the elution profile of Dsa toxin from high performance anion-exchange column. The 24-kDa substrate of Dsa toxin-catalyzed ADP-ribosylation was detected in several tissues examined including rat brain, heart, and liver; bovine adrenal medulla; sea urchin eggs; electric organs of electric fish; and cell lines of neural (N18, N1E115, NS20Y, NG108, PC12, and C6) and non-neural (3T3) origins, suggesting its ubiquitous localization in eukaryotic cells. On the other hand, the 26-kDa substrate was detected only in membrane fractions of neural tissues and neuronal cells, suggesting its specific localization in membrane of nerve terminals. ADP-ribosylation of both the 24-kDa substrate in PC12 membrane and the 24-26-kDa substrates in rat brain membrane was potentiated by either divalent cations or guanine nucleotides, whereas adenine nucleotides did not affect the ADP-ribosylation reaction. Trypsin digestion of the 24-kDa substrate in PC12 membrane and the 24-26-kDa substrates in rat brain membrane extract produced different tryptic fragments indicative of the structural difference between the 24- and 26-kDa substrates. Both the 24- and 26-kDa substrates were less sensitive to trypsin digestion before being ADP-ribosylated by Dsa toxin than after, suggesting the conformational alterations of the 24-26-kDa proteins induced by ADP-ribosylation. These results suggest that Dsa toxin modifies two distinct low molecular mass GTP-binding proteins by ADP-ribosylation to alter their putative function(s).  相似文献   

20.
Localization of fodrin, the brain equivalent of spectrin (a protein constituent of the erythrocyte membrane cytoskeleton), was investigated at the ultrastructural level in rat adrenal gland. By use of an affinity purified antibody directed against the alpha-fodrin subunit, all chromaffin cells, cortical cells, nerve fibers, and their surrounding Schwann cells were found to be labeled close to the cytoplasmic side of their plasma membranes. The labeling appeared more intense for chromaffin cells, and secretory granules and mitochondria were frequently found to be associated with the zone containing alpha-fodrin in these cells. The immunostained zone was estimated to extend 230 +/- 70 nm into the cytoplasm. This localization is discussed in terms of what is known of the properties of spectrin, and possible roles of the molecule in the chromaffin cell are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号