首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gentamicin (GM) is an antibiotic whose clinical use is limited by its nephrotoxicity. Experimental evidences suggest a role of reactive oxygen species in GM-induced nephrotoxicity. Therefore, we investigated if aged garlic extract (AGE), an antioxidant, has a protective role in this experimental model. Four groups of male Wistar rats were studied: 1) Control (CT), injected subcutaneously (s.c.) and intraperitoneally (i.p.) with saline, 2) GM, treated s.c. with GM (70 mg/kg/12 hours/4 days), 3) AGE, treated i.p with AGE (1.2 mL/kg/12 hours/6 days), and 4) GM + AGE treated with GM and AGE. The treatment with AGE started two days before the first dose of GM (GM + AGE group) or saline (AGE group). Animals were sacrificed on day 5, and blood, urine, and kidneys were obtained. Nephrotoxicity was made evident by: 1) the increase in blood urea nitrogen and plasma creatinine, 2) the decrease in plasma glutathione peroxidase (GPx) activity and the urinary increase in N-acetyl-beta-D-glucosaminidase activity and total protein, and 3) necrosis of proximal tubular cells. These alterations were prevented or ameliorated by AGE treatment. Furthermore, AGE prevented the GM-induced increase in the renal levels of oxidative stress markers: nitrotyrosine and protein carbonyl groups and the decrease in manganese superoxide dismutase (Mn-SOD), GPx, and glutathione reductase (GR) activities. The protective effect of AGE was associated with the decrease in the oxidative stress and the preservation of Mn-SOD, GPx, and GR activities in renal cortex. These data suggest that AGE may be a useful agent for the prevention of GM-nephrotoxicity.  相似文献   

2.
Gentamicin (GM)-induced nephrotoxicity limits its long-term clinical use. Several agents/strategies were attempted to prevent GM nephrotoxicity but were not found suitable for clinical practice. Dietary fish oil (FO) retard the progression of certain types of cancers, cardiovascular and renal disorders. We aimed to evaluate protective effect of FO on GM-induced renal proximal tubular damage. The rats were pre-fed experimental diets for 10 days and then received GM (80 mg/kg body weight/day) treatment for 10 days while still on diet. Serum/urine parameters, enzymes of carbohydrate metabolism, brush border membrane (BBM), oxidative stress and phosphate transport in rat kidney were analyzed. GM nephrotoxicity was recorded by increased serum creatinine and blood urea nitrogen. GM increased the activities of lactate and glucose-6-phosphate dehydrogenases whereas decreased malate, isocitrate dehydrogenases; glucose-6 and fructose-1,6-bisphosphatases; superoxide dismutase, catalase, glutathione peroxidase and BBM enzymes. In contrast, FO alone increased enzyme activities of carbohydrate metabolism, BBM and oxidative stress. FO feeding to GM treated rats markedly enhanced resistance to GM elicited deleterious effects and prevented GM-induced decrease in 32Pi uptake across BBM. Dietary FO supplementation ameliorated GM-induced specific metabolic alterations and oxidative damage due to its intrinsic biochemical/antioxidant properties.  相似文献   

3.
Reactive oxygen species are involved in gentamicin (GM) nephrotoxicity, and garlic is effective in preventing or ameliorating oxidative stress. Therefore, the effect of garlic on GM nephrotoxicity was investigated in this work. Four groups of rats were studied: (i) fed normal diet (CT), (ii) treated with GM (GM), (iii) fed 2% garlic diet (GA), and (iv) treated with GM and 2% garlic diet (GM + GA). Rats were placed in metabolic cages and GM nephrotoxicity was induced by injections of GM (75 mg/kg every 12 h) for 6 d. Lipoperoxidation and enzyme determinations were made in renal cortex on day 7. GM nephrotoxicity was made evident on day 7 by (i) tubular histological damage, (ii) enhanced BUN and urinary excretion of N-acetyl-beta-D-glucosaminidase, and (iii) decreased creatinine clearance. These alterations were prevented or ameliorated in GM + GA group. The rise in lipoperoxidation and the decrease in Mn-SOD and glutathione peroxidase (GPx) activities observed in the GM group, were prevented in the GM + GA group. Cu, Zn-SOD activity and Mn-SOD and Cu,Zn-SOD content did not change. CAT activity and content decreased in the GM, GA, and GM + GA groups. CAT mRNA levels decreased in the GM group. The protective effect of garlic is associated with the prevention of the decrease of Mn-SOD and GPx activities and with the rise of lipoperoxidation in renal cortex.  相似文献   

4.
5.
Gentamicin (GM), an antibiotic against life threatening bacterial infection, induces remarkable toxicity in the kidney. Histological studies have indicated that mitochondria, microsomes, lysosomes and plasma membranes of renal proximal convoluted tubules in particular are major GM targets. Despite numerous investigations, the biochemical/cellular basis of GM nephrotoxicity is not well understood. Recently reactive oxygen species (ROS) are considered to be important mediators of GM-induced nephrotoxicity. We hypothesize that GM causes damage to intracellular organelles and affects their structural integrity and alters metabolic and other functional capabilities. To address above hypothesis a long-term, time-dependent effect of GM has been studied on blood/urine parameters, enzymes of carbohydrate metabolism, brush border membrane (BBM) and basolateral (BLM), lysosomes and oxidative stress in renal tissues. A nephrotoxic dose of GM (80 mg/kg body weight) was administered to rats daily for 15 days. The long-term treatment with GM induced a significant increase in serum creatinine, blood urea nitrogen followed by massive proteinuria, glucosuria, enzymuria along with loss of electrolytes in the urine. The activities of the enzymes of carbohydrate metabolism, plasma membranes, lysosomes significantly declined. The activities of antioxidant enzymes e.g. superoxide dismutase, catalase and glutathione peroxidase were severely depressed and lipid peroxidation was significantly increased in the renal cortex and medulla. We conclude that GM administration induced oxidative damage to renal tissues that resulted in impaired carbohydrate metabolism and decreased activities of BBM, BLM and lysosomes associated with increased lipid peroxides.  相似文献   

6.
Increased oxidative stress and impaired antioxidant defense mechanism are important factors in the pathogenesis and progression of diabetes mellitus and other oxidant-related diseases. The present study was undertaken to evaluate the possible protective effects of S-allyl cysteine (SAC) against oxidative stress in streptozotocin (STZ) induced diabetic rats. SAC was administered orally for 45 days to control and STZ induced diabetic rats. The effects of SAC on glucose, plasma insulin, thiobarbituric acid reactive substances (TBARS), hydroperoxide, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), oxidized glutathione (GSSG) and GSH/GSSG ratio were studied. The levels of glucose, TBARS, hydroperoxide, and GSSG were increased significantly whereas the levels of plasma insulin, reduced glutathione, GSH/GSSG ratio, superoxide dismutase, catalase and GPx were decreased in STZ induced diabetic rats. Administration of SAC to diabetic rats showed a decrease in plasma glucose, TBARS, hydroperoxide and GSSG. In addition, the levels of plasma insulin, superoxide dismutase, catalase, GPx and reduced glutathione (GSH) were increased in SAC treated diabetic rats. The above findings were supported by histological observations of the liver and kidney. The antioxidant effect of SAC was compared with glyclazide, a well-known antioxidant and antihyperglycemic drug. The present study indicates that the SAC possesses a significant favorable effect on antioxidant defense system in addition to its antidiabetic effect.  相似文献   

7.
Rhabdomyolysis-induced myoglobinuric acute renal failure accounts for about 10-40% of all cases of acute renal failure (ARF). Nitric oxide and reactive oxygen intermediates play a crucial role in the pathogenesis of myoglobinuric acute renal failure (ARF). This study was designed to investigate the effect of molsidomine and L-arginine in glycerol induced ARF in rats. Six groups of rats were employed in this study, group I served as control, group II was given 50% glycerol (8 ml/kg, intramuscularly), groups III and IV were given glycerol plus molsidomine (5 mg/kg, and 10 mg/kg p.o. route respectively) 60 min prior to the glycerol injection, group V animals were given glycerol plus L-arginine (125 mg/kg, p.o.) 60 min prior to the glycerol injection, and group VI received L-NAME (10 mg/kg, i.p.) along with glycerol 30 min prior to glycerol administration. Renal injury was assessed by measuring plasma creatinine, blood urea nitrogen, creatinine and urea clearance. The oxidative stress was measured by renal malondialdehyde levels, reduced glutathione levels and by enzymatic activity of catalase, reduced glutathione and superoxide dismutase. Tissue and urine nitrite levels were measured as an index of total nitric oxide levels. Glycerol treatment resulted in a marked decrease in tissue and urine nitric oxide levels, renal oxidative stress and significantly deranged the renal functions along with deterioration of renal morphology. Pre-treatment of animals with molsidomine (10 mg/kg) and L-arginine 60 min prior to glycerol injection markedly attenuated fall in nitric oxide levels, renal dysfunction, morphological alterations, reduced elevated TBARS and restored the depleted renal antioxidant enzymes. The animals treated with L-NAME along with glycerol further worsened the renal damage observed with glycerol. As a result, our results indicate that molsidomine and L-arginine may have beneficial effects in myoglobinuric ARF.  相似文献   

8.
Early oxidative stress in the diabetic kidney: effect of DL-alpha-lipoic acid   总被引:10,自引:0,他引:10  
Oxidative stress is implicated in the pathogenesis of diabetic nephropathy. The attempts to identify early markers of diabetes-induced renal oxidative injury resulted in contradictory findings. We characterized early oxidative stress in renal cortex of diabetic rats, and evaluated whether it can be prevented by the potent antioxidant, DL-alpha-lipoic acid. The experiments were performed on control rats and streptozotocin-diabetic rats treated with/without DL-alpha-lipoic acid (100 mg/kg i.p., for 3 weeks from induction of diabetes). Malondialdehyde plus 4-hydroxyalkenal concentration was increased in diabetic rats vs. controls (p <.01) and this increase was partially prevented by DL-alpha-lipoic acid. F(2) isoprostane concentrations (measured by GCMS) expressed per either mg protein or arachidonic acid content were not different in control and diabetic rats but were decreased several-fold with DL-alpha-lipoic acid treatment. Both GSH and ascorbate (AA) levels were decreased and GSSG/GSH and dehydroascorbate/AA ratios increased in diabetic rats vs. controls (p <.01 for all comparisons), and these changes were completely or partially (AA) prevented by DL-alpha-lipoic acid. Superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione transferase, and NADH oxidase, but not catalase, were upregulated in diabetic rats vs. controls, and these activities, except glutathione peroxidase, were decreased by DL-alpha-lipoic acid. In conclusion, enhanced oxidative stress is present in rat renal cortex in early diabetes, and is prevented by DL-alpha-lipoic acid.  相似文献   

9.
Nickel, a major environmental pollutant, is known for its clastogenic, toxic, and carcinogenic potential. In this article, we report the effect of Acorus calamus on nickel chloride (NiCl2)-induced renal oxidative stress, toxicity, and cell proliferation response in male Wistar rats. NiCl2 (250 micromol/kg body weight/mL) enhanced reduced renal glutathione content (GSH), glutathione- S-transferase (GST), glutathione reductase (GR), lipid peroxidation (LPO), H2O2 generation, blood urea nitrogen (BUN), and serum creatinine with a concomitant decrease in the activity of glutathione peroxidase (GPx) (p < 0.001). NiCl2 administration also dose-dependently induced the renal ornithine decarboxylase (ODC) activity several-fold as compared to salinetreated control rats. Similarly, renal DNA synthesis, which is measured in terms of [3H] thymidine incorporation in DNA, was elevated following NiCl2 treatment. Prophylactic treatment of rats with A. calamus (100 and 200 mg/kg body weight po) daily for 1 wk resulted in the diminution of NiCl2- mediated damage, as evident from the downregulation of glutathione content, GST, GR, LPO, H2O2 generation, BUN, serum creatinine, DNA synthesis (p < 0.001), and ODC activity (p < 0.01) with concomitant restoration of GPx activity. These results clearly demonstrate the role of oxidative stress and its relation to renal disfunctioning and suggest a protective effect of A. calamus on NiCl2-induced nephrotoxicity in a rat experimental model.  相似文献   

10.
The objective of the present study was to assess superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), paraoxonase (PON1), glutathione reductase (GR), and catalase (CAT) activities ratio and their relationship with DNA oxidative damage in rats treated with cisplatin (3 mg/kg bwt/day) in the presence and absence of benfotiamine (100 mg/kg/day) for 25 days. Cisplatin‐induced renal damage was evidenced by renal dysfunction and elevated oxidative stress markers. SOD activity and levels of nitric oxide, protein carbonyl, malondialdehyde, and 8‐hydroxy‐2'‐deoxyguanosine were significantly increased by cisplatin treatment. Moreover, the ratios of GPx/GR, SOD/GPx, SOD/CAT, and SOD/PON1 were significantly increased compared to control. In contrast, glutathione levels were significantly decreased by cisplatin treatment. Simultaneous treatment of rats with cisplatin and benfotiamine ameliorate these variables to values near to those of control rats. This study suggests that benfotiamine can prevent cisplatin‐induced nephrotoxicity by inhibiting formation reactive species of oxygen and nitrogen. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:398‐405, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21501  相似文献   

11.
The present study showed that exposure of chlorpyrifos, O,O'-diethyl-O-3,5,6-trichloro-2-pyridyl phosphorothionate (CPF), a widely used pesticide in rats caused significant inhibition of acetylcholinesterase (AChE) activity in different tissues viz., liver, kidney and spleen. CPF exposure also generated oxidative stress in the body, as evidenced by increase in thiobarbituric acid reactive substances (TBARS), decrease in the levels of superoxide scavenging enzymes viz., superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) in liver, kidney and spleen at all doses. Malondialdehyde levels were increased by 14%, 31% and 76% in liver, 11%, 31% and 64% in kidney and 32%, 75% and 99.9% in spleen when 50 mg, 100 mg and 200 mg/kg body wt. CPF was administered for three days. SOD and CAT activities were decreased in liver, kidney and spleen, while GPx activity showed slight increase in kidney at 50 mg and 100 mg dose, and decreased on further increase in dose of CPF. Liver and spleen showed dose-dependent decrease in GPx activity. The levels of reduced glutathione (GSH) was decreased, while oxidized glutathione (GSSG) was increased, thus a marked fall in GSH/GSSG ratio was observed in all tissues. A maximum decrease of 83% was observed in liver, followed by kidney and spleen, which showed 78% and 57% decrease, respectively in group given 200 mg/kg CPF. The levels of glucose-6-phosphate dehydrogenase (G6PDH) and glutathione reductase (GR) were also decreased in liver and kidney, while spleen showed increase at lower doses, but decrease at high dose of CPF. The data provide evidence for induction of oxidative stress on CPF exposure.  相似文献   

12.
In this work, we investigated the effects of red orange and lemon extract (RLE) on ochratoxin A (OTA)-induced nephrotoxicity. In particular, we analyzed the change in renal function and oxidative stress in Sprague–Dawley rats treated with OTA (0.5 mg/kg body weight, b.w.) and with RLE (90 mg/kg b.w.) by oral administration. After OTA treatment, we found alterations of biochemical and oxidative stress parameters in the kidney, related to a severe decrease of glomerular filtration rate. The RLE treatment normalized the activity of antioxidant enzymes and prevented the glomerular hyperfiltration. Histopathological examinations revealed glomerular damages and kidney cortex fibrosis in OTA-rats, while we observed less severe fibrosis in OTA plus RLE group. Then, we demonstrated that oxidative stress could be the cause of OTA renal injury and that RLE reduces this effect.  相似文献   

13.
Finasteride (FIN) inhibits neurosteroid synthesis and potentially improves the course of hepatic encephalopathy (HE). This study aimed to investigate the effects of FIN on brain oxidative stress and acetylcholinesterase (AchE) activity in acute thioacetamide-induced HE in rats. Male Wistar rats were divided into groups: 1. control; 2. thioacetamide-treated group (TAA; 900 mg/kg); 3. finasteride-treated group (FIN; 150 mg/kg); 4. group treated with FIN and TAA (FIN+TAA). Daily doses of FIN (50 mg/kg) and TAA (300 mg/kg) were administered intraperitoneally during three days and in FIN+TAA group FIN was administered 2h before every dose of TAA. FIN pretreatment prevented TAA-induced rise in malondialdehyde level in the cortex due to restoration of catalase activity and increased expression of superoxide dismutase 1 (SOD1) and induced an increase in malondialdehyde level in the thalamus due to reduction of glutathione peroxidase (GPx) and glutathione reductase (GR) activity. Although FIN pretreatment did not affect malondialdehyde level in hippocampus and caudate nucleus, hippocampal SOD1 expression was higher (p<0.05) and GR activity lower in FIN+TAA vs. TAA group (p<0.05). GPx activity was lower in caudate nucleus in FIN+TAA vs. TAA group (p<0.01). FIN pretreatment prevented TAA-induced rise in AchE activity in the thalamus and caudate nucleus and AchE activity correlates inversely in the thalamus (p<0.05) and positively in caudate nucleus (p<0.01) with malondialdehyde level. FIN has regionally selective effects on oxidative stress and AchE activity in the brain in acute TAA-induced HE in rats. The prooxidant role of FIN in the thalamus may be causally linked with inhibition of AchE.  相似文献   

14.
The present study was aimed to investigate the ability of quercetin (QE) to ameliorate adverse effects of cisplatin (Cis.) on the renal tissue antioxidants by investigating the kidney antioxidant gene expression and the antioxidant enzymes activity. Forty rats divided into. Control rats. QE treated rats were orally administered 100 mg QE/kg for successive 30 days. Cis. injected rats were administered i.p. Cis. (12 mg/kg b.w.) for 5 mutual days. Cis. + QE rats were administered Cis. i.p. (12 mg/kg) and orally administered 100 mg QE/kg for consecutive 30 days. The obtained results indicated that Cis. induced oxidative stress in the renal tissue. That was through induction of free radical production, inhibition of the activity of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) as well their genes expression. At the same time, vitamin E, vitamin C and reduced glutathione (GSH) levels were decreased. QE had the ability to overcome cisplatin-induced oxidative stress through the reduction of free radical levels. The antioxidant genes expression and antioxidant enzymes activity were induced. Finally the vitamin E, vitamin C and GSH levels were increased. Our work, proved the renoprotective effects of QE against oxidative stress induced by cisplatin.  相似文献   

15.
Wistar albino rats (150-200 g) were fed raw garlic homogenate orally in three different doses (125, 250, 500 mg/kg/day) for 30 days. Isoproterenol (85 mg/kg, s.c. 2 doses at 24-h interval, animals sacrificed after 24 h of last injection) induced myocardial necrosis in control rats and after 30 days of garlic feeding. Myocardial oxidative stress was evident following isoproterenol administration by reduction in myocardial superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities along with a rise in plasma thiobarbituric acid reactive substances (TBARS). Myocardial necrosis was evident from the light microscopic and ultrastructural changes, along with a rise in plasma lactate dehydrogenase (LDH). Significant preservation of myocardial SOD activity was observed in all the garlic-fed rats. However, there was no significant change in myocardial reduced glutathione level and GPx activity in any of the treated groups. Significant reduction in plasma TBARS and LDH levels was observed in the 500 mg/kg garlic treated group. Isoproterenol-induced myocardial morphological changes were least in the 250 and 500 mg/kg garlic treated groups. The results suggest that chronic oral administration of raw garlic offered protection against isoproterenol-induced myocardial necrosis and associated oxidative stress.  相似文献   

16.
The aim of this work was to investigate as to how neurons and glial cells separated from the brain cortex respond to oxidative stress induced by aluminum. Female SD rats were exposed to aluminum at the dose level of 100 mg/kg b.w. for 8 weeks. Neuronal and glial cell-enriched fractions were obtained from rat cerebral cortex by sieving the trypsinated homogenate through a series of nylon meshes, followed by centrifugation on ficoll density gradient. Total glutathione content, glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-s-transferase (GST) along with antioxidant enzymes superoxide dismutase (SOD), catalase were estimated in neuronal and glial-enriched fractions in both control (N-c and G-c) and aluminum exposed animals (N-a and G-a). Secondary products of lipid peroxidation that is MDA levels were estimated by measuring the (TBARS) levels. Our results indicate that TBARS levels were significantly higher in glial cell fraction of unexposed controls (Gc) than the neuronal cells (Nc). Correspondingly the glial cells had higher levels of GSH, GSSG, GPx and GST where as neurons had higher levels of catalase, SOD and GR. Following aluminum exposures significant increase in the TBARS levels was observed in neurons as compared to glial cells which also showed a significant decrease in SOD and catalase activity. The decrease in the TBARS levels in the glial cells could be related to the increase in the GSH levels, GR activity, and GST activity which were found to be increased in glial enriched fractions following aluminum exposure. The increase in activity of various enzymes viz GR, GST in glial cells as compared to neurons suggests that glial cells are actively involved in glutathione homeostasis. Our conclusion is that glial and neurons isolated from rat cerebral cortex show a varied pattern of important antioxidant enzymes and glial cells are more capable of handling the oxidative stress conditions.  相似文献   

17.
Methyl parathion (MP), an organophosphate widely applied in agriculture and aquaculture, induces oxidative stress due to free radical generation and changes in the antioxidant defense system. The antioxidant roles of selenium (Se) were evaluated in Brycon cephalus exposed to 2 mg L(-1) of Folisuper 600 BR (MP commercial formulation - MPc, 600 g L(-1)) for 96 h. Catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione S-transferase (GST), reduced glutathione (GSH) and lipid peroxidation (LPO) levels in the gills, white muscle and liver were evaluated in fish fed on diets containing 0 or 1.5 mg Se kg(-1) for 8 weeks. In fish treated with a Se-free diet, the MPc exposure increased SOD and CAT activities in all tissues. However, the GPx activity decreased in white muscle and gills whereas no alterations were observed in the liver. MPc also increased GST activity in all tissues with a concurrent decrease in GSH levels. LPO values increased in white muscle and gills and did not change in liver after MPc exposure. A Se-supplemented diet reversed these findings, preventing increases in LPO levels and concurrent decreases in GPx activity in gills and white muscle. Similarly, GSH levels were maintained in all tissue after MPc exposure. These results suggest that dietary Se supplementation protects cells against MPc-induced oxidative stress.  相似文献   

18.
In this study, renal tissue, subdivided into the cortex and medulla of Wistar rats subjected to a cafeteria diet (CAF) for 24 days or to normal diet, was used to analyze whether the renal enzyme Na,K-ATPase activity was modified by CAF diet, as well as to analyze the α1 subunit of renal Na,K-ATPase expression levels. The lipid profile of the renal plasma membrane and oxidative stress were verified. In the Na,K-ATPase activity evaluation, no alteration was found, but a significant decrease of 30% in the cortex was detected in the α1 subunit expression of the enzyme. There was a 24% decrease in phospholipids in the cortex of rats submitted to CAF, a 17% increase in cholesterol levels in the cortex, and a 23% decrease in the medulla. Lipid peroxidation was significantly increased in the groups submitted to CAF, both in the cortical region, 29%, and in the medulla, 35%. Also, a reduction of 45% in the glutathione levels was observed in the cortex and medulla with CAF. CAF showed a nearly two-fold increase in glutathione peroxidase (GPX) activity in relation to the control group in the cortex and a 59% increase in the GPx activity in the medulla. In conclusion, although the diet was administered for a short period of time, important results were found, especially those related to the lipid profile and oxidative stress, which may directly affect renal function.  相似文献   

19.
N-Acetylaspartic acid (NAA) accumulates in Canavan disease, a severe inherited neurometabolic disorder clinically characterized by mental retardation, hypotonia, macrocephaly, and seizures. The mechanisms of brain damage in this disease remain poorly understood. Recent studies developed by our research group showed that NAA induces oxidative stress in vitro and in vivo in cerebral cortex of rats. Lipoic acid is considered as an efficient antioxidant which can easily cross the blood–brain barrier. Considering the absence of specific treatment to Canavan disease, this study evaluates the possible prevention of the oxidative stress promoted by NAA in vivo by the antioxidant lipoic acid to preliminarily evaluate lipoic acid efficacy against pro-oxidative effects of NAA. Fourteen-day-old Wistar rats received an acute administration of 0.6 mmol NAA/g body weight with or without lipoic acid (40 mg/kg body weight). Catalase (CAT), glutathione peroxidase (GPx), and glucose 6-phosphate dehydrogenase activities, hydrogen peroxide content, thiobarbituric acid-reactive substances (TBA-RS), spontaneous chemiluminescence, protein carbonyl content, total antioxidant potential, and DNA–protein cross-links were assayed in the cerebral cortex of rats. CAT, GPx activities, and total antioxidant potential were significantly reduced, while hydrogen peroxide content, TBA-RS, spontaneous chemiluminescence, and protein carbonyl content were significantly enhanced by acute administration of NAA. Those effects were all prevented by lipoic acid pretreatment. Our results clearly show that lipoic acid may protect against the oxidative stress promoted by NAA. This could represent a new therapeutic approach to the patients affected by Canavan disease.  相似文献   

20.
Gao M  Li Y  Long J  Shah W  Fu L  Lai B  Wang Y 《Mutation research》2011,719(1-2):52-59
Benzo[a]pyrene [B(a)P] is one of the most prevalent environmental carcinogens and genotoxic agents. However, the mechanisms of B(a)P-induced oxidative damage in cervical tissue are still not clear. The present study was to investigate the oxidative stress and DNA damage in cervix of ICR female mice induced by acute treatment with B(a)P. Oxidative stress was assayed by analysis of malondialdehyde (MDA), superoxide anion and H(2)O(2), and antioxidant enzymes. The alkaline single-cell electrophoresis (SCGE) was used to measure DNA damage. The contents of MDA and glutathione (GSH), and the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST) were significantly increased in cervix 24, 48 and 72h after B(a)P treatment of a single dose of 12.5 and 25mg/kg, while GSH, CAT, SOD and GST had no significant difference with the dose of 50mg/kg B(a)P at post-treatment time 48 and 72h except for SOD activity at 48h which was significant. The maximum values of SOD, CAT, GST and GSH were peaked at 24h and then decreased gradually while GPx activities and MDA levels persisted for up to 72h. Superoxide anion, H(2)O(2) and DNA damage changed similarly as the activity of SOD, CAT or GST. Additionally, increases of formamidopyrimidine DNA glycosylase (FPG) specific DNA damage were observed and can be greatly rescued by vitamin C pretreatment. Overall, B(a)P demonstrated a time- and dose- related oxidative stress and DNA damage in cervix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号