首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structure of alpha-glucosidase MalA from Sulfolobus solfataricus has been determined at 2.5Angstrom resolution. It provides a structural model for enzymes representing the major specificity in glycoside hydrolase family 31 (GH31), including alpha-glucosidases from higher organisms, involved in glycogen degradation and glycoprotein processing. The structure of MalA shows clear differences from the only other structure known from GH31, alpha-xylosidase YicI. MalA and YicI share only 23% sequence identity. Although the two enzymes display a similar domain structure and both form hexamers, their structures differ significantly in quaternary organization: MalA is a dimer of trimers, YicI a trimer of dimers. MalA and YicI also differ in their substrate specificities, as shown by kinetic measurements on model chromogenic substrates. In addition, MalA has a clear preference for maltose (Glc-alpha1,4-Glc), whereas YicI prefers isoprimeverose (Xyl-alpha1,6-Glc). The structural origin of this difference occurs in the -1 subsite where MalA residues Asp251 and Trp284 could interact with OH6 of the substrate. The structure of MalA in complex with beta-octyl-glucopyranoside has been determined. It reveals Arg400, Asp87, Trp284, Met321 and Phe327 as invariant residues forming the +1 subsite in the GH31 alpha-glucosidases. Structural comparisons with other GH families suggest that the GH31 enzymes belong to clan GH-D.  相似文献   

2.
Okuyama M  Kaneko A  Mori H  Chiba S  Kimura A 《FEBS letters》2006,580(11):2707-2711
Escherichia coli YicI, a member of glycoside hydrolase family (GH) 31, is an alpha-xylosidase, although its amino-acid sequence displays approximately 30% identity with alpha-glucosidases. By comparing the amino-acid sequence of GH 31 enzymes and through structural comparison of the (beta/alpha)(8) barrels of GH 27 and GH 31 enzymes, the amino acids Phe277, Cys307, Phe308, Trp345, Lys414, and beta-->alpha loop 1 of (beta/alpha)(8) barrel of YicI have been identified as elements that might be important for YicI substrate specificity. In attempt to convert YicI into an alpha-glucosidase these elements have been targeted by site-directed mutagenesis. Two mutated YicI, short loop1-enzyme and C307I/F308D, showed higher alpha-glucosidase activity than wild-type YicI. C307I/F308D, which lost alpha-xylosidase activity, was converted into alpha-glucosidase.  相似文献   

3.
The specificity of the aglycone-binding site of Escherichia coli alpha-xylosidase (YicI), which belongs to glycoside hydrolase family 31, was characterized by examining the enzyme's transxylosylation-catalyzing property. Acceptor specificity and regioselectivity were investigated using various sugars as acceptor substrates and alpha-xylosyl fluoride as the donor substrate. Comparison of the rate of formation of the glycosyl-enzyme intermediate and the transfer product yield using various acceptor substrates showed that glucose is the best complementary acceptor at the aglycone-binding site. YicI preferred aldopyranosyl sugars with an equatorial 4-OH as the acceptor substrate, such as glucose, mannose, and allose, resulting in transfer products. This observation suggests that 4-OH in the acceptor sugar ring made an essential contribution to transxylosylation catalysis. Fructose was also acceptable in the aglycone-binding site, producing two regioisomer transfer products. The percentage yields of transxylosylation products from glucose, mannose, fructose, and allose were 57, 44, 27, and 21%, respectively. The disaccharide transfer products formed by YicI, alpha-D-Xylp-(1-->6)-D-Manp, alpha-D-Xylp-(1-->6)-D-Fruf, and alpha-d-Xylp-(1-->3)-D-Frup, are novel oligosaccharides that have not been reported previously. In the transxylosylation to cello-oligosaccharides, YicI transferred a xylosyl moiety exclusively to a nonreducing terminal glucose residue by alpha-1,6-xylosidic linkages. Of the transxylosylation products, alpha-d-Xylp-(1-->6)-D-Manp and alpha-d-Xylp-(1-->6)-D-Fruf inhibited intestinal alpha-glucosidases.  相似文献   

4.
The proteins encoded in the yicI and yihQ gene of Escherichia coli have similarities in the amino acid sequences to glycoside hydrolase family 31 enzymes, but they have not been detected as the active enzymes. The functions of the two proteins have been first clarified in this study. Recombinant YicI and YihQ produced in E. coli were purified and characterized. YicI has the activity of alpha-xylosidase. YicI existing as a hexamer shows optimal pH at 7.0 and is stable in the pH range of 4.7-10.1 with incubation for 24h at 4 degrees C and also is stable up to 47 degrees C with incubation for 15 min. The enzyme shows higher activity against alpha-xylosyl fluoride, isoprimeverose (6-O-alpha-xylopyranosyl-glucopyranose), and alpha-xyloside in xyloglucan oligosaccharides. The alpha-xylosidase catalyzes the transfer of alpha-xylosyl residue from alpha-xyloside to xylose, glucose, mannose, fructose, maltose, isomaltose, nigerose, kojibiose, sucrose, and trehalose. YihQ exhibits the hydrolysis activity against alpha-glucosyl fluoride, and so is an alpha-glucosidase, although the natural substrates, such as alpha-glucobioses, are scarcely hydrolyzed. alpha-Glucosidase has been found for the first time in E. coli.  相似文献   

5.
Escherichia coli YicI is a retaining α-xylosidase, which strictly recognizes the α-xylosyl moiety at the non-reducing end, belonging to glycoside hydrolase family 31 (GH 31). We have elucidated key residues determining the substrate specificity at both glycone and aglycone sites of Escherichia coli α-xylosidase (YicI). Detection of distinguishing features between α-xylosidases and α-glucosidases of GH 31 in their close evolutionary relationship has been used for the modification of protein function, converting YicI into an α-glucosidase. Aglycone specificity has been characterized by its transxylosylation ability. YicI exhibits a preference for aldopyranosyl sugars having equatorial 4-OH as the acceptor substrate with 1,6 regioselectivity, resulting in transfer products. The disaccharide transfer products of YicI, α-d-Xylp-(1→6)-d-Manp, α-d-Xylp-(1→6)-d-Fruf, and α-d-Xylp-(1→3)-d-Frup, are novel oligosaccharides, which have never been reported. The transxylosylation products are moderately inhibitory towards intestinal α-glucosidases.  相似文献   

6.
The oculocerebrorenal syndrome of Lowe (OCRL), also called Lowe syndrome, is characterized by defects of the nervous system, the eye and the kidney. Lowe syndrome is a monogenetic X-linked disease caused by mutations of the inositol-5-phosphatase OCRL1. OCRL1 is a membrane-bound protein recruited to membranes via interaction with a variety of Rab proteins. The structural and kinetic basis of OCRL1 for the recognition of several Rab proteins is unknown. In this study, we report the crystal structure of the Rab-binding domain (RBD) of OCRL1 in complex with Rab8a and the kinetic binding analysis of OCRL1 with several Rab GTPases (Rab1b, Rab5a, Rab6a and Rab8a). In contrast to other effectors that bind their respective Rab predominantly via α-helical structure elements, the Rab-binding interface of OCRL1 consists mainly of the IgG-like β-strand structure of the ASPM-SPD-2-Hydin domain as well as one α-helix. Our results give a deeper structural understanding of disease-causing mutations of OCRL1 affecting Rab binding.  相似文献   

7.
8.
Nuss JE  Sweeney DJ  Alter GM 《Biochemistry》2006,45(32):9804-9818
Replication protein A (RPA) is an essential heterotrimeric ssDNA binding protein that participates in DNA repair, replication, and recombination. Though X-ray and NMR experiments have been used to determine three-dimensional structure models of the protein's domain fragments, a complete RPA structural model has not been reported. To test whether the fragment structures faithfully represent the same portions in the native solution-state protein, we have examined the structure of RPA under biologically relevant conditions. We have probed the location of multiple amino acids within the native RPA three-dimensional structure using reactivity of these amino acids toward proteolytic and chemical modification reagents. In turn, we evaluated different structural models by comparing the observed native RPA reactivities with anticipated reactivities based on candidate structural models. Our results show that our reactivity analysis approach is capable of critically assessing structure models and can be a basis for selecting the most relevant from among alternate models of a protein structure. Using this analytical approach, we verified the relevance of RPA fragment models to the native protein structure. Our results further indicate several important features of native RPA's structure in solution, such as flexibility at specific locations in RPA, particularly in the C-terminal region of RPA70. Our findings are consistent with reported DNA-free structural models and support the role of conformational change in the ssDNA binding mechanism of RPA.  相似文献   

9.
Structural chemoproteomics and drug discovery   总被引:1,自引:0,他引:1  
Shin D  Heo YS  Lee KJ  Kim CM  Yoon JM  Lee JI  Hyun YL  Jeon YH  Lee TG  Cho JM  Ro S 《Biopolymers》2005,80(2-3):258-263
Our laboratories have developed several technologies to accelerate drug discovery process on the basis of structural chemoproteomics. They include SPS technology for the efficient determination of protein structures, SCP technology for the rapid lead generation and SDF technology for the productive lead optimization. Using these technologies, we could determine many 3D structures of target proteins bound with biologically active chemicals including the structure of phosphodiesterase 5/Viagra complex and obtain highly potent compounds in animal models of obesity, diabetes, cancer and inflammation. In this paper, we will discuss concepts and applications of structural chemoproteomics for drug discovery.  相似文献   

10.
MOTIVATION: It is commonly believed that sequence determines structure, which in turn determines function. However, the presence of many proteins with the same structural fold but different functions suggests that global structure and function do not always correlate well. RESULTS: We propose a method for accurate functional annotation, based on identification of functional signatures from structural alignments (FSSA) using the Structural Classification of Proteins (SCOP) database. The FSSA method is superior at function discrimination and classification compared with several methods that directly inherit functional annotation information from homology inference, such as Smith-Waterman, PSI-BLAST, hidden Markov models and structure comparison methods, for a large number of structural fold families. Our results indicate that the contributions of amino acid residue types and positions to structure and function are largely separable for proteins in multi-functional fold families.  相似文献   

11.
Pyridoxal 5′‐phosphate (PLP)‐dependent β‐transaminases (βTAs) reversibly catalyze transamination reactions by recognizing amino groups linked to the β‐carbon atoms of their substrates. Although several βTA structures have been determined as holo forms containing PLP, little is known about the effect of PLP on the conversion of the apo structure to the holo structure. We determined the crystal structure of the apo form of a βTA from Mesorhizobium sp. strain LUK at 2.2 Å resolution to elucidate how PLP affects the βTA structure. The structure revealed three major disordered regions near the active site. Structural comparison with the holo form also showed that the disordered regions in the apo form are ordered and partially adopt secondary structures in the holo form. These findings suggest that PLP incorporation into the active site contributes to the structural stability of the active site architecture, thereby forming the complete active site. Our results provide novel structural insights into the role of PLP in terms of active site formation.  相似文献   

12.
A distance constrained secondary structural model of the ≈10 kb RNA genome of the HIV-1 has been predicted but higher-order structures, involving long distance interactions, are currently unknown. We present the first global RNA secondary structure model for the HIV-1 genome, which integrates both comparative structure analysis and information from experimental data in a full-length prediction without distance constraints. Besides recovering known structural elements, we predict several novel structural elements that are conserved in HIV-1 evolution. Our results also indicate that the structure of the HIV-1 genome is highly variable in most regions, with a limited number of stable and conserved RNA secondary structures. Most interesting, a set of long distance interactions form a core organizing structure (COS) that organize the genome into three major structural domains. Despite overlapping protein-coding regions the COS is supported by a particular high frequency of compensatory base changes, suggesting functional importance for this element. This new structural element potentially organizes the whole genome into three major domains protruding from a conserved core structure with potential roles in replication and evolution for the virus.  相似文献   

13.
Dnmt1 is the predominant DNA methyltransferase (MTase) in mammals. The C-terminal domain of Dnmt1 clearly shares sequence similarity with many prokaryotic 5mC methyltransferases, and had been proposed to be sufficient for catalytic activity. We show here by deletion analysis that the C-terminal domain alone is not sufficient for methylating activity, but that a large part of the N-terminal domain is required in addition. Since this complex structure of Dnmt1 raises issues about its evolutionary origin, we have compared several eukaryotic MTases and have determined the genomic organization of the mouse Dnmt1 gene. The 5' most part of the N-terminal domain is dispensible for enzyme activity, includes the major nuclear import signal and comprises tissue-specific exons. Interestingly, the functional subdivision of Dnmt1 correlates well with the structure of the Dnmt1 gene in terms of intron/exon size distribution as well as sequence conservation. Our results, based on functional, structural and sequence comparison data, suggest that the gene has evolved from the fusion of at least three genes.  相似文献   

14.
Abstract

Several neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's dis-eases, are associated with amyloid fibrils formed by different polypeptides. Recently, the atomic structure of the amyloid-forming peptide GGVVIA from the C-terminal hydrophobic segment of amyloid-β (Aβ) peptide has been determined and revealed a dry, tightly self-com-plementing structure between two β-sheets, termed as “steric zipper”. In this study, several all-atom molecular dynamics simulations with explicit water were conducted to investigate the structural stability and aggregation behavior of the GGVVIA oligomers with various sizes. The results of our single-layer models suggested that the structural stability of the GGVVIA oligomers increases remarkably with increasing the numbers of β-strands. We fur-ther identified that SH2-ST2 may act as a stable seed in prompting amyloid fibril formations. Our results also demonstrated that hydrophobic interaction is the principle driving force to stabilize and associate the GGVVIA oligomers between β-strands; while the hydrophobic steric zipper formed via the side chains of V3, V4, and I5 plays a critical role in holding the two neighboring β-sheets together. Single glycine substitution at V3, V4, and I5 directly disrupted the hydrophobic steric zipper between these two β-sheets, resulting in the destabili-zation of the oligomers. Our simulation results provided detailed insights into understanding the aggregation behavior of the GGVVIA oligomers in the atomic level. It may also be help-ful for designing new inhibitors able to prevent the fibril formation of Aβ peptide.  相似文献   

15.
miRNA biogenesis is a multistage process for the generation of a mature miRNA and involves several different proteins. In this work, we have carried out both sequence- and structure-based analysis for crucial proteins involved in miRNA biogenesis, namely Dicer, Drosha, Argonaute (Ago), and Exportin-5 to understand evolution of these proteins in animal kingdom and also to identify key sequence and structural features that are determinants of their function. Our analysis reveals that in animals the miRNA biogenesis pathway first originated in molluscs. The phylogeny of Dicer and Ago indicated evolution through gene duplication followed by sequence divergence that resulted in functional divergence. Our detailed structural analysis also revealed that RIIIDb domains of Drosha and Dicer, share significant similarity in sequence, structure, and substrate-binding pocket. On the other hand, PAZ domains of Dicer and Ago show only conservation of the substrate-binding pockets in the catalytic sites despite significant divergence in sequence and overall structure. Based on a comparative structural analysis of all four human Ago proteins (hAgo1–4) and their known biochemical activity, we have also attempted to identify key residues in Ago2 which are responsible for the unique slicer activity of hAgo2 among all isoforms. We have identified six key residues in N domain of hAgo2, which are located far away from the catalytic pocket, but might be playing a major role in slicer activity of hAgo2 protein because of their involvement in mRNA binding.  相似文献   

16.
X-ray crystallographic analysis was performed and several phenylahistin derivatives were synthesized to elucidate the structural components necessary for the anti-microtubule activity of phenylahistin. We primarily focused on the unique isoprenylated dehydrohistidine structure. Our results showed that a uniplanar pseudo-three-ring structure formed by the hydrogen bonding of diketopiperazine and imidazole rings is important for the anti-microtubule activity of phenylahistin.  相似文献   

17.
Eukaryotic translation initiation factor 5A (eIF5A) is a protein that is highly conserved and essential for cell viability. This factor is the only protein known to contain the unique and essential amino acid residue hypusine. This work focused on the structural and functional characterization of Saccharomyces cerevisiae eIF5A. The tertiary structure of yeast eIF5A was modeled based on the structure of its Leishmania mexicana homologue and this model was used to predict the structural localization of new site-directed and randomly generated mutations. Most of the 40 new mutants exhibited phenotypes that resulted from eIF-5A protein-folding defects. Our data provided evidence that the C-terminal alpha-helix present in yeast eIF5A is an essential structural element, whereas the eIF5A N-terminal 10 amino acid extension not present in archaeal eIF5A homologs, is not. Moreover, the mutants containing substitutions at or in the vicinity of the hypusine modification site displayed nonviable or temperature-sensitive phenotypes and were defective in hypusine modification. Interestingly, two of the temperature-sensitive strains produced stable mutant eIF5A proteins--eIF5A(K56A) and eIF5A(Q22H,L93F)--and showed defects in protein synthesis at the restrictive temperature. Our data revealed important structural features of eIF5A that are required for its vital role in cell viability and underscored an essential function of eIF5A in the translation step of gene expression.  相似文献   

18.
The accurate prediction of the secondary and tertiary structure of an RNA with different folding algorithms is dependent on several factors, including the energy functions. However, an RNA higher-order structure cannot be predicted accurately from its sequence based on a limited set of energy parameters. The inter- and intramolecular forces between this RNA and other small molecules and macromolecules, in addition to other factors in the cell such as pH, ionic strength, and temperature, influence the complex dynamics associated with transition of a single stranded RNA to its secondary and tertiary structure. Since all of the factors that affect the formation of an RNAs 3D structure cannot be determined experimentally, statistically derived potential energy has been used in the prediction of protein structure. In the current work, we evaluate the statistical free energy of various secondary structure motifs, including base-pair stacks, hairpin loops, and internal loops, using their statistical frequency obtained from the comparative analysis of more than 50,000 RNA sequences stored in the RNA Comparative Analysis Database (rCAD) at the Comparative RNA Web (CRW) Site. Statistical energy was computed from the structural statistics for several datasets. While the statistical energy for a base-pair stack correlates with experimentally derived free energy values, suggesting a Boltzmann-like distribution, variation is observed between different molecules and their location on the phylogenetic tree of life. Our statistical energy values calculated for several structural elements were utilized in the Mfold RNA-folding algorithm. The combined statistical energy values for base-pair stacks, hairpins and internal loop flanks result in a significant improvement in the accuracy of secondary structure prediction; the hairpin flanks contribute the most.  相似文献   

19.
Ribonuclease P (RNase P) catalyzes the removal of 5′ leaders of tRNA precursors and its central catalytic RNA subunit is highly conserved across all domains of life. In eukaryotes, RNase P and RNase MRP, a closely related ribonucleoprotein enzyme, share several of the same protein subunits, contain a similar catalytic RNA core, and exhibit structural features that do not exist in their bacterial or archaeal counterparts. A unique feature of eukaryotic RNase P/MRP is the presence of two relatively long and unpaired internal loops within the P3 region of their RNA subunit bound by a heterodimeric protein complex, Rpp20/Rpp25. Here we present a crystal structure of the human Rpp20/Rpp25 heterodimer and we propose, using comparative structural analyses, that the evolutionary divergence of the single-stranded and helical nucleic acid binding specificities of eukaryotic Rpp20/Rpp25 and their related archaeal Alba chromatin protein dimers, respectively, originate primarily from quaternary level differences observed in their heterodimerization interface. Our work provides structural insights into how the archaeal Alba protein scaffold was adapted evolutionarily for incorporation into several functionally-independent eukaryotic ribonucleoprotein complexes.  相似文献   

20.
We report the first high-resolution structure for a protein containing a fluorinated side chain. Recently we carried out a systematic evaluation of phenylalanine to pentafluorophenylalanine (Phe --> F(5)-Phe) mutants for the 35-residue chicken villin headpiece subdomain (c-VHP), the hydrophobic core of which features a cluster of three Phe side chains (residues 6, 10, and 17). Phe --> F(5)-Phe mutations are interesting because aryl-perfluoroaryl interactions of optimal geometry are intrinsically more favorable than either aryl-aryl or perfluoroaryl-perfluoroaryl interactions, and because perfluoroaryl units are more hydrophobic than are analogous aryl units. Only one mutation, Phe10 --> F(5)-Phe, was found to provide enhanced tertiary structural stability relative to the native core (by approximately 1 kcal/mol, according to guanidinium chloride denaturation studies). The NMR structure of this mutant, described here, reveals very little variation in backbone conformation or side chain packing relative to the wild type. Thus, although Phe --> F(5)-Phe mutations offer the possibility of greater tertiary structural stability from side chain-side chain attraction and/or side chain desolvation, the constraints associated with the native c-VHP fold apparently prevent the modified polypeptide from taking advantage of this possibility. Our findings are important because they complement several studies that have shown that fluorination of saturated side chain carbon atoms can provide enhanced conformational stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号