首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
大鼠脑干听觉诱发电位和中潜伏期反应的生后发育   总被引:10,自引:0,他引:10  
目的:探讨大鼠脑干听觉诱发电位(BAEP)和听觉中潜伏期反应(MLR)生后发育模式的异同。方法:在同一批新生SD纯种大鼠连续10周同时观察BAEP和MLR生后发育的变化。结果:BAEP和MLR分别在生后14d和17d出现;BAEP各波峰潜伏期(PL)随鼠龄增长而递减,生后3-4周是PL缩短的主要时期,I波PL在生后29d达成年值,其余各波PL在生后70d全部达成年值;首次出现的MLR,其Po和Na两波PL已达成年值,而Pa、Nb和Pb和PL也随鼠龄增长而缩短,但生后20-23d很快就达成年值;BAEP的Ⅰ、Ⅲ、Ⅳ波和MLR的Nb、Pb波波幅在生后3-4周期间迅速递增,且峰值明显大于成年值,然后逐渐回降。结论:大鼠MLR和BAEP生后发育的模式基本相同,但MLR各波PL较早达成年值。  相似文献   

2.
The article presents a study of the influence of radio frequency (RF) fields emitted by mobile phones on human cerebral activity. Our work was based on the study of Auditory Evoked Potentials (AEPs) recorded on the scalp of healthy humans and epileptic patients. The protocol allowed us to compare AEPs recorded with or without exposure to RFs. To get a reference, a control session was also introduced. In this study, the correlation coefficients computed between AEPs, as well as the correlation coefficients between spectra of AEPs were investigated to detect a possible difference due to RFs. A difference in the correlation coefficients computed in control and experimental sessions was observed, but it was difficult to deduce the effect of RFs on human health.  相似文献   

3.
Summary In the early postnatal period of many mammals and in the perihatching period of chicks the auditory ranges are restricted to the species-specific low- and mid-frequency ranges. During subsequent development, the high frequency hearing expands (depending on the species) by 1–4 octaves. Adult-like audition is established between the 4th and the 7th week. It is still discussed controversially, how the extension of the auditory ranges relates to the maturation of orderly frequency representation in the cochleae of the respective species. The present review summarizes investigations of the development of tonotopy in nuclei of the central auditory system, and discusses how the centrally acquired data might contribute to the understanding of the maturation of cochlear stimulus transduction and to the development of frequency maps.Abbreviations ANF auditory nerve fibers - BF best frequency - CN cochlear nucleus - DAB days after birth - DCN dorsal cochlear nucleus - IC inferior colliculus - IHC inner hair cells - HS Hipposideros speoris - LSO lateral superior olive - MGB medial geniculate body (auditory thalamus) - NL Nucleus laminaris - NM Nucleus magnocellularis - OHC outer hair cells - RR Rhinolophus rouxi - SOC superior olivary complex - 2-DG 2-deoxyglucose  相似文献   

4.
Summary The development of the brainstem auditory evoked potential (BAEP) was studied in mallard duck (Anas platyrhynchos) embryos and hatchlings from 5–6 days before hatching through two days after hatching in response to tone pips of different frequencies. BAEPs showed a different time of onset and a different rate of development for low, middle, and high frequencies. Although auditory sensitivity in the mid-frequency range (1.0, 1.5, 2.0, and 3.0 kHz) appeared 1–2 days later than in the low-frequency range, development of the BAEPs in the mid-frequency range was almost complete by hatching. In contrast, the development of auditory sensitivity in the low- and high-frequency ranges continued to develop after hatching. Accelerated development of BAEPs to middle frequencies during the embryonic period and to high frequencies after hatching was correlated with the ducklings' exposure to their own mid-frequency and high-frequency vocalizations before and after hatching, respectively.Abbreviations BAEP brainstem auditory evoked potential - CM cochlear microphonic - CT contact-contentment call - DT distress call - EP evoked potential  相似文献   

5.
Evoked potentials were recorded from the posterior dorsal thalamus of green treefrogs (Hyla cinerea) in response to single tones and combinations of two and three tones. 1. The responses to two tones were largest when one of the component tones was 500 Hz and when the second component was between 2000 and 4000 Hz (Fig.3). 2. The response to 500 + 3000 Hz showed nonlinear facilitation; i.e., the amplitude of the response was greater than the sum of the responses to the component tones alone (Figs. 4, 5). This result provides evidence that cells functioning as 'AND' gates will be found in this center. 3. When a third tone around 1200 Hz was added to a stimulus of 500 + 3000 Hz a 65% decrease in the evoked response amplitude occurred (Fig. 6). 4. The largest evoked response amplitude to a two-tone stimulus (500 + 3000 Hz) occurred when the rise-time was less than 50 ms (Fig. 7). 5. The two-tone tuning was found to be temperature dependent. The optimal lower frequency tone shifted downward with decreasing temperatures (Fig. 8). 6. When the temperatures of the neurophysiological and the behavioral experiments are matched, the optimal stimuli for evoking a large response are closely correlated to the parameters of the acoustic stimuli preferred by gravid H. cinerea females in discrimination tests. This center therefore appears to be very important for the processing of complex species-specific sounds.  相似文献   

6.
Evoked potentials are the transient electrical responses caused by changes in the brain following stimuli. This work uses a physiology-based continuum model of neuronal activity in the human brain to calculate theoretical cortical auditory evoked potentials (CAEPs) from the model’s linearized response. These are fitted to experimental data, allowing the fitted parameters to be related to brain physiology. This approach yields excellent fits to CAEP data, which can then be compared to fits of EEG spectra. It is shown that the differences between resting eyes-open EEG and standard CAEPs can be explained by changes in the physiology of populations of neurons in corticothalamic pathways, with notable similarities to certain aspects of slow-wave sleep. This pilot study demonstrates the ability of our model-based fitting method to provide information on the underlying physiology of the brain that is not available using standard methods.  相似文献   

7.

1. 1.|The purpose of this study was to determine whether chronic latency changes were induced in the auditory nerve-brainstem potentials (ABR) during long-term heat exposure (acclimation).

2. 2.|Latency prolongations of the ABR were observed during acute (5 days) heat exposure. This was followed by a shortening of latencies and amplitude elevation after long-term (2 months) heat exposure (acclimation).

3. 3.|It was concluded that long-term exposure to heat induces chronic changes in nervous activity.

Author Keywords: Auditory nerve; brainstem; evoked potentials; heat exposure; acclimation; rats  相似文献   


8.
The present study investigated the possible effects of the electromagnetic field (EMF) emitted by an ordinary GSM mobile phone (902.4 MHz pulsed at 217 Hz) on brainstem auditory processing. Auditory brainstem responses (ABR) were recorded in 17 healthy young adults, without a mobile phone at baseline, and then with a mobile phone on the ear under EMF‐off and EMF‐on conditions. The amplitudes, latencies, and interwave intervals of the main ABR components (waves I, III, V) were compared among the three conditions. ABR waveforms showed no significant differences due to exposure, suggesting that short‐term exposure to mobile phone EMF did not affect the transmission of sensory stimuli from the cochlea up to the midbrain along the auditory nerve and brainstem auditory pathways. Bioelectromagnetics 31:48–55, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Auditory evoked potential (AEP) measurements are useful for describing the variability of hearing among individuals in marine mammal populations, an important consideration in terms of basic biology and the design of noise mitigation criteria. In this study, hearing thresholds were measured for 16 male California sea lions at frequencies ranging from 0.5 to 32 kHz using the auditory steady state‐response (ASSR), a frequency‐specific AEP. Audiograms for most sea lions were grossly similar to previously reported psychophysical data in that hearing sensitivity increased with increasing frequency up to a steep reduction in sensitivity between 16 and 32 kHz. Average thresholds were not different from AEP thresholds previously reported for male and female California sea lions. Two sea lions from the current study exhibited abnormal audiograms: a 26‐yr‐old sea lion had impaired hearing with a high‐frequency hearing limit (HFHL) between 8 and 16 kHz, and an 8‐yr‐old sea lion displayed elevated thresholds across most tested frequencies. The auditory brainstem responses (ABRs) for these two individuals and an additional 26‐yr‐old sea lion were aberrant compared to those of other sea lions. Hearing loss may have fitness implications for sea lions that rely on sound during foraging and reproductive activities.  相似文献   

10.
高胆红素血症新生大鼠脑干听觉诱发电位快慢成分的变化   总被引:1,自引:0,他引:1  
目的:探讨高胆红素血症新生大鼠脑干听觉诱发电位快成分(FC-BAEP)和慢成分(SC-BAEP)及脑干神经元线粒体超微结构的异常变化。方法:生后7天SD大鼠随机分为对照组(C组,17只)和两个实验组(T1和T2组,各17只)。T1和T2组大鼠生后7天和10天腹腔注射2g/L胆红素溶液,第二次腹腔注射6h后随机抽出7只断头取血用微量胆红素仪检测血清胆红素,其余大鼠生后17天和20天用诱发电位仪检测FC-BAEP和SC-BAEP,生后20天灌注固定、取耳蜗核进行透射电镜观察。结果:T1和T2组大鼠于生后10天腹腔注射6h后,血清胆红素浓度明显升高;T1和T2组大鼠生后17天三种刺激重复率(10/s,40/s,80/s)引导的FC-BAEP,除Ⅱ-Ⅳ波峰间潜伏期(IPL)外,各波波峰潜伏期(PL)和IPL显著延长,且T2组大鼠各波PL较T1组显著延长;T1和T2组大鼠生后20天三种刺激重复率引导的FC-BAEP,除刺激重复率10/s和40/s引导的Ⅱ-ⅣIPL外,各波PL和IPL显著延长;T1和T2组大鼠生后17天与20天刺激重复率10/s引导的SC-BAEP的PL显著延长,且T2组大鼠生后17天SC-BAEP的PL较T1组显著延长;T1和T2组大鼠耳蜗核电镜观察可见神经元线粒体肿胀变形、膜模糊不清和嵴断裂等。结论:高胆红素血症新生大鼠FC-BAEP和SC-BAEP及脑干神经元线粒体超微结构有显著异常变化,FC-BAEP与SC-BAEP的PL和IPL是早期监测胆红素诱发的听觉和脑损伤的客观灵敏指标。  相似文献   

11.
Several mass strandings of beaked whales have recently been correlated with military exercises involving mid-frequency sonar highlighting unknowns regarding hearing sensitivity in these species. We report the hearing abilities of a stranded juvenile beaked whale (Mesoplodon europaeus) measured with auditory evoked potentials. The beaked whale’s modulation rate transfer function (MRTF) measured with a 40-kHz carrier showed responses up to an 1,800 Hz amplitude modulation (AM) rate. The MRTF was strongest at the 1,000 and 1,200 Hz AM rates. The envelope following response (EFR) input–output functions were non-linear. The beaked whale was most sensitive to high frequency signals between 40 and 80 kHz, but produced smaller evoked potentials to 5 kHz, the lowest frequency tested. The beaked whale hearing range and sensitivity are similar to other odontocetes that have been measured.  相似文献   

12.
Short inter-stimulus interval (ISI) is one inherent characteristic of the high stimulus-rate (HSR) paradigms for studying auditory evoked potentials (AEPs). At short ISIs, the AEPs to adjacent stimuli overlap. To resolve the AEP to a specific stimulus requires an inverse process of overlapping. Inverse filtering (also called as deconvolution) has been commonly employed to achieve this goal. However, the resulted signal may be severely distorted as inverse filtering can substantially amplify such undesired components as noises and artifacts in the raw EEG recordings. In practice, even if care be taken to obtain quality EEGs, noises and artifacts are unavoidable. It is thus critical to remove or at least supress these undesired components for studies using HSR paradigms. In this paper, we propose a systematic approach to EEG signal enhancement based on empirical mode decomposition (EMD) and threshold filtering/rejection. Using synthetic and real data, we test the effectiveness of our approach. Results for both types of data consistently demonstrate that our methods can significantly improve the quality of recovered AEPs, according to visual inspection and SNRs estimated using two metrics.  相似文献   

13.
Both otoacoustic emissions (OAEs) and auditory evoked potentials (AEPs) are sexually dimorphic, and both are believed to be influenced by prenatal androgen exposure. OAEs and AEPs were collected from people affected by 1 of 3 categories of disorders of sex development (DSD) — (1) women with complete androgen insensitivity syndrome (CAIS); (2) women with congenital adrenal hyperplasia (CAH); and (3) individuals with 46,XY DSD including prenatal androgen exposure who developed a male gender despite initial rearing as females (men with DSD). Gender identity (GI) and role (GR) were measured both retrospectively and at the time of study participation, using standardized questionnaires. The main objective of this study was to determine if patterns of OAEs and AEPs correlate with gender in people affected by DSD and in controls. A second objective was to assess if OAE and AEP patterns differed according to degrees of prenatal androgen exposure across groups. Control males, men with DSD, and women with CAH produced fewer spontaneous OAEs (SOAEs) – the male-typical pattern – than control females and women with CAIS. Additionally, the number of SOAEs produced correlated with gender development across all groups tested. Although some sex differences in AEPs were observed between control males and females, AEP measures did not correlate with gender development, nor did they vary according to degrees of prenatal androgen exposure, among people with DSD. Thus, OAEs, but not AEPs, may prove useful as bioassays for assessing early brain exposure to androgens and predicting gender development in people with DSD.  相似文献   

14.
Development of the response of the auditory cortex to unilateral acoustic stimulation by a chick was studied in guinea-pig foetuses from the 50th day to the end of gestation and in newborn animals. The first cortical response appeared on the 52nd to 53rd day of gestation. The maximum responses were concentrated in the temporal cortex, between the somatosensory (parietal) and optic (occipital) area. The progressive development of the latent period of the cortical response and of its various components distinctly slowed down on the last days of gestation. At the same time, the amplitude of the cortical response was temporarily augmented. The cortical response developed from a simple negative wave in the youngest embryos into an intricate complex with an initial positive component in newborn guinea-pigs. The basic components of this complex were already discernible on the 64th to 65th day of gestation. The ability to react to repeated peripheral stimulation of 0.1-2 c/s frequency increased with foetal age, with temporary deterioration on the last days of gestation. Resistance of the cortical auditory response to cerebral anoxia rose up to term, with a temporary drop from the 64th day of gestation. After the initiation of independent respiration, cerebral hypoxia and bilateral vagotomy chiefly influenced the stability of the more recent components of the cortical auditory response in mature foetuses.  相似文献   

15.
Abstract

Objective: We analysed the recovery function of somatosensory evoked potentials (SEPs) in juvenile myoclonic epilepsy (JME) patients. We hypothesized that there may be disinhibition in the recovery of SEPs at 20–100?ms intervals in JME patients.

Methods: We recorded SEPs and SEP recovery in 19 consecutive patients with JME admitted for a routine follow-up examination, and in a control group composed of 13 healthy subjects who were similar to the patient group regarding age and sex. The recovery function of SEPs was examined using paired stimuli at 30, 40, 60, and 100?ms intervals.

Results: The amplitudes of N20-P25 and P25-N33 components were higher in patients with JME. Ten patients had high-amplitude SEPs. By paired stimulation, there was inhibition of SEPs in both groups. The mean recovery percentages of N20-P25 and P25-N33 components at 30, 40, 60, and 100?ms were not different between healthy subjects and patients with JME.

Conclusions: The recovery function of SEP is normal in JME even in the presence of high-amplitude SEPs.  相似文献   

16.
Many fishes rely on their auditory skills to interpret crucial information about predators and prey, and to communicate intraspecifically. Few studies, however, have examined how complex natural sounds are perceived in fishes. We investigated the representation of conspecific mating and agonistic calls in the auditory system of the Lusitanian toadfish Halobatrachus didactylus, and analysed auditory responses to heterospecific signals from ecologically relevant species: a sympatric vocal fish (meagre Argyrosomus regius) and a potential predator (dolphin Tursiops truncatus). Using auditory evoked potential (AEP) recordings, we showed that both sexes can resolve fine features of conspecific calls. The toadfish auditory system was most sensitive to frequencies well represented in the conspecific vocalizations (namely the mating boatwhistle), and revealed a fine representation of duration and pulsed structure of agonistic and mating calls. Stimuli and corresponding AEP amplitudes were highly correlated, indicating an accurate encoding of amplitude modulation. Moreover, Lusitanian toadfish were able to detect T. truncatus foraging sounds and A. regius calls, although at higher amplitudes. We provide strong evidence that the auditory system of a vocal fish, lacking accessory hearing structures, is capable of resolving fine features of complex vocalizations that are probably important for intraspecific communication and other relevant stimuli from the auditory scene.  相似文献   

17.
Juvenile male zebra finches develop their song by imitation. Females do not sing but are attracted to males' songs. With functional magnetic resonance imaging and event‐related potentials we tested how early auditory experience shapes responses in the auditory forebrain of the adult bird. Adult male birds kept in isolation over the sensitive period for song learning showed no consistency in auditory responses to conspecific songs, calls, and syllables. Thirty seconds of song playback each day over development, which is sufficient to induce song imitation, was also sufficient to shape stimulus‐specific responses. Strikingly, adult females kept in isolation over development showed responses similar to those of males that were exposed to songs. We suggest that early auditory experience with songs may be required to tune perception toward conspecific songs in males, whereas in females song selectivity develops even without prior exposure to song. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2010  相似文献   

18.
Sustained potential shift's (SPSs) and changes in acoustic evoked potential (AEP) amplitudes were recorded from medullary and mid-brain regions in restrained goldfish (Carassius auratus) in response to the onset of illumination against a sensory background restricted to repetitive (1/s) acoustic stimulation. At the tectal surface, a long duration negative SPS, significant 5–10 s after the onset of illumination, was recorded with a maximum negativity of ca. 145 V. Changes in acoustic responsiveness were also most apparent in the mid-brain where attenuations in AEP amplitude of ca. 15% were recorded.In general, AEPs exhibited attenuated amplitudes in response to the onset of illumination, perhaps reflecting attentional rather than arousal processes, arousal generally being associated with heightened sensory responsiveness. Changes in the amplitude of the medullary AEPs were directly related to the magnitude of bradycardiac responses such that lesser attenuations of the medullary AEP were associated with greater magnitude bradycardiac responses, suggesting a possible interaction of attentional and arousal processes.In response to repeated onset of illumination, SPSs tended towards increasing positivity (increasing in positivity at the medullary surface; decreasing in negativity at the tectal surface). The attenuation of AEPs recorded from the medulla and mid-brain habituated in response to stimulus repetition.Changes in amplitude of AEPs (AEP) recorded from the telencephalon and the torus semicircularis region of the mid-brain were correlated with locally recorded SPSs. At the telencephalon, this correlation was inverse; enhanced AEP amplitudes being associated with SPS negativity, attenuated AEP amplitudes with SPS positivity. In the torus semicircularis, experiential changes in SPS and AEP were directly correlated. As the SPS is considered to reflect glial redistribution of [K+]e (Roitbak 1983), glia may contribute to changes in measures of sensory responsivity, such as the AEP, during changes in behavioural state.Abbreviations AEP Acoustic Evoked Potential - AEP Event-related change in amplitude of AEP following onset of illumination - SPS Sustained Potential Shift - [K+]e Extracellular concentration of K+  相似文献   

19.
The neural modulation in central auditory system plays an important role in perception and processing of sound signal and auditory cognition. The inferior colliculus (IC) is both a relay station in central auditory pathway and a sub-cortical auditory center doing the sound signal processing. IC is also modulated by the descending projections from the cortex and auditory thalamus, medial geniculate body, and these neural modulations not only can affect ongoing sound signal processing but can also induce plastic changes in IC.  相似文献   

20.
Field measurements of hearing thresholds were obtained from the Atlantic sharpnose shark Rhizoprionodon terraenovae using the auditory evoked potential method (AEP). The fish had most sensitive hearing at 20 Hz, the lowest frequency tested, with decreasing sensitivity at higher frequencies. Hearing thresholds were lower than AEP thresholds previously measured for the nurse shark Ginglymostoma cirratum and yellow stingray Urobatis jamaicensis at frequencies <200 Hz, and similar at 200 Hz and above. Rhizoprionodon terraenovae represents the closest comparison in terms of pelagic lifestyle to the sharks which have been observed in acoustic field attraction experiments. The sound pressure levels that would be equivalent to the particle acceleration thresholds of R. terraenovae were much higher than the sound levels which attracted closely related sharks suggesting a discrepancy between the hearing threshold experiments and the field attraction experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号