共查询到20条相似文献,搜索用时 0 毫秒
1.
When climatic conditions change and become outside the range experienced in the past, species may show life‐history innovations allowing them to adapt in new ways. We report such an innovation for pied flycatchers Ficedula hypoleuca. Decades of breeding biological studies on pied flycatchers have rarely reported multiple breeding in this long‐distance migrant. In two populations, we found 12 recent incidents of females with second broods, all produced by extremely early laying females in warm springs. As such early first broods are a recent phenomenon, because laying dates have gradually advanced over time, this innovation now allows individual females to enhance their reproductive success considerably. If laying dates continue advancing, potentially more females may become multiple breeders and selection for early (and multiple) breeding phenotypes increases, which may accelerate adaptation to climatic change. 相似文献
2.
Insects play a crucial role in all ecosystems, and are increasingly exposed to higher in temperature extremes under climate change, which can have substantial effects on their abundances. However, the effects of temperature on changes in abundances or population fitness are filtered through differential responses of life-history components, such as survival, reproduction, and development, to their environment. Such differential responses, or trade-offs, have been widely studied in birds and mammals, but comparative studies on insects are largely lacking, limiting our understanding of key mechanisms that may buffer or exacerbate climate-change effects across insect species. Here, we performed a systematic literature review of the ecological studies of lacewings (Neuroptera), predatory insects that play a crucial role in ecosystem pest regulation, to investigate the impact of temperature on life cycle dynamics across species. We found quantitative information, linking stage-specific survival, development, and reproduction to temperature variation, for 62 species from 39 locations. We then performed a metanalysis calculating sensitives to temperature across life-history processes for all publications. We found that developmental times consistently decreased with temperature for all species. Survival and reproduction however showed a weaker response to temperature, and temperature sensitivities varied substantially among species. After controlling for the effect of temperature on life-history processes, the latter covaried consistently across two main axes of variation related to instar and pupae development, suggesting the presence of life-history trade-offs. Our work provides new information that can help generalize life-history responses of insects to temperature, which can then expand comparative demographic and climate-change research. We also discuss important remaining knowledge gaps, such as a better assessment of adult survival and diapause. 相似文献
3.
Matthew J. McLean David Mouillot Nicolas Goascoz Ivan Schlaich Arnaud Auber 《Global Change Biology》2019,25(2):660-674
While climate change is rapidly impacting marine species and ecosystems worldwide, the effects of climate warming on coastal fish nurseries have received little attention despite nurseries’ fundamental roles in recruitment and population replenishment. Here, we used a 26‐year time series (1987–2012) of fish monitoring in the Bay of Somme, a nursery in the Eastern English Channel (EEC), to examine the impacts of environmental and human drivers on the spatial and temporal dynamics of fish functional structure during a warming phase of the Atlantic Multidecadal Oscillation (AMO). We found that the nursery was initially dominated by fishes with r‐selected life‐history traits such as low trophic level, low age and size at maturity, and small offspring, which are highly sensitive to warming. The AMO, likely superimposed on climate change, induced rapid warming in the late 1990s (over 1°C from 1998 to 2003), leading to functional reorganization of fish communities, with a roughly 80% decline in overall fish abundance and increased dominance by K‐selected fishes. Additionally, historical overfishing likely rendered the bay more vulnerable to climatic changes due to increased dominance by fishing‐tolerant, yet climatically sensitive species. The drop in fish abundance not only altered fish functional structure within the Bay of Somme, but the EEC was likely impacted, as the EEC has been unable to recover from a regime shift in the late 1990s potentially, in part, due to failed replenishment from the bay. Given the collapse of r‐selected fishes, we discuss how the combination of climate cycles and global warming could threaten marine fish nurseries worldwide, as nurseries are often dominated by r‐selected species. 相似文献
4.
With global climate change, rainfall is becoming more variable. Predicting the responses of species to changing rainfall levels is difficult because, for example in herbivorous species, these effects may be mediated indirectly through changes in host plant quality. Furthermore, species responses may result from a simultaneous interaction between rainfall levels and other environmental variables such as anthropogenic land use or habitat quality. In this eco‐evolutionary study, we examined how male and female Pararge aegeria (L.) from woodland and agricultural landscape populations were affected by the development on drought‐stressed host plants. Compared with individuals from woodland landscapes, when reared on drought‐stressed plants agricultural individuals had longer development times, reduced survival rates and lower adult body masses. Across both landscape types, growth on drought‐stressed plants resulted in males and females with low forewing aspect ratios and in females with lower wing loading and reduced fecundity. Development on drought‐stressed plants also had a landscape‐specific effect on reproductive output; agricultural females laid eggs that had a significantly lower hatching success. Overall, our results highlight several potential mechanisms by which low water availability, via changes in host plant quality, may differentially influence P. aegeria populations relative to landscape structure. 相似文献
5.
- Salmonids have been introduced globally, and native and invasive salmonids co‐exist in many regions. However, their responses to seasonal weather variation and global climate change are poorly known.
- The aim of this study was to compare effects of inter‐annual variation in seasonal weather patterns on native brook trout (BKT) (Salvelinus fontinalis) versus invasive rainbow trout (RBT) (Oncorhynchus mykiss) abundance using summer electrofishing data (May through September) spanning 28 years in the Great Smoky Mountains National Park, U.S.A. (c. 200 stream sites per species). In particular, we tested if different spawning timing between BKT (autumn) and RBT (late winter) would result in heterogeneous population responses to high seasonal precipitation, which would negatively affect early life stages with impaired swimming ability.
- As predicted, young‐of‐the‐year (YOY) abundance of autumn‐spawning BKT was most strongly impacted by total precipitation between February and March, and RBT YOY abundance was most strongly impacted by peak precipitation between April and May. Despite the presence of these different key seasonal drivers, inter‐annual variation in YOY density of these two species was positively correlated because precipitation in April and May also impacted the abundance of BKT YOY.
- Adult abundance was less responsive to weather variation than YOY abundance, and was most strongly correlated with YOY abundance in the previous year, indicating the importance of flow‐driven population control influences on early life stages affecting population sizes into subsequent years. Adult BKT densities were not affected by any weather covariate, whereas adult RBT densities were correlated with four weather covariates in competing models. As a result, there was no correlation in the inter‐annual variation in adult density in these two species.
- The differing responses of BKT and RBT to long‐term seasonal weather patterns suggest that they will likely respond differently to global climate change. In particular, winter precipitation will likely be the key environmental driver of differences in their population responses.
6.
Angert AL Crozier LG Rissler LJ Gilman SE Tewksbury JJ Chunco AJ 《Ecology letters》2011,14(7):677-689
Although some organisms have moved to higher elevations and latitudes in response to recent climate change, there is little consensus regarding the capacity of different species to track rapid climate change via range shifts. Understanding species' abilities to shift ranges has important implications for assessing extinction risk and predicting future community structure. At an expanding front, colonization rates are determined jointly by rates of reproduction and dispersal. In addition, establishment of viable populations requires that individuals find suitable resources in novel habitats. Thus, species with greater dispersal ability, reproductive rate and ecological generalization should be more likely to expand into new regions under climate change. Here, we assess current evidence for the relationship between leading-edge range shifts and species' traits. We found expected relationships for several datasets, including diet breadth in North American Passeriformes and egg-laying habitat in British Odonata. However, models generally had low explanatory power. Thus, even statistically and biologically meaningful relationships are unlikely to be of predictive utility for conservation and management. Trait-based range shift forecasts face several challenges, including quantifying relevant natural history variation across large numbers of species and coupling these data with extrinsic factors such as habitat fragmentation and availability. 相似文献
7.
Jessica Forrest Abraham J. Miller-Rushing 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2010,365(1555):3101-3112
Phenology affects nearly all aspects of ecology and evolution. Virtually all biological phenomena—from individual physiology to interspecific relationships to global nutrient fluxes—have annual cycles and are influenced by the timing of abiotic events. Recent years have seen a surge of interest in this topic, as an increasing number of studies document phenological responses to climate change. Much recent research has addressed the genetic controls on phenology, modelling techniques and ecosystem-level and evolutionary consequences of phenological change. To date, however, these efforts have tended to proceed independently. Here, we bring together some of these disparate lines of inquiry to clarify vocabulary, facilitate comparisons among habitat types and promote the integration of ideas and methodologies across different disciplines and scales. We discuss the relationship between phenology and life history, the distinction between organismal- and population-level perspectives on phenology and the influence of phenology on evolutionary processes, communities and ecosystems. Future work should focus on linking ecological and physiological aspects of phenology, understanding the demographic effects of phenological change and explicitly accounting for seasonality and phenology in forecasts of ecological and evolutionary responses to climate change. 相似文献
8.
9.
Climate variations over the Northern Hemisphere are to a substantial proportion associated with the North Atlantic Oscillation (NAO). Recently, many studies revealed the impacts of the NAO on the dynamics of organisms in different ecosystems but the results in the single studies were inconsistent. Here, we used meta‐analysis techniques for a quantitative synthesis of results. We tested the influence of the NAO on the timing of life history events, on biomass of organisms, and on biomass of different trophic levels. We found a clear NAO signature in freshwater, marine, and terrestrial ecosystems. The response of life history events to the NAO was similar in all environments but less pronounced at higher latitudes. The magnitude of the biomass response was significantly related to the NAO, either positively in aquatic or negatively in terrestrial ecosystems. The response depended on longitude, the effect being less pronounced in Eastern Europe. The results stressed that a meta‐analysis is a valuable tool in the field of climate‐driven ecosystem responses and can identify more general ecological responses than single studies. We recommend the inclusion of nonsignificant results in order to archive an objective view of the strength of NAO and climate impacts in general. 相似文献
10.
MARTIN J. GENNER DAVID W. SIMS ALAN J. SOUTHWARD GEORGINA C. BUDD PATRICIA MASTERSON MATTHEW MCHUGH PETER RENDLE EMILY J. SOUTHALL VICTORIA J. WEARMOUTH STEPHEN J. HAWKINS 《Global Change Biology》2010,16(2):517-527
Commercial fishing and climate change have influenced the composition of marine fish assemblages worldwide, but we require a better understanding of their relative influence on long‐term changes in species abundance and body‐size distributions. In this study, we investigated long‐term (1911–2007) variability within a demersal fish assemblage in the western English Channel. The region has been subject to commercial fisheries throughout most of the past century, and has undergone interannual changes in sea temperature of over 2.0 °C. We focussed on a core 30 species that comprised 99% of total individuals sampled in the assemblage. Analyses showed that temporal trends in the abundance of smaller multispecies size classes followed thermal regime changes, but that there were persistent declines in abundance of larger size classes. Consistent with these results, larger‐growing individual species had the greatest declines in body size, and the most constant declines in abundance, while abundance changes of smaller‐growing species were more closely linked to preceding sea temperatures. Together these analyses are suggestive of dichotomous size‐dependent responses of species to long‐term climate change and commercial fishing over a century scale. Small species had rapid responses to the prevailing thermal environment, suggesting their life history traits predisposed populations to respond quickly to changing climates. Larger species declined in abundance and size, reflecting expectations from sustained size‐selective overharvesting. These results demonstrate the importance of considering species traits when developing indicators of human and climatic impacts on marine fauna. 相似文献
11.
A strategy for species to survive climate change will be to change adaptively their way of life. Understanding rapid adaptation to climate change is therefore a priority for current research. In this issue, Turrero et al. (2012) use an original approach to unravel life history trait responses to climate change in two fish species (Salmo trutta and S. salar). Going against the flow, the authors adopt the strategy of going back to the future by investigating the responses of fish to the warming periods that followed the Last Glacial Period (approximately 30-20,000 years BP). To do this, they analysed Salmo vertebrae from well-dated archaeological sites in northern Spain in order to uncover key life history traits, which they then compared to those of contemporary specimens. They found that, as the climate got warmer, Salmo species tended to reduce the time spent in growing areas and reached spawning areas at a younger age; this tendency began approximately 15,000 years BP and accelerated in contemporary periods. The implication is a lower age at maturity and a lower reproductive success, which they tentatively related to recent declines in population growth rate. This innovative study demonstrates how changes in life history traits are linked both to the population growth rate and to the evolutionary rate under climatic constraints, which may serve as a basis for future conservation research. 相似文献
12.
The temperature and soil moisture conditions as well as vegetation patterns were studied to describe the habitat and to model the life cycle of Melanoplusfrigidus, a true alpine grasshopper of the Scandes. In the low alpine belt of the Norwegian Scandes the species colonizes only the warmest microhabitats with maximum soil surface temperatures of 31℃. Vegetation of these habitats consists of shrub-rich heath dominated by Vaccinium myrtillus and Calluna vulgaris. Using continuously measured temperature data, the development times for four different seasons were modeled and related to field observations. The maximum delay of adult molt was estimated to amount to 3 weeks, the delay being determined by the variation in spring temperature conditions between different years. The possibilities of using M. frigidus as an indicator organism of climate change effects on alpine zoo-coenoses of the Scandes are discussed. 相似文献
13.
The temperature and soil moisture conditions as well as vegetation patterns were studied to describe the habitat and to model the life cycle of Melanoplus frigidus, a true alpine grasshopper of the Scandes. In the low alpine belt of the Norwegian Scandes the species colonizes only the warmest microhabitats with maximum soil surface temperatures of 31°C. Vegetation of these habitats consists of shrub‐rich heath dominated by Vaccinium myrtillus and Calluna vulgaris. Using continuously measured temperature data, the development times for four different seasons were modeled and related to field observations. The maximum delay of adult molt was estimated to amount to 3 weeks, the delay being determined by the variation in spring temperature conditions between different years. The possibilities of using M. frigidus as an indicator organism of climate change effects on alpine zoo‐coenoses of the Scandes are discussed. 相似文献
14.
There is a critical need to understand patterns and causes of intraspecific variation in physiological performance in order to predict the distribution and dynamics of wild populations under natural and human‐induced environmental change. However, the usual explanation for trait differences, local adaptation, fails to account for the small‐scale phenotypic and genetic divergence observed in fishes and other species with dispersive early life stages. We tested the hypothesis that local‐scale variation in the strength of selective mortality in early life mediates the trait composition in later life stages. Through in situ experiments, we manipulated exposure to predators in the coral reef damselfish Dascyllus aruanus and examined consequences for subsequent growth performance under common garden conditions. Groups of 20 recently settled D. aruanus were outplanted to experimental coral colonies in Moorea lagoon and either exposed to natural predation mortality (52% mortality in three days) or protected from predators with cages for three days. After postsettlement mortality, predator‐exposed groups were shorter than predator‐protected ones, while groups with lower survival were in better condition, suggesting that predators removed the longer, thinner individuals. Growth of both treatment groups was subsequently compared under common conditions. We did not detect consequences of predator exposure for subsequent growth performance: Growth over the following 37 days was not affected by the prior predator treatment or survival. Genotyping at 10 microsatellite loci did indicate, however, that predator exposure significantly influenced the genetic composition of groups. We conclude that postsettlement mortality did not have carryover effects on the subsequent growth performance of cohorts in this instance, despite evidence for directional selection during the initial mortality phase. 相似文献
15.
Arjun Srivathsa William Tietje Virginie Rolland Anne Polyakov Madan K. Oli 《Population Ecology》2019,61(1):122-131
Highly variable patterns in temperature and rainfall events can have pronounced consequences for small mammals in resource-restricted environments. Climatic factors can therefore play a crucial role in determining the fates of small mammal populations. We applied Pradel's temporal symmetry model to a 21-year capture–recapture dataset to study population dynamics of the pinyon mouse (Peromyscus truei) in a semi-arid mixed oak woodland in California, USA. We examined time-, season- and sex-specific variation in realized population growth rate (λ) and its constituent vital rates, apparent survival and recruitment. We also tested the influence of climatic factors on these rates. Overall monthly apparent survival was 0.81 ± 0.004 (estimate ± SE). Survival was generally higher during wetter months (October–May) but varied over time. Monthly recruitment rate was 0.18 ± 0.01, ranging from 0.07 ± 0.01 to 0.63 ± 0.07. Although population growth rate (λ) was highly variable, overall monthly growth rate was close to 1.0, indicating a stable population during the study period (λ ± SE = 0.99 ± 0.01). Average temperature and its variability negatively affected survival, whereas rainfall positively influenced survival and recruitment rates, and thus the population growth rate. Our results suggest that seasonal rainfall and variation in temperature at the local scale, rather than regional climatic patterns, more strongly affected vital rates in this population. Discerning such linkages between species' population dynamics and environmental variability are critical for understanding local and regional impacts of global climate change, and for gauging viability and resilience of populations in resource-restricted environments. 相似文献
16.
17.
An understanding of recruitment is important for estimating population growth and viability, and their implications for conservation. We present the first results regarding the life history, maternal behavior and infant development of the critically endangered blue-eyed black lemur (Eulemur flavifrons) of Madagascar. The species breeds seasonally, with births occurring at the end of the dry season, between late August and October. Over two successive birth seasons in 2006 and 2007, we observed a total of 13 lactating females and 22 infants from six groups. We inferred age at first reproduction as 3 years, and calculated the birth rate as 1.0 infant per female per year with a mean inter-birth interval of 358 ± 24.81 days (319-410 days). Infants spent the first 3 weeks of life constantly with their mothers; locomotor independence and ingestion of solid food began at week 10, and the infants were weaned by week 25. After week 28, infants spent less than 20% of their time in contact with their mothers. Over the study period infant mortality was 22.7%, with predation and sickness observed as causes. Our results suggest that overall recruitment is relatively slow, which has implications for the species' survival, particularly given their restricted and threatened habitat. 相似文献
18.
Climate change predominated by warming over the past decades has affected plant biodiversity, distribution, and ecosystem functioning in alpine grasslands. Yet, little is known about the interactive effect of climate change and grazing on biodiversity and ecosystem functioning. Here, we conducted a vegetation translocation experiment (ten soil‐vegetation blocks were translocated from high‐altitudinal site 3,245 m to low‐altitudinal site 3,045 m) combined with grazing treatment in an alpine meadow on the Tibetan Plateau. The results showed that (a) translocation induced effect of climate change from harsh, high‐altitudinal site to benign, low‐altitudinal site significantly promoted species richness, and density of asexual and sexual seedling, with an increase in the proportion of asexual recruitment to sexual recruitment; (b) grazing decreased the proportion of asexual seedling to sexual recruitment within community, led to a shift in the dominant plant functional groups from graminoids and legumes to forbs; and (c) grazing partly offset the increased species richness of seedling, but not seedling density, induced by climate change. These findings suggest that moderate grazing may buffer the effect of climate change on the plant community composition, and thus, functional role in alpine meadows. Further understanding the influence of climate change on grassland ecosystems needs to consider the non‐additive effect of grazing and climate change to sustainability of grassland services. 相似文献
19.
Osazee O Oyanoghafo Corey O Brien Brendan Choat David Tissue Paul D Rymer 《Annals of botany》2021,127(7):909
Background and AimsExtreme drought conditions across the globe are impacting biodiversity, with serious implications for the persistence of native species. However, quantitative data on physiological tolerance are not available for diverse flora to inform conservation management. We quantified physiological resistance to cavitation in the diverse Hakea genus (Proteaceae) to test predictions based on climatic origin, life history and functional traits.MethodsWe sampled terminal branches of replicate plants of 16 species in a common garden. Xylem cavitation was induced in branches under varying water potentials (tension) in a centrifuge, and the tension generating 50 % loss of conductivity (stem P50) was characterized as a metric for cavitation resistance. The same branches were used to estimate plant functional traits, including wood density, specific leaf area and Huber value (sap flow area to leaf area ratio).Key ResultsThere was significant variation in stem P50 among species, which was negatively associated with the species climate origin (rainfall and aridity). Cavitation resistance did not differ among life histories; however, a drought avoidance strategy with terete leaf form and greater Huber value may be important for species to colonize and persist in the arid biome.ConclusionsThis study highlights climate (rainfall and aridity), rather than life history and functional traits, as the key predictor of variation in cavitation resistance (stem P50). Rainfall for species origin was the best predictor of cavitation resistance, explaining variation in stem P50, which appears to be a major determinant of species distribution. This study also indicates that stem P50 is an adaptive trait, genetically determined, and hence reliable and robust for predicting species vulnerability to climate change. Our findings will contribute to future prediction of species vulnerability to drought and adaptive management under climate change. 相似文献
20.
An investigation into the influence of temperature on the growth and reproductive status of the fathead minnow Pimephales promelas revealed that, while there was no clear effect of treatment on sex differentiation, ovarian tissue from female fish reared under the highest temperature regime contained large amounts of undefined tissue containing no germ cells. Furthermore, both male and female fish exhibited differences in length mass, condition and somatic indices, and in the expression of secondary sexual characteristics. The patterns observed are discussed in the context of climate change. 相似文献