首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intramyocellular lipid (IMCL) storage is considered a local marker of whole body insulin resistance; because increments of body weight are supposed to impair insulin sensitivity, this study was designed to assess IMCL content, lipid oxidation, and insulin action in individuals with a moderate increment of body fat mass and no family history of diabetes. We studied 14 young, nonobese women with body fat <30% (n = 7) or >30% (n = 7) and 14 young, nonobese men with body fat <25% (n = 7) or >25% (n = 7) by means of the euglycemic-insulin clamp to assess whole body glucose metabolism, with indirect calorimetry to assess lipid oxidation, by localized (1)H NMR spectroscopy of the calf muscles to assess IMCL content, and with dual-energy X-ray absorptiometry to assess body composition. Subjects with higher body fat had normal insulin-stimulated glucose disposal (P = 0.80), IMCL content in both soleus (P = 0.22) and tibialis anterior (P = 0.75) muscles, and plasma free fatty acid levels (P = 0.075) compared with leaner subjects in association with increased lipid oxidation (P < 0.05), resting energy expenditure (P = 0.046), resting oxygen consumption (P = 0.049), and plasma leptin levels (P < 0.01) in the postabsorptive condition. In conclusion, in overweight subjects, preservation of insulin sensitivity was combined with increased lipid oxidation and maintenance of normal IMCL content, suggesting that abnormalities of these factors may mutually determine the development of insulin resistance associated with weight gain.  相似文献   

2.
Objective: A low resting metabolic rate (RMR) is considered a risk factor for weight gain and obesity; however, due to the greater fat‐free mass (FFM) found in obesity, detecting an impairment in RMR is difficult. The purposes of this study were to determine the RMR in lean and obese women controlling for FFM and investigate activity energy expenditure (AEE) and daily activity patterns in the two groups. Methods and Procedures: Twenty healthy, non‐smoking, pre‐menopausal women (10 lean and 10 obese) participated in this 14‐day observational study on free‐living energy balance. RMR was measured by indirect calorimetry; AEE and total energy expenditure (TEE) were calculated using doubly labeled water (DLW), and activity patterns were investigated using monitors. Body composition including FFM and fat mass (FM) was measured by dual energy X‐ray absorptiometry (DXA). Results: RMR was similar in the obese vs. lean women (1601 ± 109 vs. 1505 ± 109 kcal/day, respectively, P = 0.12, adjusting for FFM and FM). Obese women sat 2.5 h more each day (12.7 ± 3.2 h vs. 10.1 ± 2.0 h, P < 0.05), stood 2 h less (2.7 ± 1.0 h vs. 4.7 ± 2.2 h, P = 0.02) and spent half as much time in activity than lean women (2.6 ± 1.5 h vs. 5.4 ± 1.9 h, P = 0.002). Discussion: RMR was not lower in the obese women; however, they were more sedentary and expended less energy in activity than the lean women. If the obese women adopted the activity patterns of the lean women, including a modification of posture allocation, an additional 300 kcal could be expended every day.  相似文献   

3.
4.
Obese individuals have reduced cardiorespiratory fitness as compared with leaner counterparts. Regular exercise maintains or increases fitness and lean body mass. Lean body mass, in turn, has a direct impact on resting metabolic rate (RMR). Given these relationships, we sought to evaluate the association between RMR and cardiorespiratory fitness in obese individuals. We evaluated 64 obese individuals (78% female) with direct assessment of RMR and cardiorespiratory fitness via breath‐by‐breath measurement of oxygen consumption and carbon dioxide production at rest and during exercise. The mean age and BMI were 47.4 ± 12.2 years and 47.2 ± 9.2 kg/m2, respectively. The majority of subjects, 69%, had a measured RMR above that predicted by the Harris‐Benedict equation. Compared with the higher RMR group, those with a lower than predicted RMR had increased BMI, with values of 52.9 vs. 44.7 kg/m2, P = 0.001, respectively. Analysis of those demonstrating significant effort during cardiopulmonary exercise testing (peak respiratory exchange ratio ≥1.10) revealed a significantly higher peak oxygen uptake (VO2 peak) in the higher RMR group (17.3 ± 3.5 ml/min/kg) compared with the lower RMR group (13.6 ± 1.9 ml/min/kg), P = 0.003. In summary, a lower than predicted RMR was associated with a severely reduced VO2 peak and a higher BMI in this cohort. These data suggest that morbid obesity may be a vicious cycle of increasing BMI, reduced cardiorespiratory fitness, muscle deconditioning, and lower RMR. Collectively, these responses may, over time, exacerbate the imbalance between energy intake and expenditure, resulting in progressive increases in body weight and fat stores.  相似文献   

5.
We tested for gender differences in dietary fatty acid metabolism in 12 nonobese men and 12 nonobese women using the meal fatty acid tracer/adipose tissue biopsy study design. In addition to determining body composition, measurements of regional adipose tissue lipoprotein lipase activity, blood flow, and fat cell size were performed to place the meal fatty acid kinetic studies in perspective. Twenty-four hours after ingesting the test meal, the concentration of meal fatty acids was greater (P < 0.05) in abdominal subcutaneous than in thigh adipose tissue in both men (0. 61 +/- 0.12 vs. 0.45 +/- 0.09 mg/g) and women (0.59 +/- 0.10 vs. 0. 43 +/- 0.05) but was not different between men and women. A greater percentage of dietary fat was stored in subcutaneous adipose tissue in women than in men (38 +/- 3 vs. 24 +/- 3%, respectively, P < 0. 05), and a greater portion of meal fatty acid disposal was unaccounted for in men. Significant gender differences in regional adipose tissue blood flow after meal ingestion were noted; the differences were in the direction that could support greater nutrient storage in lower body fat in women.  相似文献   

6.
Controversy exists regarding the relative importance of adiposity, physical fitness, and physical activity in the regulation of insulin-stimulated glucose disposal. To address this issue, we measured insulin-stimulated glucose disposal [mg. kg fat-free mass (FFM)(-1). min(-1); oxidative and nonoxidative components] in 45 nondiabetic, nonobese, premenopausal women (mean +/- SD; 47 +/- 3 yr) by use of hyperinsulinemic euglycemic clamp (40 mU. m(-2). min(-1)) and [6,6-2H2]glucose dilution techniques. We also measured body composition, abdominal fat distribution, thigh muscle fat content, maximal oxygen consumption (VO2 max), and physical activity energy expenditure ((2)H(2)(18)O kinetics) as possible correlates of glucose disposal. VO2 max was the strongest correlate of glucose disposal (r = 0.63, P < 0.01), whereas whole body and abdominal adiposity showed modest associations (range of r values from -0.32 to -0.46, P < 0.05 to P < 0.01). A similar pattern of correlations was observed for nonoxidative glucose disposal. None of the variables measured correlated with oxidative glucose disposal. The relationship of VO2 max to glucose disposal persisted after statistical control for FFM, percent body fat, and intra-abdominal fat (r = 0.40, P < 0.01). In contrast, correlations of total and regional adiposity measures to insulin sensitivity were no longer significant after statistical adjustment for VO2 max. VO2 max was the only variable to enter stepwise regression models as a significant predictor of total and nonoxidative glucose disposal. Our results highlight the importance of VO2 max as a determinant of glucose disposal and suggest that it may be a stronger determinant of variation in glucose disposal than total and regional adiposity in nonobese, nondiabetic, premenopausal women.  相似文献   

7.
We measured body composition and resting metabolic rates (RMR) of three dog breeds (Papillons, mean body mass 3.0 kg (n = 35), Labrador retrievers, mean body mass 29.8 kg (n = 35) and Great Danes, mean body mass 62.8 kg (n = 35)) that varied between 0.6 and 14.3 years of age. In Papillons, lean body mass (LBM) increased with age but fat mass (FBM) was constant; in Labradors, both LBM and FBM were constant with age, and in Great Danes, FBM increased with age but LBM was constant. FBM averaged 14.8% and 15.7% of body mass in Papillons and Labradors, respectively. Great Danes were leaner and averaged only 10.5% FBM. Pooling the data for all individuals, the RMR was significantly and positively associated with LBM and FBM and negatively associated with age. Once these factors had been taken into account there was still a significant breed effect on RMR, which was significantly lower in Labradors than in the other two breeds. Using the predictive multiple regression equation for RMR and the temporal trends in body composition, we modelled the expenditure of energy (at rest) over the first 8 years of life, and over the entire lifespan for each breed. Over the first 8 years of life the average expenditure of energy per kg LBM were 0.985, 0.675 and 0.662 GJ for Papillons, Labradors and Great Danes, respectively. This energy expenditure was almost 60% greater for the smallest compared with the largest breed. On average, however, the life expectancy for the smallest breed was a further 6 years (i.e. 14 years in total), whereas for the largest breed it was only another 6 months (i.e. 8.5 years in total). Total lifetime expenditure of energy at rest per kg LBM averaged 1.584, 0.918 and 0.691 GJ for Papillons, Labradors and Great Danes, respectively. In Labradors, total daily energy expenditure, measured by the doubly labelled water method in eight animals, was only 16% greater than the observed RMR. High energy expenditure in dogs appears positively linked to increased life expectancy, contrary to the finding across mammal species and within exotherms, yet resembling observations in other intra-specific studies. These contrasting correlations suggest that metabolism is affecting life expectancy in different ways at these different levels of enquiry.  相似文献   

8.
Insulin sensitivity is impaired and ectopic fat (accretion of lipids outside of typical adipose tissue depots) increased in obese adults and adolescents. It is unknown how early in life this occurs; thus, it is important to evaluate young children to identify potential factors leading to the development of metabolic syndrome. We examined an ethnically diverse cohort of healthy, exclusively prepubertal children (N = 123; F = 57, M = 66; age 8.04 ± 0.77 years) to examine differences in insulin sensitivity and ectopic and visceral fat deposition between obese and nonobese youth. Obesity was categorized by age- and sex-adjusted BMI z-scores (nonobese = z-score <2 (N = 94) and obese = z-score ≥2 (N = 29)). Insulin sensitivity was assessed by both a frequently sampled intravenous glucose tolerance test (S(i)) and the homeostatic model assessment of insulin resistance (HOMA(IR)). Intramyocellular lipids (IMCLs) from soleus and intrahepatic lipids (IHLs) were assessed by magnetic resonance spectroscopy, visceral adipose tissue (VAT) by magnetic resonance imaging, and total body fat by dual-energy X-ray absorptiometry. We also examined serum lipids (total cholesterol, triglycerides, high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol) and blood pressure (diastolic and systolic). Obese children exhibited significantly lower S(i) (5.9 ± 5.98 vs. 13.43 ± 8.18 (mμ/l)(-1)·min(-1), P = 0.01) and HDL-C and higher HOMA(IR) (1.68 ± 1.49 vs. 0.63 ± 0.47, P < 0.0001), IMCL (0.74 ± 0.39 vs. 0.44 ± 0.21% water peak, P < 0.0001), IHL (1.49 ± 1.13 vs. 0.54 ± 0.42% water peak, P < 0.0001), VAT (20.16 ± 8.01 vs. 10.62 ± 5.44 cm(2), P < 0.0001), total cholesterol, triglycerides, low-density lipoprotein cholesterol, and systolic blood pressure relative to nonobese children. These results confirm significantly increased ectopic fat and insulin resistance in healthy obese vs. nonobese children prior to puberty. Excessive adiposity during early development appears concomitant with precursors of type 2 diabetes and the metabolic syndrome.  相似文献   

9.
Visceral fat has been associated with multiple cardiovascular disease (CVD) risk factors. The aim of this study was to identify anthropometrical measures most closely associated with some well-known CVD risk factors. Because most Asians at risk have normal body mass index (BMI) according to Western standards, we studied healthy nonobese Korean males (n = 102; age: 36.5 +/- 0.8 years, BMI: 23.8 +/- 0.2 kg/m2). Visceral fat area (VFA) at the fourth lumbar vertebra was associated with increased postprandial triglyceride (TG) response (r = 0.53, P < 0.001) and with plasma malondialdehyde (MDA) (r = 0.36, P < 0.01) and PGF2alpha (r = 0.24, P < 0.05). When matched for BMI and age, men with high VFA (HVFA) (>/=100 cm2; n = 27) had higher blood pressure (P < 0.01), increased consumption of cigarettes (P < 0.01), and lower ratio of energy expenditure to calorie intake (P < 0.01) as compared with low VFA men (<100 cm2; n = 27). Men with HVFA showed higher TG, glucose, and insulin responses following fat and oral glucose tolerance tests respectively higher plasma concentrations of MDA (P < 0.001), urinary PGF2alpha (P < 0.05), and lymphocytes deoxyribonucleic acid tail moments (P < 0.01). Conversely, HVFA was associated with lower testosterone, insulin-like growth factor-1, and brachial artery flow-mediated dilation (P < 0.001). In conclusion, our data indicate that visceral fat accumulation, even in nonobese men, is a major factor contributing to increased CVD risk.  相似文献   

10.
The effect of relative body fat mass on exercise-induced stimulation of lipolysis and fatty acid oxidation was evaluated in 15 untrained men (5 lean, 5 overweight, and 5 obese with body mass indexes of 21 +/- 1, 27 +/- 1, and 34 +/- 1 kg/m2, respectively, and %body fat ranging from 12 to 32%). Palmitate and glycerol kinetics and substrate oxidation were assessed during 90 min of cycling at 50% peak aerobic capacity (VO2 peak) by use of stable isotope-labeled tracer infusion and indirect calorimetry. An inverse relationship was found between %body fat and exercise-induced increase in glycerol appearance rate relative to fat mass (r2 = 0.74; P < 0.01). The increase in total fatty acid uptake during exercise [(micromol/kg fat-free mass) x 90 min] was approximately 50% smaller in obese (181 +/- 70; P < 0.05) and approximately 35% smaller in overweight (230 +/- 71; P < 0.05) than in lean (354 +/- 34) men. The percentage of total fatty acid oxidation derived from systemic plasma fatty acids decreased with increasing body fat, from 49 +/- 3% in lean to 39 +/- 4% in obese men (P < 0.05); conversely, the percentage of nonsystemic fatty acids, presumably derived from intramuscular and possibly plasma triglycerides, increased with increasing body fat (P < 0.05). We conclude that the lipolytic response to exercise decreases with increasing adiposity. The blunted increase in lipolytic rate in overweight and obese men compared with lean men limits the availability of plasma fatty acids as a fuel during exercise. However, the rate of total fat oxidation was similar in all groups because of a compensatory increase in the oxidation of nonsystemic fatty acids.  相似文献   

11.
Objectives: To study energy expenditure before and 3 hours after a high‐fat load in a large cohort of obese subjects (n = 701) and a lean reference group (n = 113). Research Methods and Procedures: Subjects from seven European countries underwent a 1‐day clinical study with a liquid test meal challenge containing 95% fat (energy content was 50% of estimated resting energy expenditure). Fasting and 3‐hour postprandial energy expenditures, as well as metabolites and hormones, were determined. Results: Obese subjects had a reduced postprandial energy expenditure after the high‐fat load, independent of body composition, age, sex, research center, and resting energy expenditure, whereas within the obese group, thermogenesis increased again with increasing BMI category. Additionally, insulin resistance, habitual physical activity, postprandial plasma triacylglycerols, and insulin were all independently positively related to the postprandial energy expenditure. Resting energy expenditure, adjusted for fat‐free mass, increased with degree of obesity, a difference that disappeared after adjustment for fat mass. Furthermore, insulin resistance, fasting plasma free fatty acids, and cortisol were positively associated, whereas fasting plasma leptin and insulin‐like growth factor‐1 were negatively associated, with resting energy expenditure. Discussion: The 3‐hour fat‐induced thermogenic response is reduced in obesity. It remains to be determined whether this blunted thermogenic response is a contributory factor or an adaptive response to the obese state.  相似文献   

12.
Objective: It is unclear if resting metabolic rate (RMR) and spontaneous physical activity (SPA) decrease in weight‐reduced non‐obese participants. Additionally, it is unknown if changes in SPA, measured in a respiratory chamber, reflect changes in free‐living physical activity level (PAL). Research Methods and Procedures: Participants (N = 48) were randomized into 4 groups for 6 months: calorie restriction (CR, 25% restriction), CR plus structured exercise (CR+EX, 12.5% restriction plus 12.5% increased energy expenditure via exercise), low‐calorie diet (LCD, 890 kcal/d supplement diet until 15% weight loss, then weight maintenance), and control (weight maintenance). Measurements were collected at baseline, Month 3, and Month 6. Body composition and RMR were measured by DXA and indirect calorimetry, respectively. Two measures of SPA were collected in a respiratory chamber (percent of time active and kcal/d). Free‐living PAL (PAL = total daily energy expenditure by doubly labeled water/RMR) was also measured. Regression equations at baseline were used to adjust RMR for fat‐free mass and SPA (kcal/d) for body weight. Results: Adjusted RMR decreased at Month 3 in the CR group and at Month 6 in the CR+EX and LCD groups. Neither measure of SPA decreased significantly in any group. PAL decreased at Month 3 in the CR and LCD groups, but not in the CR+EX group, who engaged in structured exercise. Changes in SPA in the chamber and free‐living PAL were not related. Discussion: Body weight is defended in non‐obese participants during modest caloric restriction, evidenced by metabolic adaptation of RMR and reduced energy expenditure through physical activity.  相似文献   

13.
Oxidation and adipose tissue uptake of dietary fat can be measured by adding fatty acid tracers to meals. These studies were conducted to measure between-study variability of these types of experiments and assess whether dietary fatty acids are handled differently in the follicular vs. luteal phase of the menstrual cycle. Healthy normal-weight men (n = 12) and women (n = 12) participated in these studies, which were block randomized to control for study order, isotope ([3H]triolein vs. [14C]triolein), and menstrual cycle. Energy expenditure (indirect calorimetry), meal fatty acid oxidation, and meal fatty acid uptake into upper body and lower body subcutaneous fat (biopsies) 24 h after the experimental meal were measured. A greater portion of meal fatty acids was stored in upper body subcutaneous adipose tissue (24 +/- 2 vs. 16 +/- 2%, P < 0.005) and lower body fat (12 +/- 1 vs. 7 +/- 1%, P < 0.005) in women than in men. Meal fatty acid oxidation (3H2O generation) was greater in men than in women (52 +/- 3 vs. 45 +/- 2%, P = 0.04). Leg adipose tissue uptake of meal fatty acids was 15 +/- 2% in the follicular phase of the menstrual cycle and 10 +/- 1% in the luteal phase (P = NS). Variance in meal fatty acid uptake was somewhat (P = NS) greater in women than in men, although menstrual cycle factors did not contribute significantly. We conclude that leg uptake of dietary fat is slightly more variable in women than in men, but that there are no major effects of menstrual cycle on meal fatty acid disposal.  相似文献   

14.
The sympathetic nervous system (SNS) plays an important role in the regulation of energy expenditure. However, whether tonic SNS activity contributes to resting metabolic rate (RMR) in healthy adult humans is controversial, with the majority of studies showing no effect. We hypothesized that an intravenous propranolol infusion designed to achieve complete beta-adrenergic blockade would result in a significant acute decrease in RMR in healthy adults. RMR (ventilated hood, indirect calorimetry) was measured in 29 healthy adults (15 males, 14 females) before and during complete beta-adrenergic blockade documented by plasma propranolol concentrations > or =100 ng/ml, lack of heart rate response to isoproterenol, and a plateau in RMR with increased doses of propranolol. Propranolol infusion evoked an acute decrease in RMR (-71 +/- 11 kcal/day; -5 +/- 0.7%, P < 0.0001), whereas RMR was unchanged from baseline levels during a saline control infusion (P > 0.05). The response to propranolol differed from the response to saline control (P < 0.01). The absolute and percent decreases in RMR with propranolol were modestly related to baseline plasma concentration of norepinephrine (r = 0.38, P = 0.05; r = 0.44, P = 0.02, respectively). These findings provide direct evidence for the concept of tonic sympathetic beta-adrenergic support of RMR in healthy nonobese adults.  相似文献   

15.
Objectives : To compare the resting metabolic rate (RMR) between diabetic and nondiabetic obese subjects and to develop a predictive equation of RMR for these subjects. Research Methods and Procedures : Obese adults (1088; mean age = 44.9 ± 12.7 years) with BMI ≥ 35 kg/m2 (mean BMI = 46.4 ± 8.4 kg/m2) were recruited. One hundred forty‐two subjects (61 men, 81 women) were diagnosed with type 2 diabetes (DM), giving the prevalence of DM in this clinic population as 13.7%. RMR was measured by indirect calorimetry, and several multivariate linear regression models were performed using age, gender, weight, height, BMI, fat mass, fat mass percentage, and fat‐free mass as independent variables. Results : The severely obese patients with DM had consistently higher RMR after adjustment for all other variables. The best predictive equation for the severely obese was RMR = 71.767 ? 2.337 × age + 257.293 × gender (women = 0 and men = 1) + 9.996 × weight (in kilograms) + 4.132 × height (in centimeters) + 145.959 × DM (nondiabetic = 0 and diabetic = 1). The age, weight, and height‐adjusted least square means of RMR between diabetic and nondiabetic groups were significantly different in both genders. Discussion : Severely obese patients with type 2 diabetes had higher RMR than those without diabetes. The RMR of severely obese subjects was best predicted by an equation using age, gender, weight, height, and DM as variables.  相似文献   

16.
Objective: Resting metabolic rate (RMR) is mainly determined by fat‐free mass and additionally by age, sex, hormones, and possibly genetic differences. We evaluated whether leptin levels and polymorphisms in the leptin receptor (LEPR) gene were associated with energy expenditure phenotypes. Methods: RMR, body composition, and leptin levels were measured in 125 overweight and obese women. Three LEPR polymorphisms, Lys109Arg, Gln223Arg, and Lys656Asn, were typed on genomic DNA of another group of 192 women in whom RMR was measured. Fat, protein, and carbohydrate oxidation were calculated for 103 of these subjects. In 38 subjects, glucose‐induced thermogenesis was measured over 3 hours. Results: In the first study group, a negative correlation between RMR and leptin levels was found after controlling for fat and fat‐free mass. In multiple regression analysis, leptin contributed significantly to RMR, independent of body composition. In the second study group, RMR was not associated with LEPR polymorphisms. Differences in substrate oxidation rates were found among genotypes at the Lys656Asn site. In fasting conditions, Lys656Lys showed a trend to oxidize more carbohydrates and less fat than Asn656 carriers, a trend which became significant after the glucose load when carbohydrate oxidation rate in Lys656Lys was 15% higher than in Asn656 carriers (p = 0.04), and fat oxidation rate was 44% lower (p = 0.02). Discussion: These results suggest that DNA sequence variations in the LEPR gene could affect substrate oxidation. We hypothesize that this might be caused by differences in glucose levels, leading to differences in glucose oxidation rates.  相似文献   

17.
The current study was undertaken to examine metabolic and body composition correlates of fatty liver in type 2 diabetes mellitus (DM). Eighty-three men and women with type 2 DM [mean body mass index (BMI): 34 +/- 0.5 kg/m2] and without clinical or laboratory evidence of liver dysfunction had body composition assessments of fat mass (FM), visceral adipose tissue (VAT), liver and spleen computed tomography (CT) attenuation (ratio of liver to spleen), muscle CT attenuation, and thigh adiposity; these assessments were also performed in 12 lean and 15 obese nondiabetic volunteers. Insulin sensitivity was measured with a euglycemic insulin infusion (40 mU. m-2. min-1) combined with systemic indirect calorimetry to assess glucose and lipid oxidation, and with infusions of [2H2]glucose for assessment of endogenous glucose production. A majority of those with type 2 DM (63%) met CT criteria for fatty liver, compared with 20% of obese and none of the lean nondiabetic volunteers. Fatty liver was most strongly correlated with VAT (r = -0.57, P < 0.0001) and less strongly but significantly associated with BMI (r = -0.42, P < 0.001) and FM (r = -0.37, P < 0.001), but only weakly associated with subcutaneous adiposity (r = -0.29; P < 0.01). Fatty liver was also correlated with subfascial adiposity of skeletal muscle (r = -0.44; P < 0.01). Volunteers with type 2 DM and fatty liver were substantially more insulin resistant those with type 2 DM but without fatty liver (P < 0.001) and had higher levels of plasma free fatty acids (P < 0.01) and more severe dyslipidemia (P < 0.01), a pattern observed in both genders. Plasma levels of cytokines were increased in relation to fatty liver (r = -0.34; P < 0.01). In summary, fatty liver is relatively common in overweight and obese volunteers with type 2 DM and is an aspect of body composition related to severity of insulin resistance, dyslipidemia, and inflammatory markers.  相似文献   

18.
Objective: The literature is divided over whether variation in resting metabolic rate (RMR) is related to subsequent obesity. We set out to see whether the effect of RMR on weight gain in mice could be revealed with high‐fat feeding. Research Methods and Procedures: Female C57BL/6J mice received a low‐ (10 kcal%fat n = 47), medium‐ (45 kcal%fat n = 50), or high‐fat diet (60 kcal%fat n = 50) for 12 weeks. Pre‐treatment RMR was measured by indirect calorimetry. Body composition was estimated using DXA before and after treatment. Results: Mice on the high‐fat diet gained 39% of body mass, whereas control animals gained 3.5%. There was no interaction between RMR and dietary type on weight gain, and there was no association between weight gain and RMR for any of the treatments. RMR accounted for 2.4% of the variation in pre‐treatment food intake corrected for initial body mass; however, the gradient of this relationship indicated that variations in RMR were, on average, compensated for by adjustments in food intake. Discussion: Individual variations in RMR did not predispose mice to weight gain independent of the dietary treatment. Deviations from the relationship between RMR and food intake were not associated with weight gain. This suggests that variations in energy expenditure, caused by RMR and physical activity, are closely linked to dietary intake, and, therefore, well compensated. Individual variations in the strength of this association may underpin individual variability in the responses to diet.  相似文献   

19.
Objective: A low resting metabolic rate for a given body size and composition, a low rate of fat oxidation, low levels of physical activity, and low plasma leptin concentrations are all risk factors for body weight gain. The aim of the present investigation was to compare resting metabolic rate (RMR), respiratory quotient (RQ), levels of physical activity, and plasma leptin concentrations in eight post‐obese adults (2 males and 6 females; 48.9 ± 12.2 years; body mass index [BMI]: 24.5 ± 1.0 kg/m2; body fat 33 ± 5%; mean ± SD) who lost 27.1 ± 21.3 kg (16 to 79 kg) and had maintained this weight loss for ≥2 months (2 to 9 months) to eight age‐ and BMI‐matched control never‐obese subjects (1 male and 7 females; 49.1 ± 5.2 years; BMI 24.4 ± 1.0 kg/m2; body fat 33 ± 7%). Research Methods and Procedures: Following 3 days of weight maintenance diet (50% carbohydrate and 30% fat), RMR and RQ were measured after a 10‐hour fast using indirect calorimetry and plasma leptin concentrations were measured using radioimmunoassay. Levels of physical activity were estimated using an accelerometer over a 48‐hour period in free living conditions. Results: After adjustment for fat mass and fat‐free mass, post‐obese subjects had, compared with controls, similar levels of physical activity (4185 ± 205 vs. 4295 ± 204 counts) and similar RMR (1383 ± 268 vs. 1430 ± 104 kcal/day) but higher RQ (0.86 ± 0.04 vs. 0.81 ± 0.03, p < 0.05). Leptin concentration correlated positively with percent body fat (r = 0.57, p < 0.05) and, after adjusting for fat mass and fat‐free mass, was lower in post‐obese than in control subjects (4.5 ± 2.1 vs. 11.6 ± 7.9 ng/mL, p < 0.05). Discussion: The low fat oxidation and low plasma leptin concentrations observed in post‐obese individuals may, in part, explain their propensity to relapse.  相似文献   

20.
This study evaluated if the effect of dietary macronutrient composition on adipose tissue lipoprotein lipase (ATLPL) and skeletal muscle lipoprotein lipase (SMLPL) predicted the long-term (over 4 years) changes in body weight and composition in free-living adults. Using a crossover design, 39 healthy subjects (n = 24 normal weight, n = 7 overweight, n = 8 obese) each followed a 2-week isocaloric high-carbohydrate (HC; 55% CHO:25% fat) and high-fat (HF; 30% CHO:50% fat) diet. On day 15 of each diet, biopsies were performed in the fasted state and 6 h after a meal. Body weight and composition were measured annually over 4 years. The outcomes for body weight, fat mass and % body fat were assessed using a linear two-stage mixed model. The mean (±SEM) increase in body weight and fat mass over 4 years was 0.29 ± 0.15 kg/year (P = 0.063) and 0.31 ± 0.15 kg/year (P = 0.051), respectively. The most consistent predictors of future body weight and fat changes were the ΔATLPL and ΔSMLPL responses (0-6 h) to a HC diet/meal. For the HC diet/meal, the subjects who had an increase in ATLPL activity/cell gained more % body fat over 4 years (P = 0.006) whereas subjects who had a decrease in SMLPL activity/g also had an increase in fat mass (P = 0.021). No significant relationships were observed between fasting ATLPL and SMLPL or enzyme responses to meals and any of the outcomes following the HF diet. In free-living adults the variability in tissue-specific lipoprotein lipase (LPL) responsiveness to a HC diet/meal predicts longitudinal changes in body composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号