首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In interspecific crosses, a mismatch in internal physiological conditions between two species can reduce sperm viability in the interval from insemination to fertilization, leading to gametic isolation. Two closely related Japanese phytophagous ladybird beetles, Henosepilachna vigintioctomaculata and H. pustulosa, show several isolating barriers, including reduction in the number of heterospecific sperm in the female reproductive tract and low egg‐hatching rates in interspecific matings. However, the mechanisms of these two potential isolating barriers and the association between them are unknown. Here we investigated temporal changes in the number of sperm stored in the female reproductive tract and egg‐hatching rates in inter‐ and intraspecific crosses between these species. Although the number of sperm decreased after both inter‐ and intraspecific crosses, the reduction was more drastic in inter‐ than in intraspecific crosses for females of both species. Most of the sperm reduction occurred early on, during sperm transfer from the bursa copulatrix to the paired ampullae of the common oviduct (the sperm storage organs). These two species also demonstrated stably low egg‐hatching rates in interspecific crosses. Since the degree and timing of the sperm reduction did not correlate with egg‐hatching rates, the reduction in heterospecific sperm in interspecific crosses may not directly cause the low hatching rates. These two isolating barriers could be different expressions of the physiological mismatch and/or genetic incompatibility between gametes of these species.  相似文献   

2.
It has previously been shown that paternal mitochondrial DNA (mtDNA) can be detected in later generations in Drosophila. To further analyze the paternal transmission of mtDNA, the progeny of two intraspecific and three interspecific crosses were examined in the frequency of the paternal transmission of mtDNA, using closely related species of the melanogaster species subgroup. Types of mtDNA in the progeny of the individual backcrosses of F(1) females were analyzed by selective amplification of paternal mtDNA. More than 100 F(1) females were examined for each backcross. The same type of mtDNA as that of the paternal mtDNA was detected in approximately 20-60% of the backcrosses. The present results indicate that paternal leakage occurs in the intraspecific crosses as well as in the interspecific crosses in Drosophila.  相似文献   

3.
By designing 3' ends of primers in PCR (polymerase chain reaction), a specific DNA fragment was selectively amplified in the presence of a 10(3)-fold excess of highly homologous (sequence difference ca. 2%) opponent DNA. This technique was applied in detecting paternal leakage of mitochondrial DNA (mtDNA) in intraspecific crosses of Drosophila simulans and interspecific crosses of Drosophila simulans and Drosophila mauritiana. The mtDNA types of their progeny were analysed by selective amplification of the paternal mtDNA fragment possessing a polymorphic restriction site and detecting its cleaved fragments. Paternal mtDNA was detected in the progeny of 14 out of 16 crosses. The present result indicates small but frequent inheritance of sperm mtDNA in Drosophila, which is supportive to our previous finding.  相似文献   

4.
Mitochondrial inheritance is generally assumed to be maternal. However, there is increasing evidence of exceptions to this rule, especially in hybrid crosses. In these cases, mitochondria are also inherited paternally, so "paternal leakage" of mitochondria occurs. It is important to understand these exceptions better, since they potentially complicate or invalidate studies that make use of mitochondrial markers. We surveyed F1 offspring of experimental hybrid crosses of the 17-year periodical cicadas Magicicada septendecim, M. septendecula, and M. cassini for the presence of paternal mitochondrial markers at various times during development (1-day eggs; 3-, 6-, 9-week eggs; 16-month old 1st and 2nd instar nymphs). We found evidence of paternal leakage in both reciprocal hybrid crosses in all of these samples. The relative difficulty of detecting paternal mtDNA in the youngest eggs and ease of detecting leakage in older eggs and in nymphs suggests that paternal mitochondria proliferate as the eggs develop. Our data support recent theoretical predictions that paternal leakage may be more common than previously estimated.  相似文献   

5.
Strict maternal inheritance is considered a hallmark of animal mtDNA. Although recent reports suggest that paternal leakage occurs in a broad range of species, it is still considered an exceptionally rare event. To evaluate the impact of paternal leakage on the evolution of mtDNA, it is essential to reliably estimate the frequency of paternal leakage in natural populations. Using allele‐specific real‐time quantitative PCR (RT‐qPCR), we show that heteroplasmy is common in natural populations with at least 14% of the individuals carrying multiple mitochondrial haplotypes. However, the average frequency of the minor mtDNA haplotype is low (0.8%), which suggests that this pervasive heteroplasmy has not been noticed before due to a lack of power in sequencing surveys. Based on the distribution of mtDNA haplotypes in the offspring of heteroplasmic mothers, we found no evidence for strong selection against one of the haplotypes. We estimated that the rate of paternal leakage is 6% and that at least 100 generations are required for complete sorting of mtDNA haplotypes. Despite the high proportion of heteroplasmic individuals in natural populations, we found no evidence for recombination between mtDNA molecules, suggesting that either recombination is rare or recombinant haplotypes are counter‐selected. Our results indicate that evolutionary studies using mtDNA as a marker might be biased by paternal leakage in this species.  相似文献   

6.
Eukaryotic mitochondria are mostly uniparentally (maternally) inherited, although mtDNA heteroplasmy has been reported in all major lineages. Heteroplasmy, the presence of more than one mitochondrial genome in an individual, can arise from recombination, point mutations, or by occasional transmission of the paternal mtDNA (=paternal leakage). Here, we report the first evidence of mtDNA paternal leakage in brown algae. In Denmark, where Fucus serratus L. and Fucus evanescens C. Agardh have hybridized for years, we found eight introgressed individuals that possessed the very distinct haplotypes of each parental species. The finding of heteroplasmy in individuals resulting from several generations of backcrosses suggests that paternal leakage occurred in earlier generations and has persisted through several meiotic bottlenecks.  相似文献   

7.
Hoolahan AH  Blok VC  Gibson T  Dowton M 《Genetica》2011,139(11-12):1509-1519
Animal mtDNA is typically assumed to be maternally inherited. Paternal mtDNA has been shown to be excluded from entering the egg or eliminated post-fertilization in several animals. However, in the contact zones of hybridizing species and populations, the reproductive barriers between hybridizing organisms may not be as efficient at preventing paternal mtDNA inheritance, resulting in paternal leakage. We assessed paternal mtDNA leakage in experimental crosses of populations of a cyst-forming nematode, Globodera pallida. A UK population, Lindley, was crossed with two South American populations, P5A and P4A. Hybridization of these populations was supported by evidence of nuclear DNA from both the maternal and paternal populations in the progeny. To assess paternal mtDNA leakage, a ~3.4?kb non-coding mtDNA region was analyzed in the parental populations and in the progeny. Paternal mtDNA was evident in the progeny of both crosses involving populations P5A and P4A. Further, paternal mtDNA replaced the maternal mtDNA in 22 and 40?% of the hybrid cysts from these crosses, respectively. These results indicate that under appropriate conditions, paternal leakage occurs in the mtDNA of parasitic nematodes, and supports the hypothesis that hybrid zones facilitate paternal leakage. Thus, assumptions of strictly maternal mtDNA inheritance may be frequently violated, particularly when divergent populations interbreed.  相似文献   

8.
Genomic conflicts arising during reproduction might play an important role in shaping the striking diversity of reproductive strategies across life. Among these is paternal genome elimination (PGE), a form of haplodiploidy which has independently evolved several times in arthropods. PGE males are diploid but transmit maternally inherited chromosomes only, whereas paternal homologues are excluded from sperm. Mothers thereby effectively monopolize the parentage of sons, at the cost of the father's reproductive success. This creates striking conflict between the sexes that could result in a co‐evolutionary arms race between paternal and maternal genomes over gene transmission, yet empirical evidence that such an arms race indeed takes place under PGE is scarce. This study addresses this by testing whether PGE is complete when paternal genotypes are exposed to divergent maternal backgrounds in intraspecific and hybrid crosses of the citrus mealybug, Planococcus citri, and the closely related Planococcus ficus. We determined whether males can transmit genetic information through their sons by tracking inheritance of two traits in a three‐generation pedigree: microsatellite markers and sex‐specific pheromone preferences. Our results suggest leakages of single paternal chromosomes through males occurring at a low frequency, but we find no evidence for transmission of paternal pheromone preferences from fathers to sons. The absence of differences between hybrid and intraspecific crosses in leakage rate of paternal alleles suggests that a co‐evolutionary arms race cannot be demonstrated on this evolutionary timescale, but we conclude that there is scope for intragenomic conflict between parental genomes in mealybugs. Finally, we discuss how these paternal escapes can occur and what these findings may reveal about the evolutionary dynamics of this bizarre genetic system.  相似文献   

9.
The transmission profiles of sperm mtDNA introduced into fertilized eggs were examined in detail in F1 hybrids of mouse interspecific crosses by addressing three aspects. The first is whether the leaked paternal mtDNA in fertilized eggs produced by interspecific crosses was distributed stably to all tissues after the eggs'' development to adults. The second is whether the leaked paternal mtDNA was transmitted to the subsequent generations. The third is whether paternal mtDNA continuously leaks in subsequent backcrosses. For identification of the leaked paternal mtDNA, we prepared total DNA samples directly from tissues or embryos and used PCR techniques that can detect a few molecules of paternal mtDNA even in the presence of 10(8)-fold excess of maternal mtDNA. The results showed that the leaked paternal mtDNA was not distributed to all tissues in the F1 hybrids or transmitted to the following generations through the female germ line. Moreover, the paternal mtDNA leakage was limited to the first generation of an interspecific cross and did not occur in progeny from subsequent backcrosses. These observations suggest that species-specific exclusion of sperm mtDNA in mammalian fertilized eggs is extremely stringent, ensuring strictly maternal inheritance of mtDNA.  相似文献   

10.
The maternal inheritance of mitochondrial DNA (mtDNA) in eukaryotic organisms occurs because of the selective destruction of paternal mtDNA molecules that may be present in the zygote. The elimination of sperm mtDNA is less efficient in interspecific crosses, and biparental inheritance of mtDNA has been observed in a variety of species. Because interspecific crosses are likely to be extremely rare in nature, parental inheritance of mtDNA has been deemed of little relevance to population genetics. The mtDNA of the parasitic trematode Schistosoma mansoni was examined for its utility in addressing epidemiological questions related to the transmission and spread of schistosomiasis. Prior to embarking on such experiments, we sought to confirm the mode of inheritance of this molecule using the highly polymorphic mtDNA minisatellite as a marker. In 3 separate crosses, mtDNA apparently identical to paternal DNA was observed in some individuals of the F2 and F3 generations. These observations thus suggest the intraspecific paternal inheritance of mtDNA across multiple generations in Schistosoma mansoni.  相似文献   

11.
Cao L  Kenchington E  Zouros E 《Genetics》2004,166(2):883-894
In Mytilus, females carry predominantly maternal mitochondrial DNA (mtDNA) but males carry maternal mtDNA in their somatic tissues and paternal mtDNA in their gonads. This phenomenon, known as doubly uniparental inheritance (DUI) of mtDNA, presents a major departure from the uniparental transmission of organelle genomes. Eggs of Mytilus edulis from females that produce exclusively daughters and from females that produce mostly sons were fertilized with sperm stained with MitoTracker Green FM, allowing observation of sperm mitochondria in the embryo by epifluorescent and confocal microscopy. In embryos from females that produce only daughters, sperm mitochondria are randomly dispersed among blastomeres. In embryos from females that produce mostly sons, sperm mitochondria tend to aggregate and end up in one blastomere in the two- and four-cell stages. We postulate that the aggregate eventually ends up in the first germ cells, thus accounting for the presence of paternal mtDNA in the male gonad. This is the first evidence for different behaviors of sperm mitochondria in developing embryos that may explain the tight linkage between gender and inheritance of paternal mitochondrial DNA in species with DUI.  相似文献   

12.
《Autophagy》2013,9(12):2156-2157
In almost all animals, mitochondrial DNA (mtDNA) is transmitted only from the female, while the paternal mitochondria and mtDNA are thought to be eliminated during early embryogenesis. Autophagy is involved in the elimination of sperm mitochondria and mtDNA in early embryos in Caenorhabditis elegans; however, solid evidence is still lacking in mammals. Recently, we found that despite the fact that some autophagy-related proteins, such as SQSTM1 and LC3 could localize nearby sperm mitochondria before the 2-cell stage, autophagy did not participate in the elimination of sperm mitochondria and mtDNA. Instead, the pre-elimination of sperm mtDNA before fertilization and the restriction of sperm mitochondria in one blastomere before 4-cell stage embryos are the most important mechanisms of maternal mitochondrial inheritance in mice.  相似文献   

13.
Post‐copulatory sexual selection, and sperm competition in particular, is a powerful selective force shaping the evolution of sperm morphology. Although mounting evidence suggests that post‐copulatory sexual selection influences the evolution of sperm morphology among species, recent evidence also suggests that sperm competition influences variation in sperm morphology at the intraspecific level. However, contradictory empirical results and limited taxonomic scope have led to difficulty in assessing the generality of sperm morphological responses to variation in the strength of sperm competition. Here, we use phylogenetically controlled analyses to explore the effects of sperm competition on sperm morphology and variance in sharks, a basal vertebrate group characterized by wide variation in rates of multiple mating by females, and consequently sperm competition risk. Our analyses reveal that shark species experiencing greater levels of sperm competition produce sperm with longer flagella and that sperm flagellum length is less variable in species under higher sperm competition risk. In contrast, neither the length of the sperm head and midpiece nor variation in sperm head and midpiece length was associated with sperm competition risk. Our findings demonstrate that selection influences both the inter‐ and intraspecific variation in sperm morphology and suggest that the flagellum is an important target of sexual selection in sharks. These findings provide important insight into patterns of selection on the ejaculate in a basal vertebrate lineage.  相似文献   

14.
Doubly uniparental inheritance (DUI) of mitochondrial (mt) DNA has been reported in the blue mussel Mytilus galloprovincialis. In DUI, males inherit both paternal (M type) and maternal (F type) mtDNA. Here we investigated changes in M type mtDNA copy numbers and mitochondrial mass in testicular cells by real‐time polymerase chain reaction and flow cytometry. The ratios of M type mtDNA copy numbers to nuclear DNA content were not different between haploid (1n), diploid (2n) and tetraploid (4n) spermatogenic cells. The mitochondrial mass decreased gradually during spermatogenesis. These results suggest that mtDNA and mitochondrial mass are maintained during spermatogenesis. We then traced M type mtDNA in larvae after fertilization. M type mtDNA was maintained up to 24 h after fertilization in the male‐biased crosses, but decreased significantly in female‐biased crosses (predicted by Mito Tracker staining pattern). These results are strikingly different from those reported for mammals and fish, where it is well known that the mitochondria and mtDNA are reduced during spermatogenesis and that sperm mitochondria and mtDNA are eliminated soon after fertilization. Thus, the M type mtDNA copy number is maintained during spermatogenesis and in the development of male larvae to sustain the DUI system in the blue mussel.  相似文献   

15.
The strictly maternal inheritance of mitochondria and mitochondrial DNA (mtDNA) in mammals is a developmental paradox promoted by an unknown mechanism responsible for the destruction of the sperm mitochondria shortly after fertilization. We have recently reported that the sperm mitochondria are ubiquitinated inside the oocyte cytoplasm and later subjected to proteolysis during preimplantation development (P. Sutovsky et al., Nature 1999; 402:371-372). Here, we provide further evidence for this process by showing that the proteolytic destruction of bull sperm mitochondria inside cow egg cytoplasm depends upon the activity of the universal proteolytic marker, ubiquitin, and the lysosomal apparatus of the egg. Binding of ubiquitin to sperm mitochondria was visualized by monospecific antibodies throughout pronuclear development and during the first embryonic divisions. The recognition and disposal of the ubiquitinated sperm mitochondria was prevented by the microinjection of anti-ubiquitin antibodies and by the treatment of the fertilized zygotes with lysosomotropic agent ammonium chloride. The postfecundal ubiquitination of sperm mitochondria and their destruction was not seen in the hybrid embryos created using cow eggs and sperm of wild cattle, gaur, thus supporting the hypothesis that sperm mitochondrion destruction is species specific. The initial ligation of ubiquitin molecules to sperm mitochondrial membrane proteins, one of which could be prohibitin, occurs during spermatogenesis. Even though the ubiquitin cross-reactivity was transiently lost from the sperm mitochondria during epididymal passage, likely as a result of disulfide bond cross-linking, it was restored and amplified after fertilization. Ubiquitination therefore may represent a mechanism for the elimination of paternal mitochondria during fertilization. Our data have important implications for anthropology, treatment of mitochondrial disorders, and for the new methods of assisted procreation, such as cloning, oocyte cytoplasm donation, and intracytoplasmic sperm injection.  相似文献   

16.
Birds show considerable variation in sperm morphology. Closely related species and subspecies can show diagnostic differences in sperm size. There is also variation in sperm size among males within a population, and recent evidence from passerine birds suggests that the coefficient of inter‐male variation in sperm length is negatively associated with the level of sperm competition. Here we examined patterns of inter‐ and intra‐specific variation in sperm length in 12 species of sunbird (Nectariniidae) from Nigeria and Cameroon, a group for which such information is extremely limited. We found significant variation among species in sperm total length, with mean values ranging from 74 μm to 116 μm, placing these species within the short to medium sperm length range for passerine birds. Most of this variation was explained by the length of the midpiece, which contains the fused mitochondria and is an important structure for sperm energetics. Relative midpiece length was negatively correlated with the coefficient of inter‐male variation in sperm total length across species, suggesting that sperm competition may have selected for greater midpiece length in this group. We also mapped sperm lengths onto a time‐calibrated phylogeny and found support for a phylogenetic signal in all sperm length components, except head length. A test of various evolutionary or tree transformation models gave strongest support for the Brownian motion model for all sperm components, i.e. divergences were best predicted by the phylogenetic distance between lineages. The coefficients of inter‐male variation in sperm total length indicate that sperm competition is high but variable among sunbird species, as is the case with passerine birds at large.  相似文献   

17.
于晓丽  黄原 《动物学杂志》2008,43(2):145-149
动物线粒体DNA作为遗传标记广泛用于从种内到高级阶元的许多生物学领域,这些应用是建立在线粒体DNA的严格母系遗传方式和不发生重组的基础上的。近年来的研究提出了一些能够证明动物mtDNA发生重组的直接和间接证据。动物mtDNA重组可能主要通过两条途径发生,一条途径是母系mtDNA与核基因组中mtDNA假基因间发生重组;另一条途径是通过父系渗漏引起的不同单倍型的双亲mtDNA间发生重组。父系渗漏是最可能的途径。如果动物界广泛存在线粒体DNA重组,将会对以mtDNA严格母系遗传为基础的许多应用领域产生重要影响。  相似文献   

18.
Lost in the zygote: the dilution of paternal mtDNA upon fertilization   总被引:1,自引:0,他引:1  
Wolff JN  Gemmell NJ 《Heredity》2008,101(5):429-434
The mechanisms by which paternal inheritance of mitochondrial DNA (mtDNA) (paternal leakage) and, subsequently, recombination of mtDNA are prevented vary in a species-specific manner with one mechanism in common: paternally derived mtDNA is assumed to be vastly outnumbered by maternal mtDNA in the zygote. To date, this dilution effect has only been described for two mammalian species, human and mouse. Here, we estimate the mtDNA content of chinook salmon oocytes to evaluate the dilution effect operating in another vertebrate; the first such study outside a mammalian system. Employing real-time PCR, we determined the mtDNA content of chinook salmon oocytes to be 3.2 x 10(9)+/-1.0 x 10(9), and recently, we determined the mtDNA content of chinook salmon sperm to be 5.73+/-2.28 per gamete. Accordingly, the ratio of paternal-to-maternal mtDNA if paternal leakage occurs is estimated to be 1:5.5 x 10(8). This contribution of paternal mtDNA to the overall mtDNA pool in salmon zygotes is three to five orders of magnitude smaller than those revealed for the mammalian system, strongly suggesting that paternal inheritance of mtDNA per offspring will be much less likely in this system than in mammals.  相似文献   

19.
With the identification of a patient with mutated mitochondrial DNA (mtDNA) of paternal origin, it has been unequivocally proven that not only does paternal mtDNA survive in the zygote, but it can also contribute substantially to the mtDNA pool of adult, human skeletal muscle. The questions are: how often does paternal mtDNA inheritance occur and what mechanisms are involved? In this paper, we will review current knowledge on the fate of sperm mitochondria after fertilization and discuss the impact paternal inheritance may have on our understanding of mitochondrial biology.  相似文献   

20.
Zhou Q  Li H  Xue D 《Cell research》2011,21(12):1662-1669
In mammals, the inheritance of mitochondrion and its DNA (mtDNA) is strictly maternal, despite the fact that a sperm can inject up to 100 functional mitochondria into the oocyte during fertilization. The mechanisms responsible for the elimination of the paternal mitochondria remain largely unknown. We report here that this paternal mitochondrial elimination process is conserved in Caenorhabditis elegans, and that the lysosomal pathway actively participates in this process. Molecular and cell biological analyses indicate that in wild-type animals paternal mitochondria and mtDNA are destroyed within two hours after fertilization. In animals with compromised lysosomes, paternal mitochondria persist until late embryonic stages. Therefore, the lysosomal pathway plays an important role in degrading paternal mitochondria introduced into the oocyte during fertilization. Our study indicates that C. elegans is an excellent animal model for understanding and dissecting this conserved biological process critical for animal development and reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号