首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张泰龙  朱洁伟  陈捷 《菌物学报》2014,33(6):1302-1312
SM1蛋白是由绿木霉Trichoderma virens产生的一种富含半胱氨酸的小蛋白,能够作为激发子激发植物防御反应。研究了SM1蛋白对拟南芥Arabidopsis thaliana生长及诱导抗性的作用。结果表明高浓度(>10μg/mL)SM1蛋白液抑制拟南芥的生长,低浓度SM1蛋白液则不影响生长;SM1能诱导拟南芥对细菌性叶斑病Pseudomonas syringae pv. tomato DC3000的抗性,引起拟南芥叶片过氧化氢的积累。SM1蛋白处理后,拟南芥叶片中植物防御反应相关基因PDF1.2、LOX2和活性氧酶基因 SOD、POD等表达显著上升,说明SM1在激活植物的JA/ET和ROS途径中发挥着重要作用。研究为进一步研究SM1诱导植物抗性的机理提供了基础。  相似文献   

2.
Russian knapweed ( Acroptilon repens ) and Spotted knapweed ( Centaurea maculosa ) are allelopathic weeds invasive in North American grasslands. Both species contain at least one phytotoxic flavonoid root exudate with demonstrated negative influences on other plants. Previous findings indicated that Silky lupine ( Lupinus sericeus ), among other legumes, was relatively resistant to Spotted knapweed invasion and allelochemistry. We hypothesized that legume species may exhibit resistance to flavonoids in knapweed root exudates and may serve as candidate species for management efforts. Because legumes form symbiotic relationships with rhizobia, these bacteria must also be evaluated for allelochemical resistance before legumes can be recommended for restoration. In this study, we examined four legume species for effects of 7,8-benzoflavone (from Russian knapweed) and (±)-catechin (from Spotted knapweed) on rhizosphere interactions involving legume roots and associated rhizobia. Pure cultures of four rhizobia strains exhibited varied responses when grown with 7,8-benzoflavone or (±)-catechin. Alfalfa ( Medicago sativa ) and its bacterial symbiont, Sinorhizobium meliloti , exhibited allelochemical resistance that varied with (±)-catechin concentration when grown in vitro. Four legume species were grown under greenhouse conditions. Plants that were inoculated and nodulated generally exhibited no response to 7,8-benzoflavone or (±)-catechin treatments. Plants that were not inoculated exhibited stronger responses. Therefore, inoculation and nodulation may confer resistance to allelochemicals. These results, when coupled with previous research and field observations, suggest that legumes may not be susceptible to knapweed allelopathy and may be good choices in restoration of knapweed infestations when inoculated, particularly on sites with low soil nitrogen.  相似文献   

3.
Flowers have a high risk of pathogen attack because of their rich nutrient and moisture content, and high frequency of insect visitors. We investigated the role of (E)-β-caryophyllene in floral defense against a microbial pathogen. This sesquiterpene is a common volatile compound emitted from flowers, and is a major volatile released from the stigma of Arabidopsis thaliana flowers. Arabidopsis thaliana lines lacking a functional (E)-β-caryophyllene synthase or constitutively overexpressing this gene were challenged with Pseudomonas syringae pv. tomato DC3000, which is a bacterial pathogen of brassicaceous plants. Flowers of plant lines lacking (E)-β-caryophyllene emission showed greater bacterial growth on their stigmas than did wild-type flowers, and their seeds were lighter and misshapen. By contrast, plant lines with ectopic (E)-β-caryophyllene emission from vegetative parts were more resistant than wild-type plants to pathogen infection of leaves, and showed reduced cell damage and higher seed production. Based on in vitro experiments, (E)-β-caryophyllene seems to act by direct inhibition of bacterial growth, rather than by triggering defense signaling pathways. (E)-β-Caryophyllene thus appears to serve as a defense against pathogens that invade floral tissues and, like other floral volatiles, may play multiple roles in defense and pollinator attraction.  相似文献   

4.
A new allele of the coronatine-insensitive locus (COI1) was isolated in a screen for Arabidopsis thaliana mutants with enhanced resistance to the bacterial pathogen Pseudomonas syringae. This mutant, designated coi1-20, exhibits robust resistance to several P. syringae isolates but remains susceptible to the virulent pathogens Erisyphe and cauliflower mosaic virus. Resistance to P. syringae strain PstDC3000 in coi1-20 plants is correlated with hyperactivation of PR-1 expression and accumulation of elevated levels of salicylic acid (SA) following infection, suggesting that the SA-mediated defense response pathway is sensitized in this mutant. Restriction of growth of PstDC3000 in coi1-20 leaves is partially dependent on NPR1 and fully dependent on SA, indicating that SA-mediated defenses are required for restriction of PstDC3000 growth in coi1-20 plants. Surprisingly, despite high levels of PstDC3000 growth in coi1-20 plants carrying the salicylate hydroxylase (nahG) transgene, these plants do not exhibit disease symptoms. Thus resistance to P. syringae in coi1-20 plants is conferred by two different mechanisms: (i) restriction of pathogen growth via activation of the SA-dependent defense pathway; and (ii) an SA-independent inability to develop disease symptoms. These findings are consistent with the hypotheses that the P. syringae phytotoxin coronatine acts to promote virulence by inhibiting host defense responses and by promoting lesion formation.  相似文献   

5.
6.
7.
8.
AM真菌对紫花苜蓿茎点霉叶斑病及豌豆蚜为害的影响   总被引:1,自引:0,他引:1  
李应德  段廷玉 《生态学杂志》2020,39(4):1214-1221
苜蓿茎点霉(Phoma medicaginis)叶斑病和豌豆蚜(Acyrthosiphon pisum)是紫花苜蓿(Medicago sativa)生产中重要的病虫害,在自然条件下常混合发生。本研究以紫花苜蓿为植物材料,探究接种AM真菌后,紫花苜蓿被苜蓿茎点霉侵染时,植物自身的防御机制,以及对后续豌豆蚜为害的影响,以期明确AM真菌对其调控机制。结果表明:AM真菌可显著降低植株茎点霉叶斑病病情指数(P<0.05); AM真菌促进了紫花苜蓿生长(P<0.05),改变了植株抗氧化酶(超氧化物歧化酶(SOD)和过氧化氢酶(CAT))活性以及植物激素信号物质(水杨酸(SA))含量(P<0.05);病原菌侵染会诱导植物抗氧化防御系统活性增强,包括过氧化物酶(POD)、SOD、CAT和多酚氧化酶(PPO)(P<0.05),从而增加植物对后续虫害的抗性; AM真菌在植物受到病原菌胁迫时会发挥积极作用,显著提高植株的SOD和CAT活性(P<0.05),有效抑制病原菌侵染对植株造成的危害;而蚜虫为害则进一步加重了植物受到的损害,抑制了AM真菌对植物抗病性的正向调控。研究结果对...  相似文献   

9.
Riboflavin mediates many bioprocesses associated with the generation of hydrogen peroxide (H?O?), a cellular signal that regulates defense responses in plants. Although plants can synthesize riboflavin, the levels vary widely in different organs and during different stages of development, indicating that changes in riboflavin levels may have physiological effects. Here, we show that changing riboflavin content affects H?O? accumulation and a pathogen defense in Arabidopsis thaliana. Leaf content of free riboflavin was modulated by ectopic expression of the turtle gene encoding riboflavin-binding protein (RfBP). The RfBP-expressing Arabidopsis thaliana (REAT) plants produced the RfBP protein that possessed riboflavin-binding activity. Compared with the wild-type plant, several tested REAT lines had >70% less flavins of free form. This change accompanied an elevation in the level of H?O? and an enhancement of plant resistance to a bacterial pathogen. All the observed REAT characters were eliminated due to RfBP silencing (RfBPi) under REAT background. When an H?O? scavenger was applied, H?O? level declined in all the plants, and REAT no longer exhibited the phenotype of resistance enhancement. However, treatment with an NADPH oxidase inhibitor diminished H?O? content and pathogen defense in wild-type and RfBPi but not in REAT. Our results suggest that the intrinsic down-regulation of free flavins is responsible for NADPH oxidase-independent H?O? accumulation and the pathogen defense.  相似文献   

10.
Inducible defenses, which provide enhanced resistance after initial attack, are nearly universal in plants. This defense signaling cascade is mediated by the synthesis, movement, and perception of jasmonic acid and related plant metabolites. To characterize the long-term persistence of plant immunity, we challenged Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) with caterpillar herbivory, application of methyl jasmonate, or mechanical damage during vegetative growth and assessed plant resistance in subsequent generations. Here, we show that induced resistance was associated with transgenerational priming of jasmonic acid-dependent defense responses in both species, caused caterpillars to grow up to 50% smaller than on control plants, and persisted for two generations in Arabidopsis. Arabidopsis mutants that are deficient in jasmonate perception (coronatine insensitive1) or in the biogenesis of small interfering RNA (dicer-like2 dicer-like3 dicer-like4 and nuclear RNA polymerase d2a nuclear RNA polymerase d2b) do not exhibit inherited resistance. The observation of inherited resistance in both the Brassicaceae and Solanaceae suggests that this trait may be more widely distributed in plants. Epigenetic resistance to herbivory thus represents a phenotypically plastic mechanism for enhanced defense across generations.  相似文献   

11.
Qi L  Yan J  Li Y  Jiang H  Sun J  Chen Q  Li H  Chu J  Yan C  Sun X  Yu Y  Li C  Li C 《The New phytologist》2012,195(4):872-882
? Although the role of auxin in biotrophic pathogenesis has been extensively studied, relatively little is known about its role in plant resistance to necrotrophs. ? Arabidopsis thaliana mutants defective in different aspects of the auxin pathway are generally more susceptible than wild-type plants to the necrotrophic pathogen Alternaria brassicicola. We show that A.?brassicicola infection up-regulates auxin biosynthesis and down-regulates the auxin transport capacities of infected plants, these effects being partially dependent on JA signaling. We also show that these effects of A.?brassicicola infection together lead to an enhanced auxin response in host plants. ? Application of IAA and MeJA together synergistically induces the expression of defense marker genes PDF1.2 (PLANT DEFENSIN 1.2) and HEL (HEVEIN-LIKE), suggesting that enhancement of JA-dependent defense signaling may be part of the auxin-mediated defense mechanism involved in resistance to necrotrophic pathogens. ? Our results provide molecular evidence supporting the hypothesis that JA and auxin interact positively in regulating plant resistance to necrotrophic pathogens and that activation of auxin signaling by JA may contribute to plant resistance to necrotrophic pathogens.  相似文献   

12.
1. Evaluating variation, or 'conditionality', in plant interactions is crucial to understanding their ecological importance and predicting where they might be at play. Much is known about conditionality for competition, facilitation and herbivory, but not for allelopathy, which likely contributes to the equivocal nature of reports on this topic. Centaurea maculosa (spotted knapweed) is an invasive species in North America, whose success has been attributed, at least in part, to the allelochemical root exudate (±)-catechin.
2. Understanding the ecological relevance of (±)-catechin necessitates determining how it interacts with various soil components. We found that some metals caused rapid declines in measurable (±)-catechin, while calcium impeded its auto-oxidation, maintaining concentrations higher than for (±)-catechin alone. Certain (±)-catechin–metal complexes were more phytotoxic than (±)-catechin alone, while others showed lower toxicity.
3. The variable phytotoxicity of these complexes suggests that (±)-catechin effects are enhanced, mitigated or otherwise affected by complexation with different metals and perhaps other soil components.
4.  Synthesis . These findings serve to illustrate that the precise chemical forms, interactions and effects of catechin in the environment are highly variable and that further examination is warranted to increase our understanding of its role in invasion and allelopathy. The conditional effects observed for catechin detection and phytotoxicity likely extend to related allelopathic compounds, other root exudates and potentially other systems involving chemically complex and spatially heterogeneous environments.  相似文献   

13.
Riboflavin (vitamin B2) participates in a variety of redox processes that affect plant defense responses. Previously we have shown that riboflavin induces pathogen resistance in the absence of hypersensitive cell death (HCD) in plants. Herein, we report that riboflavin induces priming of defense responses in Arabidopsis thaliana toward infection by virulent Pseudomonas syringae pv. Tomato DC3000 (Pst). Induced resistance was mechanistically connected with the expression of defense response genes and cellular defense events, including H2O2 burst, HCD, and callose deposition in the plant. Riboflavin treatment and inoculation of plants with Pst were neither active but both synergized to induce defense responses. The priming process needed NPR1 (essential regulator of systemic acquired resistance) and maintenance of H2O2 burst but was independent of salicylic acid, jasmonic acid, ethylene, and abscisic acid. Our results suggest that the role of riboflavin in priming defenses is subject to a signaling process distinct from the known pathways of hormone signal transduction.  相似文献   

14.
15.
Griebel T  Zeier J 《Plant physiology》2008,147(2):790-801
We have examined molecular and physiological principles underlying the light dependency of defense activation in Arabidopsis (Arabidopsis thaliana) plants challenged with the bacterial pathogen Pseudomonas syringae. Within a fixed light/dark cycle, plant defense responses and disease resistance significantly depend on the time of day when pathogen contact takes place. Morning and midday inoculations result in higher salicylic acid accumulation, faster expression of pathogenesis-related genes, and a more pronounced hypersensitive response than inoculations in the evening or at night. Rather than to the plants' circadian rhythm, this increased plant defense capability upon day inoculations is attributable to the availability of a prolonged light period during the early plant-pathogen interaction. Moreover, pathogen responses of Arabidopsis double mutants affected in light perception, i.e. cryptochrome1cryptochrome2 (cry1cry2), phototropin1phototropin2 (phot1phot2), and phytochromeAphytochromeB (phyAphyB) were assessed. Induction of defense responses by either avirulent or virulent P. syringae at inoculation sites is relatively robust in leaves of photoreceptor mutants, indicating little cross talk between local defense and light signaling. In addition, the blue-light receptor mutants cry1cry2 and phot1phot2 are both capable of establishing a full systemic acquired resistance (SAR) response. Induction of SAR and salicylic-acid-dependent systemic defense reactions, however, are compromised in phyAphyB mutants. Phytochrome regulation of SAR involves the essential SAR component FLAVIN-DEPENDENT MONOOXYGENASE1. Our findings highlight the importance of phytochrome photoperception during systemic rather than local resistance induction. The phytochrome system seems to accommodate the supply of light energy to the energetically costly increase in whole plant resistance.  相似文献   

16.
丛枝菌根菌诱导植物抗病的内在机制   总被引:15,自引:5,他引:10  
应用菌根真菌诱导植物抗病性是近年化学生态学和病害生物防治研究的热点.研究表明,丛枝菌根真菌(AMF)对土传病原物具有一定拮抗或抑制作用,能提高植物对土传病害的抗/耐病性.在菌根根际,各种菌群不断产生相互作用,AMF在其中起着抑制病原菌、促进有益菌生长的作用,可与其他桔抗菌结合,用做生防菌.AMF提高植物抗病性的机制还有这样几种假设:(1)植物营养得到改善;(2)竞争作用;(3)根系形态结构改变;(4)根际微生物区系变化;(5)诱导抗性及诱导系统抗性,即AMF侵染植物根系后,诱导植物体内酚酸类代谢产物增加,使植物产生局部或系统防御反应.深人研究AMF提高植物抗病性的机制,有助于正确理解菌根的抗病作用,使其能尽快地成为植物病害生物防治中的一种新方法,在生态农业中发挥作用。  相似文献   

17.
Choi du S  Hwang BK 《The Plant cell》2011,23(2):823-842
Abscisic acid (ABA) is a key regulator of plant growth and development, as well as plant defense responses. A high-throughput in planta proteome screen identified the pepper (Capsicum annuum) GRAM (for glucosyltransferases, Rab-like GTPase activators, and myotubularins) domain-containing ABA-RESPONSIVE1 (ABR1), which is highly induced by infection with avirulent Xanthomonas campestris pv vesicatoria and also by treatment with ABA. The GRAM domain is essential for the cell death response and for the nuclear localization of ABR1. ABR1 is required for priming cell death and reactive oxygen species production, as well as ABA-salicylic acid (SA) antagonism. Silencing of ABR1 significantly compromised the hypersensitive response but enhanced bacterial pathogen growth and ABA levels in pepper. High levels of ABA in ABR1-silenced plants antagonized the SA levels induced by pathogen infection. Heterologous transgenic expression of ABR1 in Arabidopsis thaliana conferred enhanced resistance to Pseudomonas syringae pv tomato and Hyaloperonospora arabidopsidis infection. The susceptibility of the Arabidopsis ABR1 putative ortholog mutant, abr1, to these pathogens also supports the involvement of ABR1 in disease resistance. Together, these results reveal ABR1 as a novel negative regulator of ABA signaling and suggest that the nuclear ABR1 pool is essential for the cell death induction associated with ABA-SA antagonism.  相似文献   

18.
The hypersensitive response (HR) was induced in a wild-type Arabidopsis thaliana plant (Columbia) (Col-wt) by inoculation with Alternaria brassicicola that causes the development of small brown necrotic lesions on the leaves. By contrast, pad3-1 mutants challenged with A. brassicicola produced spreading lesions. The cell death in pad3-1 mutants could not inhibit the pathogen growth and development, although both production of H(2)O(2) and localized cell death were similar in Col-wt and pad3-1 plants after the inoculation. The difference between Col-wt and pad3-1 plants is defense responses after the occurrence of cell death. In other words, PAD3 is necessary for defense response to A. brassicicola. Therefore, we examined the changes in the expression patterns of ca. 7,000 genes by cDNA microarray analysis after inoculation with A. brassicicola. The cDNA microarrays were also done to analyze Arabidopsis responses after treatment with signal molecules, reactive oxygen species (ROS)-inducing compounds and UV-C. The results suggested that the pad3-1 mutation altered not only the accumulation of camalexin but also the timing of expression of many defense-related genes in response to the challenge with A. brassicicola. Furthermore, the plants integrate two or more signals that act together for promoting the induction of multiple defense pathways.  相似文献   

19.
20.
Sang S  Li X  Gao R  You Z  Lü B  Liu P  Ma Q  Dong H 《Plant molecular biology》2012,79(4-5):375-391
Harpin proteins secreted by phytopathogenic bacteria have been shown to activate the plant defense pathway, which involves transduction of a hydrogen peroxide (H(2)O(2)) signal generated in the apoplast. However, the way in which harpins are recognized in the pathway and what role the apoplastic H(2)O(2) plays in plant defenses are unclear. Here, we examine whether the cellular localization of Hpa1(Xoo), a harpin protein produced by the rice bacterial leaf blight pathogen, impacts H(2)O(2) production and pathogen resistance in Arabidopsis thaliana. Transformation with the hpa1 (Xoo) gene and hpa1 (Xoo) fused to an apoplastic localization signal (shpa1 (Xoo)) generated h pa1 (Xoo)- and sh pa1 (Xoo)-expressing transgenic A . t haliana (HETAt and SHETAt) plants, respectively. Hpa1(Xoo) was associated with the apoplast in SHETAt plants but localized inside the cell in HETAt plants. In addition, Hpa1(Xoo) localization accompanied H(2)O(2) accumulation in both the apoplast and cytoplasm of SHETAt plants but only in the cytoplasm of HETAt plants. Apoplastic H(2)O(2) production via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) located in the plasma membrane is a common feature of plant defenses. In SHETAt plants, H(2)O(2) was generated in apoplasts in a NOX-dependent manner but accumulated to a greater extent in the cytoplasm than in the apoplast. After being applied to the wild-type plant, Hpa1(Xoo) localized to apoplasts and stimulated H(2)O(2) production as in SHETAt plants. In both plants, inhibiting apoplastic H(2)O(2) generation abrogated both cytoplasmic H(2)O(2) accumulation and plant resistance to bacterial pathogens. These results suggest the possibility that the apoplastic H(2)O(2) is subject to a cytoplasmic translocation for participation in the pathogen defense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号