共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunoaffinity-purified insulin receptors were used to analyse and compare the serine/threonine sites phosphorylated on the insulin receptor in vitro (isolated receptor) with the insulin-stimulated phosphorylation in vivo (intact cells in culture). In vivo, insulin-stimulation resulted in the appearance of three phosphoserine-containing phosphopeptides and a distinct phosphothreonine peptide (threonine 1348). In vitro, similar phosphoserine peptides were observed but the phosphothreonine peptide was absent. These results indicate that multiple serine sites are phosphorylated in vivo and in vitro and that an additional protein kinase mediates insulin-stimulated insulin receptor threonine phosphorylation in vivo. 相似文献
2.
Xenopus MAP kinase activator is a serine/threonine/tyrosine kinase activated by threonine phosphorylation. 总被引:14,自引:9,他引:14 下载免费PDF全文
Xenopus MAP kinase activator, a 45 kDa protein, has been shown to function as a direct upstream factor sufficient for full activation and both tyrosine and serine/threonine phosphorylation of inactive MAP kinase. We have now shown by using an anti-MAP kinase activator antiserum that MAP kinase activator is ubiquitous in tissues and is regulated post-translationally. Activation of MAP kinase activator is correlated precisely with its threonine phosphorylation during the oocyte maturation process. It is a key question whether MAP kinase activator is a kinase or not. We have shown that Xenopus MAP kinase activator purified from mature oocytes is capable of undergoing autophosphorylation on serine, threonine and tyrosine residues. Dephosphorylation of purified activator by protein phosphatase 2A treatment inactivates its autophosphorylation activity as well as its activator activity. Thus, Xenopus MAP kinase activator is a protein kinase with specificity for both serine/threonine and tyrosine. Partial protein sequencing of purified activator indicates that it contains a sequence homologous to kinase subdomains VI and VII of two yeast protein kinases, STE7 and byrl. 相似文献
3.
In Streptomyces fradiae, calcium ions induce alterations in intensity and specificity of the secondary metabolism and stimulate aerial mycelium formation and sporulation. Using in vitro labeling, we demonstrate that in S. fradiae in the late exponential growth phosphorylation of 65-kDa membrane-associated protein is also influenced by Ca(2+) added exogenously. Calcium ions at physiological concentration stimulate intensive Ca(2+)-dependent phosphorylation of 65-kDa protein at multiple sites on serine, threonine, and tyrosine residues. Assay of protein kinases in situ demonstrated in the fraction of membrane-associated proteins the presence of two autophosphorylating protein serine/threonine kinases with molecular masses of 127 kDa and 65 kDa. Autophosphorylation of both proteins is also Ca(2+)-dependent. 相似文献
4.
Direct activation of the serine/threonine kinase activity of Raf-1 through tyrosine phosphorylation by the PDGF beta-receptor 总被引:114,自引:0,他引:114
We have examined the interaction between the serine/threonine kinase proto-oncogene product Raf-1 and the tyrosine kinase PDGF beta-receptor. Raf-1 tyrosine phosphorylation and kinase activity were increased by PDGF treatment of 3T3 cells or CHO cells expressing wild-type PDGF receptors but not mutant receptors defective in transmitting mitogenic signals, suggesting that the increase in Raf-1 kinase activity is a significant event in PDGF-induced mitogenesis. Concurrent with these increases, Raf-1 associated with the ligand-activated PDGF receptor. Furthermore, both mammalian Raf-1 and Raf-1 expressed using a recombinant baculoviral vector, associated in vitro with baculoviral-expressed PDGF receptor. This association was markedly decreased by prior phosphatase treatment of the receptor. Following incubation of partially purified baculoviral-expressed PDGF receptor with partially purified Raf-1, Raf-1 became phosphorylated on tyrosine and its serine/threonine kinase activity increased 4- to 6-fold. This is the first demonstration of the direct modulation of a protein activity by a growth factor receptor tyrosine kinase. 相似文献
5.
V Adler A Polotskaya F Wagner A S Kraft 《The Journal of biological chemistry》1992,267(24):17001-17005
The addition of phorbol esters to U937 leukemic cells stimulates the phosphorylation of c-Jun on serines 63 and 73. To isolate the protein kinase which stimulates this phosphorylation, we have used heparin-Sepharose chromatography followed by affinity chromatography over glutathione-Sepharose beads bound with a fusion protein of glutathione S-transferase and amino acids 5-89 of c-Jun (GST-c-Jun). Using this procedure we purify a 67-kDa protein which is capable of phosphorylating GST-c-Jun as well as the complete c-Jun protein. By making mutations in serines 63 and 73 and then creating a fusion protein with GST (GST-c-Jun mut), we demonstrate that this protein kinase specifically phosphorylates these sites in the c-Jun amino terminus. Treatment of purified c-Jun amino-terminal protein kinase (cJAT-PK) with phosphatase 2A inhibits its ability to phosphorylate GST-c-Jun. This inactivated enzyme can be reactivated by phosphorylation with protein kinase C (PKC), although PKC is not capable of phosphorylating the GST-c-Jun substrate. Because v-Jun cannot be phosphorylated in vivo, we compared the ability of cJAT-PK to bind to GST-v-Jun or GST-c-Jun mut. The cJAT-PK bound 50-fold better to GST-c-Jun mut than GST-v-Jun suggesting that the delta domain which is missing in v-Jun plays a role in binding the cJAT-PK. These results suggest that there is a protein kinase cascade mediated by protein phosphatases and PKC which regulates c-Jun phosphorylation. 相似文献
6.
7.
Murine protein serine/threonine kinase 38 (MPK38) is a member of the AMP-activated protein kinase-related serine/threonine kinase family that plays an important role in various cellular processes, including cell cycle, signaling pathways, and self-renewal of stem cells. Here we demonstrate a functional association between MPK38 and apoptosis signal-regulating kinase 1 (ASK1). The physical association between MPK38 and ASK1 was mediated through their carboxyl-terminal regulatory domains and was increased by H(2)O(2) or tumor necrosis factor alpha treatment. The use of kinase-dead MPK38 and ASK1 mutants revealed that MPK38-ASK1 complex formation was dependent on the activities of both kinases. Ectopic expression of wild-type MPK38, but not kinase-dead MPK38, stimulated ASK1 activity by Thr(838) phosphorylation and enhanced ASK1-mediated signaling to both JNK and p38 kinases. However, the phosphorylation of MKK6 and p38 by MPK38 was not detectable. In addition, MPK38-mediated ASK1 activation was induced through the increased interaction between ASK1 and its substrate MKK3. MPK38 also stimulated H(2)O(2)-mediated apoptosis by enhancing the ASK1 activity through Thr(838) phosphorylation. These results suggest that MPK38 physically interacts with ASK1 in vivo and acts as a positive upstream regulator of ASK1. 相似文献
8.
Autophagy is a cellular degradation process that is up-regulated upon starvation. Nutrition-dependent regulation of mTOR (mammalian target of rapamycin) is a major determinant of autophagy. RTK (receptor tyrosine kinase) signalling and AMPK (AMP-activated protein kinase) converge upon mTOR to suppress or activate autophagy. Nutrition-dependent regulation of autophagy is mediated via mTOR phosphorylation of the serine/threonine kinase ULK1 (unc51-like kinase 1). In the present study, we also describe ULK1 as an mTOR-independent convergence point for AMPK and RTK signalling. We initially identified ULK1 as a 14-3-3-binding protein and this interaction was enhanced by treatment with AMPK agonists. AMPK interacted with ULK1 and phosphorylated ULK1 at Ser(555) in vitro. Mutation of this residue to alanine abrogated 14-3-3 binding to ULK1, and in vivo phosphorylation of ULK1 was blocked by a dominant-negative AMPK mutant. We next identified a high-stringency Akt site in ULK1 at Ser(774) and showed that phosphorylation at this site was increased by insulin. Finally, we found that the kinase-activation loop of ULK1 contains a consensus phosphorylation site at Thr(180) that is required for ULK1 autophosphorylation activity. Collectively, our results suggest that ULK1 may act as a major node for regulation by multiple kinases including AMPK and Akt that play both stimulatory and inhibitory roles in regulating autophagy. 相似文献
9.
A structure-function analysis of serine/threonine phosphorylation of the thrombopoietin receptor, c-Mpl 总被引:6,自引:0,他引:6
Miyakawa Y Drachman JG Gallis B Kaushansky A Kaushansky K 《The Journal of biological chemistry》2000,275(41):32214-32219
Thrombopoietin (TPO), the critical regulator of platelet production, acts by binding to its cell surface receptor, c-Mpl. Numerous studies have shown that TPO binding leads to JAK2 kinase activation and Tyr phosphorylation of c-Mpl and several intracellular signaling intermediates, events vital for the biological activity of the hormone. In contrast, virtually nothing is known of the role of Ser or Thr phosphorylation of c-Mpl. By using phosphoamino acid analysis we found that Ser residues of c-Mpl were constitutively phosphorylated in receptor-bearing cells, levels that were increased following exposure of cells to TPO. To identify which residues were modified, and to determine the functional consequences of their phosphorylation, we generated a series of Ser to Ala mutations of a truncated c-Mpl receptor (T69) capable of supporting TPO-induced cell growth. Of the eight Ser within T69 we found that at least four are phosphorylated in TPO-stimulated cells. The mutation of each of these residues alone had minimal effects on TPO-induced proliferation, but substitution of all of the phosphoserine residues with Ala reduced the capacity of the receptor to support cell growth by over 50%. Additionally, the Ser at cytoplasmic position 18 is not detectably phosphorylated. However, the mutation of Ser-18 to Ala nearly abrogates TPO-induced proliferation and co-precipitation of JAK2 with Mpl. This study provides the first systematic analysis of the role of Ser residues in c-Mpl signaling. 相似文献
10.
A plant receptor-like gene, the S-locus receptor kinase of Brassica oleracea L., encodes a functional serine/threonine kinase. 总被引:15,自引:2,他引:15 下载免费PDF全文
To investigate the catalytic properties of the Brassica oleracea S-locus receptor kinase (SRK), we have expressed the domain that is homologous to protein kinases as a fusion protein in Escherichia coli. Following in vivo labeling of cultures with 32P-labeled inorganic phosphate, we observed phosphorylation of the fusion protein on serine and threonine, but not on tyrosine. In contrast, labeling was not observed when lysine-524, a residue conserved among all protein kinases, was mutated to arginine, thus confirming that SRK phosphorylation was the result of intrinsic serine/threonine kinase activity. 相似文献
11.
The serine/threonine kinase Pim-1 总被引:10,自引:0,他引:10
The human pim-1 gene encodes a serine/threonine kinase, which belongs to the group of calcium/calmodulin-regulated kinases (CAMK). It contains a characteristic kinase domain, a so-called ATP anchor and an active site. In mouse and human, two Pim-1 proteins are produced from the same gene by using an alternative upstream CUG initiation codon, a 44 kD and another, shorter 34 kD form that both contain the kinase domain. Expression of Pim-1 is widespread and ranges from the hematopoietic and lymphoid system to prostate, testis and oral epithelial cells. Two other proteins with significant sequence similarities exist, Pim-2 and Pim-3; both are also serine/threonine kinases and have largely overlapping functions. Pim-1 is able to phosphorylate different targets, most of which are involved in cell cycle progression or apoptosis. Pim-1 expression can be induced by several external stimuli in particular by a number of cytokines relevant in the immune system, which led to the labeling of Pim-1 as a "booster" for the immune response. 相似文献
12.
H U Haring M F White C R Kahn Z Ahmad A A DePaoli-Roach P J Roach 《Journal of cellular biochemistry》1985,28(2):171-182
Insulin causes rapid phosphorylation of the beta subunit (Mr = 95,000) of its receptor in broken cell preparations. This occurs on tyrosine residues and is due to activation of a protein kinase which is contained in the receptor itself. In the intact cell, insulin also stimulates the phosphorylation of the receptor and other cellular proteins on serine and threonine residues. In an attempt to find a protein that might link the receptor tyrosine kinase to these serine/threonine phosphorylation reactions, we have studied the interaction of a partially purified preparation of insulin receptor with purified preparations of serine/threonine kinases known to phosphorylate glycogen synthase. No insulin-dependent phosphorylation was observed when casein kinases I and II, phosphorylase kinase, or glycogen synthase kinase 3 was incubated in vitro with the insulin receptor. These kinases also failed to phosphorylate the receptor. By contrast, the insulin receptor kinase catalyzed the phosphorylation of the calmodulin-dependent kinase and addition of insulin in vitro resulted in a 40% increase in this phosphorylation. In the presence of calmodulin-dependent kinase and the insulin receptor kinase, insulin also stimulated the phosphorylation of calmodulin. Phosphoamino acid analysis showed an increase of phosphotyrosine content in both calmodulin and calmodulin-dependent protein kinase. These data suggest that the insulin receptor kinase may interact directly and specifically with the calmodulin-dependent kinase and calmodulin. Further studies will be required to determine if these phosphorylations modify the action of these regulatory proteins. 相似文献
13.
The regulation of the insulin receptor kinase by phosphorylation and dephosphorylation has been examined. Under in vitro conditions, the tyrosine kinase activity of the insulin receptor toward histone is markedly activated when the receptor either undergoes autophosphorylation or is phosphorylated by a purified preparation of src tyrosine kinase on tyrosine residues of its beta subunit. The elevated kinase activity of the phosphorylated insulin receptor is readily reversed when the receptor is dephosphorylated with alkaline phosphatase. Analysis of tryptic digests of phosphorylated insulin receptor using reverse-phase high pressure liquid chromatography suggests that phosphorylation of a specific tyrosine site on the receptor beta subunit may be involved in the mechanism of the receptor kinase activation. Further studies indicate that tyrosine phosphorylation-mediated increase in insulin receptor activity also occurs in intact cells. Thus, when the histone kinase activities of insulin receptor from control and insulin-treated H-35 hepatoma cells are assayed in vitro following the purification of the receptors under conditions which preserve the phosphorylation state of the receptors, the insulin receptors extracted from insulin-treated cells exhibit histone kinase activities 100% higher than those from control cells. The elevated receptor kinase activity from insulin-treated cells appears to result from the increase in phosphotyrosine content of the receptor. Taken together, these results indicate that tyrosine phosphorylation of the insulin receptor beta subunit exerts a major stimulatory effect on the kinase activity of the receptor. Insulin receptor partially purified by specific immunoprecipitation from detergent extracts of control and isoproterenol-treated cells have similar basal but diminished insulin-stimulated beta subunit autophosphorylation activities when incubated with [gamma-32 P]ATP. Similarly, the ability of insulin to stimulate the receptor beta subunit phosphorylation in intact isoproterenol-treated adipocytes is greatly attenuated, whereas, the basal phosphorylation of the insulin receptor is slightly increased by the beta-catecholamine. These data indicate that in rat adipocytes, a cyclic AMP-mediated mechanism, possibly through serine and threonine phosphorylation of the receptor or its regulatory components, may uncouple the receptor tyrosine kinase activity from activation by insulin. Treatment of 32P-labeled H-35 hepatoma cells with phorbol myristate acetate (PMA) results in a marked increase in serine phosphorylation of the insulin receptor beta subunit.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
14.
15.
16.
17.
Regulation of N-formyl peptide receptor signaling and trafficking by individual carboxyl-terminal serine and threonine residues 总被引:2,自引:0,他引:2
Potter RM Maestas DC Cimino DF Prossnitz ER 《Journal of immunology (Baltimore, Md. : 1950)》2006,176(9):5418-5425
Adaptation, defined as the diminution of receptor signaling in the presence of continued or repeated stimulation, is critical to cellular function. G protein-coupled receptors (GPCRs) undergo multiple adaptive processes, including desensitization and internalization, through phosphorylation of cytoplasmic serine and threonine residues. However, the relative importance of individual and combined serine and threonine residues to these processes is not well understood. We examined this mechanism in the context of the N-formyl peptide receptor (FPR), a well-characterized member of the chemoattractant/chemokine family of GPCRs critical to neutrophil function. To evaluate the contributions of individual and combinatorial serine and threonine residues to internalization, desensitization, and arrestin2 binding, 30 mutant forms of the FPR, expressed in the human promyelocytic U937 cell line, were characterized. We found that residues Ser(328), Ser(332), and Ser(338) are individually critical, and indeed sufficient, for internalization, desensitization, and arrestin2 binding, but that the presence of neighboring threonine residues can inhibit these processes. Additionally, we observed no absolute correlation between arrestin binding and either internalization or desensitization, suggesting the existence of arrestin-independent mechanisms for these processes. Our results suggest C-terminal serine and threonine residues of the FPR represent a combinatorial code, capable of both positively and negatively regulating signaling and trafficking. This study is among the first detailed analyses of a complex regulatory site in a GPCR, and provides insight into GPCR regulatory mechanisms. 相似文献
18.
Insulin-EGF receptor chimerae mediate tyrosine transphosphorylation and serine/threonine phosphorylation of kinase-deficient EGF receptors. 总被引:3,自引:0,他引:3
S Tartare R Ballotti R Lammers F Alengrin T Dull J Schlessinger A Ullrich E Van Obberghen 《The Journal of biological chemistry》1991,266(15):9900-9906
To study cross-talk between unoccupied epidermal growth factor (EGF) receptors and activated EGF receptor kinases, we have used double-transfected cells, IHE2 cells, expressing both an enzymatically active insulin-EGF chimeric receptor and an inactive kinase EGF receptor mutant. Using immunoaffinity-purified receptors, we show that insulin increased phosphorylation of the insulin-EGF chimeric beta subunit and of the kinase-deficient EGF receptor. Stimulation of intact IHE2 cells with insulin leads to a rapid tyrosine autophosphorylation of the insulin-EGF chimeric beta subunit and to tyrosine phosphorylation of the unoccupied kinase-deficient EGF receptor. Insulin-stimulated transphosphorylation of the kinase-deficient EGF receptor yields the same pattern of tryptic phosphopeptides as those in EGF-induced autophosphorylation of the wild-type human EGF receptor. We conclude that insulin, through activation of the insulin-EGF chimeric receptor, mediates transphosphorylation of the kinase-deficient EGF receptor, further confirming that EGF receptor autophosphorylation may proceed by an intermolecular mechanism. In addition to receptor tyrosine phosphorylation, we find that exposure of cells to insulin results in enhanced phosphorylation on serine and threonine residues of the unoccupied kinase-deficient EGF receptor. These results suggest that insulin-EGF chimeric receptor activation stimulates at least one serine/threonine kinase, which in turn phosphorylates the kinase-deficient EGF receptor. Finally, we show that transphosphorylation and coexpression of an active kinase cause a decrease in the number of cell surface kinase-deficient EGF receptors without increasing their degradation rate. 相似文献
19.
Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase 总被引:26,自引:0,他引:26
Brassinosteroid (BR) mutants of Arabidopsis have pleiotropic phenotypes and provide evidence that BRs function throughout the life of the plant from seedling development to senescence. Screens for BR signaling mutants identified one locus, BRI1, which encodes a protein with homology to leucine-rich repeat receptor serine (Ser)/threonine (Thr) kinases. Twenty-seven alleles of this putative BR receptor have been isolated to date, and we present here the identification of the molecular lesions of 14 recessive alleles that represent five new mutations. BR-insensitive-1 (BRI1) is expressed at high levels in the meristem, root, shoot, and hypocotyl of seedlings and at lower levels later in development. Confocal microscopy analysis of full-length BRI1 fused to green fluorescent protein indicates that BRI1 is localized in the plasma membrane, and an in vitro kinase assay indicates that BRI1 is a functional Ser/Thr kinase. Among the bri1 mutants identified are mutants in the kinase domain, and we demonstrate that one of these mutations severely impairs BRI1 kinase activity. Therefore, we conclude that BRI1 is a ubiquitously expressed leucine-rich repeat receptor that plays a role in BR signaling through Ser/Thr phosphorylation. 相似文献
20.
J M Kyriakis D L Brautigan T S Ingebritsen J Avruch 《The Journal of biological chemistry》1991,266(16):10043-10046
pp54 microtubule-associated protein-2 (MAP-2) kinase, a recently discovered protein serine/threonine kinase (Kyriakis, J., and Avruch, J. (1990) J. Biol. Chem. 265, 17355-17363), is shown to contain immunoreactive phosphotyrosine residues. Treatment with recombinant rat brain protein tyrosine phosphatase-1 deactivates pp54 MAP-2 kinase, concomitant with the removal of phosphotyrosine residues. Protein (serine/threonine) phosphatase-1 also deactivates pp54 MAP-2 kinase in a specific fashion. pp54 MAP-2 kinase joins pp42 MAP-2 kinase and cdc2/maturation-promoting factor as one of only three serine/threonine protein kinases known to be regulated by phosphorylation at both tyrosine and, independently, at serine/threonine residues. In view of these shared regulatory properties, a role for pp54 MAP-2 kinase in the control of cell division is likely. 相似文献