首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PDT (photodynamic therapy) has been used for the treatment of NMCC (non‐melanoma cutaneous cancer) particularly, human SCC (squamous cell carcinoma). However, the nature of the photosensitizer, the activation light source and the mode of cell death induced post‐PDT remains elusive. We tried to optimize PDT using the light‐activated (320–400 nm) St John's Wort‐derived compound, Hyp (hypericin). The work highlights the potential mode of cell death and the increased efficacy of the technique associated with multiple Hyp‐PDT treatment. SCC cells were exposed to different concentrations of Hyp and activated with light at 1 J/cm2 for 1 or 2 days. Thereafter with the optimum dose of Hyp proliferation, ROS (reactive oxygen species), and apoptosis were analysed by XTT [2,3‐bis‐(2‐methoxy‐4‐nitro‐5‐sulfophenyl)‐2H‐tetrazolium‐5‐carboxanilide] assay, FACS analysis and Fluorescent/Phase contrast microscopy was carried out for morphological studies. Hyp‐PDT produces more ROS after 1 day compared with 2 days and the mode of cell death is a necrotic caspase‐independent mechanism. We propose a novel ‘double‐hit/2‐day’ strategy to reduce the viability in SCC using Hyp‐based PDT as an adjunctive treatment modality.  相似文献   

2.
3.
4.
The presence of light, oxygen and photosensitizer (organic dye) is required for the photodynamic effect. Light and photosensitizer are harmless by themselves, but when combined with oxygen, reactive oxygen species (ROS) can be produced. This photodynamic effect is used in photodynamic therapy (PDT); the production of ROS as lethal cytotoxic agents can inactivate tumor cells. However, during PDT, there are many difficulties, so it is not possible to excite the photosensitizer using a laser, a source of light at the wavelengths specific to the photosensitizer (in visible region of the spectrum). Chemiluminescence is the light emission as a result of a chemical reaction. It is possible to use a chemiluminescent mixture to excite the photosensitizer even if the light emission does not conform to the absorption maximum of the photosensitizer. Luciferin and luminol have been used as chemiluminescent compounds (energizers) for the excitation of the photosensitizers. The aim of this work was to compare the chemiexcitation of some selected photosensitizers (e.g. fluorescein, eosin, methylene blue, hypericin and phthalocyanines) by chemiluminescent mixtures containing luminol (high chemiluminescent quantum yield) or phthalhydrazide (low chemiluminescent quantum yield) on some Gram‐positive (Enterococcus faecalis, Staphylococcus aureus) and Gram‐negative (Pseudomonas aeruginosa, E. coli) bacteria and some cell lines (NIH3T3 and MCF7). The efficiency of the chemiexcitation was dependent on the kind of the photosensitizer and on the type of the bacterial strain or cell line and was independent of the energizers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A novel bacteriochlorin bearing two spermine units ( BCS ) was synthesized from 3,13‐dibromo‐8,8,18,18‐tetramethylbacteriochlorin ( BC‐Br 3,13 ). The synthesis involved the Suzuki coupling of BC‐Br 3,13 to obtain a bacteriochlorin‐dibenzaldehyde ( BCA ), which was subjected to reductive amination with spermine. The resulting bacteriochlorin BCS presents a strong near‐infrared absorption band at 747 nm, emits at 750 nm with fluorescence quantum yield of 0.14, and generates singlet molecular oxygen, O2(1Δg), with a quantum yield of 0.27. Photokilling capacities mediated by BCS were evaluated in microbial cells. The viability of Staphylococcus aureus decreased 7 logs when cells were incubated with 1 μM BCS and irradiated for 15 minutes. Comparable photocytotoxic effect was obtained with Escherichia coli, when cells were treated for 30 minutes with visible light. BCS was also an effective photosensitizer to inactivate Candida albicans. In addition, this bacteriochlorin was able to eradicate bacteria at short incubation times. The structure of BCS contains eight basic amino groups that, when protonated in water, increase the binding to the cell envelope. In summary, the readily accessible bacteriochlorin BCS was highly effective at low concentrations as a broad‐spectrum antimicrobial photosensitizer.  相似文献   

6.
The AKT/PKB pathway plays a central role in tumor development and progression and is often up‐regulated in different tumor types, including melanomas. We have recently reported on the in silico approach to identify putative inhibitors for AKT/PKB. Of the reported hits, we selected BI‐69A11, a compound which was shown to inhibit AKT activity in in vitro kinase assays. Analysis of BI‐69A11 was performed in melanoma cells, a tumor type that commonly exhibits up‐regulation of AKT. Treatment of the UACC903 human melanoma cells, harboring the PTEN mutation, with BI‐69A11 caused efficient inhibition of AKT S473 phosphorylation with concomitant inhibition of AKT phosphorylation of PRAS40. Treatment of melanoma cells with BI‐69A11 also reduced AKT protein expression, which coincided with inhibition of AKT association with HSP‐90. BI‐69A11 treatment not only caused cell death of melanoma, but also prostate tumor cell lines. Notably, the effect of BI‐69A11 on cell death was more pronounced in cells that express an active form of AKT. Significantly, intra‐peritoneal injection of BI‐69A11 caused effective regression of melanoma tumor xenografts, which coincided with elevated levels of cell death. These findings identify BI‐69A11 as a potent inhibitor of AKT that is capable of eliciting effective regression of xenograft melanoma tumors.  相似文献   

7.
Genistein, a naturally occurring isoflavone found chiefly in soybeans, has been reported to be a potent antitumor agent. Genistein is presumed to exert multiple effects related to the inhibition of cancer growth. Metastatic melanoma is a chemotherapy‐refractory neoplasm. The present study was designed to explore the possible activity of genistein to inhibit the aberrant proliferation and to induce apoptosis of human malignant melanoma cells in cooperation with cisplatin treatment. Five human melanoma cell lines were utilized for these experiments. Genistein at physiologic concentrations (20 μM) did not induce apoptosis by itself but did enhance cisplatin‐induced apoptosis in all five human melanoma cell lines tested. The enhanced susceptibility among the cell lines was diverse. Changes in the expression of two anti‐apoptotic proteins, bcl‐2 and bcl‐xL, and one pro‐apoptotic protein, apoptotic protease activating factor‐1 (Apaf‐1), were examined. Genistein alone or cisplatin alone generally did not alter bcl‐2 expression or bcl‐xL expression, but slightly increased Apaf‐1 in some cell lines. The combined treatment with genistein and cisplatin significantly reduced bcl‐2 and bcl‐xL protein and increased Apaf‐1 protein expression. These data suggest that genistein therapy may enhance the chemosensitivity of melanoma patients.  相似文献   

8.
9.
10.
Pharmacological inhibition of autophagic-lysosomal function has recently emerged as a promising strategy for chemotherapeutic intervention targeting cancer cells. Repurposing approved and abandoned non-oncological drugs is an alternative approach to the identification and development of anticancer therapeutics, and antimalarials that target autophagic-lysosomal functions have recently attracted considerable attention as candidates for oncological repurposing. Since cumulative research suggests that dependence on autophagy represents a specific vulnerability of malignant melanoma cells, we screened a focused compound library of antimalarials for antimelanoma activity. Here we report for the first time that amodiaquine (AQ), a clinical 4-aminoquinoline antimalarial with unexplored cancer-directed chemotherapeutic potential, causes autophagic-lysosomal and proliferative blockade in melanoma cells that surpasses that of its parent compound chloroquine. Monitoring an established set of protein markers (LAMP1, LC3-II, SQSTM1) and cell ultrastructural changes detected by electron microscopy, we observed that AQ treatment caused autophagic-lysosomal blockade in malignant A375 melanoma cells, a finding substantiated by detection of rapid inactivation of lysosomal cathepsins (CTSB, CTSL, CTSD). AQ-treatment was associated with early induction of energy crisis (ATP depletion) and sensitized melanoma cells to either starvation- or chemotherapeutic agent-induced cell death. AQ displayed potent antiproliferative effects, and gene expression array analysis revealed changes at the mRNA (CDKN1A, E2F1) and protein level (TP53, CDKN1A, CCND1, phospho-RB1 [Ser 780]/[Ser 807/811], E2F1) consistent with the observed proliferative blockade in S-phase. Taken together, our data suggest that the clinical antimalarial AQ is a promising candidate for repurposing efforts that aim at targeting autophagic-lysosomal function and proliferative control in malignant melanoma cells.  相似文献   

11.
A new flavonoid glycoside, chrysin 6‐Cβ‐rutinoside (chrysin α‐L ‐rhamnopyranosyl‐(1→6)‐Cβ‐glucopyranoside; 2 ), and two new triterpene glycosides, (31R)‐31‐O‐methylpassiflorine ( 7 ) and (31S)‐31‐O‐methylpassiflorine ( 8 ), along with 14 known glycosides, including three flavonoid glycosides, 1, 3 , and 4 , six triterpene glycosides, 5, 6 , and 9 – 12 , three cyano glycosides, 13 – 15 , and two other glycosides, 16 and 17 , were isolated from a MeOH extract of the leaves of Passiflora edulis (passion flower; Passifloraceae). The structures of new compounds were elucidated on the basis of extensive spectroscopic analysis and comparison with literature data. Upon evaluation of compounds 1 – 17 against the melanogenesis in the B16 melanoma cells induced with α‐melanocyte‐stimulating hormone (α‐MSH), three compounds, isoorientin ( 1 ), 2 , and (6S,9R)‐roseoside ( 17 ), exhibited inhibitory effects with 37.3–47.2% reduction of melanin content with no, or almost no, toxicity to the cells (90.8–100.2% cell viability) at 100 μM . Western blot analysis showed that compound 2 reduced the protein levels of MITF, TRP‐1, and tyrosinase, in a concentration‐dependent manner while exerted almost no influence on the level of TRP‐2, suggesting that this compound inhibits melanogenesis on the α‐MSH‐stimulated B16 melanoma cells by, at least in part, inhibiting the expression of MITF, followed by decreasing the expression of TRP‐1 and tyrosinase. In addition, compounds 1 – 17 were evaluated for their inhibitory effects against the Epstein? Barr virus early antigen (EBV‐EA) activation induced by 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA) in Raji cells.  相似文献   

12.
The fine structure of the compound eyes of the adult diving beetle Agabus japonicus is described with light, scanning, and transmission electron microscopy. The eye of A. japonicus is mango‐shaped and consists of about 985 ommatidia. Each ommatidium is composed of a corneal facet lens, an eucone type of crystalline cone, a fused layered rhabdom with a basal rhabdomere, seven retinula cells (including six distal cells and one basal cell), two primary pigment cells and an undetermined number of secondary pigment cells that are restricted to the distalmost region of the eye. A clear‐zone, separating dioptric apparatus from photoreceptive structures, is not developed and the eye thus resembles an apposition eye. The cross‐sectional areas of the rhabdoms are relatively large indicative of enhanced light‐sensitivity. The distal and central region of the rhabdom is layered with interdigitating microvilli suggesting polarization sensitivity. According to the features mentioned above, we suggest that 1) the eye, seemingly of the apposition type, occurs in a taxon for which the clear‐zone (superposition) eye is characteristic; 2) the eye possesses adaptations to function in a dim‐light environment; 3) the eye may be sensitive to underwater polarized light or linearly water‐reflected polarized light. J. Morphol. 275:1273–1283, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
14.
Targeting the MAPK signaling pathway has transformed the treatment of metastatic melanoma. CRISPR‐Cas9 genetic screens provide a genome‐wide approach to uncover novel genetic dependencies that might serve as therapeutic targets. Here, we analyzed recently reported CRISPR‐Cas9 screens comparing data from 28 melanoma cell lines and 313 cell lines of other tumor types in order to identify fitness genes related to melanoma. We found an average of 1,494 fitness genes in each melanoma cell line. We identified 33 genes, inactivation of which specifically reduced the fitness of melanoma. This set of tumor type‐specific genes includes established melanoma fitness genes as well as many genes that have not previously been associated with melanoma growth. Several genes encode proteins that can be targeted using available inhibitors. We verified that genetic inactivation of DUSP4 and PPP2R2A reduces the proliferation of melanoma cells. DUSP4 encodes an inhibitor of ERK, suggesting that further activation of MAPK signaling activity through its loss is selectively deleterious to melanoma cells. Collectively, these data present a resource of genetic dependencies in melanoma that may be explored as potential therapeutic targets.  相似文献   

15.
Inhibitors targeting the mitogen‐activated protein kinase (MAPK) pathway and immune checkpoint molecules have dramatically improved the survival of patients with BRAFV600‐mutant melanoma. For BRAF/RAS wild‐type (WT) melanoma patients, however, immune checkpoint inhibitors remain the only effective therapeutic option with 40% of patients responding to PD‐1 inhibition. In the present study, a large panel of 10 BRAFV600‐mutant and 13 BRAF/RAS WT melanoma cell lines was analyzed to examine MAPK dependency and explore the potential utility of MAPK inhibitors in this melanoma subtype. We now show that the majority of BRAF/RAS WT melanoma cell lines (8/13) display some degree of sensitivity to trametinib treatment and resistance to trametinib in this melanoma subtype is associated with, but not mediated by NF1 suppression. Although knockdown of NF1 stimulates RAS and CRAF activity, the activation of CRAF by NF1 knockdown is limited by ERK‐dependent feedback in BRAF‐mutant cells, but not in BRAF/RAS WT melanoma cells. Thus, NF1 is not a dominant regulator of MAPK signaling in BRAF/RAS WT melanoma, and co‐targeting multiple MAP kinase nodes provides a therapeutic opportunity for this melanoma subtype.  相似文献   

16.
Objectives: Poor therapeutic results have been reported for treatment of malignant melanoma; therefore in this study we have investigated inhibitory capacity of ethyl acetate, chloroform (Chl) and methanol extracts from Moricandia arvensis on mouse melanoma (B16‐F0) and human keratinocyte (HaCaT) cell proliferation. Influence of Chl extract on percentage distribution in cell cycle phases and melanogenesis was also studied. Material and methods: Cell viability was determined at various periods using the MTT assay, and flow cytometry was used to analyse effects of Chl extract on progression through the cell cycle and apoptosis. In addition, amounts of melanin and tyrosinase were measured spectrophotometrically at 475 nm. Results: Chl extract exhibited significant anti‐proliferative activity after incubation with the two types of tumour skin cells. Morphological changes in B16‐F0 cells, accompanied by increase of tyrosinase activity, and of melanin synthesis were observed, which are markers of differentiation of malignant melanoma cells. Furthermore, cell cycle analysis revealed that B16‐F0 cells treated with Chl extract were arrested predominantly in G1 phase. Conclusion: Chl extract had the ability to reverse malignant melanoma cells from proliferative to differentiated state, thus providing a new perspective in developing novel strategies for prevention and treatment of malignant melanoma, possibly through consumption of the extract in an appropriate cancer prevention diet. Moreover, there is scope for the extract being introduced into cosmetic products as a natural tanning agent.  相似文献   

17.
18.
Fusion hybrids between normal macrophages and Cloudman S91 melanoma cells were shown earlier to have increased metastatic potential, along with high expression of β1,6‐N‐acetylglucosaminyltransferase  V and β1,6‐branched oligosaccharides. Curiously, hybrids, but not parental melanoma cells, also produced ‘coarse melanin’– autophagic vesicles with multiple melanosomes. As β1,6‐branched oligosaccharides were known to be associated with metastasis, and coarse melanin had been described in invasive human melanomas, we looked for potential relationships between the two. Using lectin‐ and immunohistochemistry, we analyzed cell lines producing coarse melanin for β1,6‐branched oligosaccharides: gp100/pmel‐17 (a melanosomal structural component) and CD63 (a late endosome/lysosome component associated with melanoma and certain other human cancers). Cell lines used in this study were (i) hybrid 94‐H48, a highly metastatic, macrophage–melanoma experimental fusion hybrid; (ii) 6neo mouse melanoma cells, the weakly metastatic, parental fusion partner; and (iii) SKmel‐23, a human melanoma cell line derived from a metastasis. Coarse melanin granules were prominent both in hybrids and in SKmel‐23 cells, and co‐localized with stains for β1,6‐branched oligosaccharides, gp100/pmel 17, and CD63. This is the first report of this phenotype being expressed in vitro, although co‐expression of β1,6‐branched oligosaccharides and coarse melanin was recently shown to be a common and pervasive characteristic in archival specimens of human melanomas, and was most prominent in metastases. The results suggest that pathways of melanogenesis in melanoma may differ significantly from those in normal melanocytes. In vitro expression of this phenotype provides new biological systems for more detailed analyses of its genesis and regulation at the molecular genetic level.  相似文献   

19.
Although c‐Myc is essential for melanocyte development, its role in cutaneous melanoma, the most aggressive skin cancer, is only partly understood. Here we used the NrasQ61KINK4a?/? mouse melanoma model to show that c‐Myc is essential for tumor initiation, maintenance, and metastasis. c‐Myc‐expressing melanoma cells were preferentially found at metastatic sites, correlated with increased tumor aggressiveness and high tumor initiation potential. Abrogation of c‐Myc caused apoptosis in primary murine and human melanoma cells. Mechanistically, c‐Myc‐positive melanoma cells activated and became dependent on the metabolic energy sensor AMP‐activated protein kinase (AMPK), a metabolic checkpoint kinase that plays an important role in energy and redox homeostasis under stress conditions. AMPK pathway inhibition caused apoptosis of c‐Myc‐expressing melanoma cells, while AMPK activation protected against cell death of c‐Myc‐depleted melanoma cells through suppression of oxidative stress. Furthermore, TCGA database analysis of early‐stage human melanoma samples revealed an inverse correlation between C‐MYC and patient survival, suggesting that C‐MYC expression levels could serve as a prognostic marker for early‐stage disease.  相似文献   

20.
BRAF inhibitors improve melanoma patient survival, but resistance invariably develops. Here we report the discovery of a novel BRAF mutation that confers resistance to PLX4032 employing whole‐exome sequencing of drug‐resistant BRAFV600K melanoma cells. We further describe a new screening approach, a genome‐wide piggyBac mutagenesis screen that revealed clinically relevant aberrations (N‐terminal BRAF truncations and CRAF overexpression). The novel BRAF mutation, a Leu505 to His substitution (BRAFL505H), is the first resistance‐conferring second‐site mutation identified in BRAF mutant cells. The mutation replaces a small nonpolar amino acid at the BRAF‐PLX4032 interface with a larger polar residue. Moreover, we show that BRAFL505H, found in human prostate cancer, is itself a MAPK‐activating, PLX4032‐resistant oncogenic mutation. Lastly, we demonstrate that the PLX4032‐resistant melanoma cells are sensitive to novel, next‐generation BRAF inhibitors, especially the ‘paradox‐blocker’ PLX8394, supporting its use in clinical trials for treatment of melanoma patients with BRAF‐mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号