首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Recent ecological forecasts predict that ~25% of species worldwide will go extinct by 2050. However, these estimates are primarily based on environmental changes alone and fail to incorporate important biological mechanisms such as genetic adaptation via evolution. Thus, environmental change can affect population dynamics in ways that classical frameworks can neither describe nor predict. Furthermore, often due to a lack of data, forecasting models commonly describe changes in population demography by summarizing changes in fecundity and survival concurrently with the intrinsic growth rate (r). This has been shown to be an oversimplification as the environment may impose selective pressure on specific demographic rates (birth and death) rather than directly on r (the difference between the birth and death rates). This differential pressure may alter population response to density, in each demographic rate, further diluting the information combined to produce r. Thus, when we consider the potential for persistence via adaptive evolution, populations with the same r can have different abilities to persist amidst environmental change. Therefore, we cannot adequately forecast population response to climate change without accounting for demography and selection on density dependence. Using a continuous‐time Markov chain model to describe the stochastic dynamics of the logistic model of population growth and allow for trait evolution via mutations arising during birth events, we find persistence via evolutionary tracking more likely when environmental change alters birth rather than the death rate. Furthermore, species that evolve responses to changes in the strength of density dependence due to environmental change are less vulnerable to extinction than species that undergo selection independent of population density. By incorporating these key demographic considerations into our predictive models, we can better understand how species will respond to climate change.  相似文献   

2.
    
The potential to adapt to novel environmental conditions is a key area of interest for evolutionary biology. However, the role of multiple selection pressures on adaptive responses has rarely been investigated in natural populations. In Sweden, the natterjack toad Bufo calamita inhabits two separate distribution areas, one in southernmost Sweden and one on the west coast. We characterized the larval habitat in terms of pond size and salinity in the two areas, and found that the western populations are more affected by both desiccation risk and pond salinity than the southern populations. In a common garden experiment manipulating salinity and temperature, we found that toads from the west coast populations were locally adapted to shorter pond duration as indicated by their higher development and growth rates. However, despite being subjected to higher salinity stress in nature, west coast toads had a poorer performance in saline treatments. We found that survival in the saline treatments in the west coast populations was positively affected by larger body mass and longer larval period. Furthermore, we found negative genetic correlations between body mass and growth rate and their plastic responses to salinity. These results implicate that the occurrence of multiple environmental stressors needs to be accounted for when assessing the adaptive potential of organisms and suggest that genetic correlations may play a role in constraining adaptation of natural populations.  相似文献   

3.
动物生活史进化理论研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
综述了生活史性状、生活史对策、权衡、适合度及进化种群统计学等动物生活史进化领域的进展。权衡是生活史性状之间相互联系的纽带,分为生理权衡与进化权衡。适合度是相对的,与个体所处的特定环境条件有关,性状进化与适合度之间关系紧密。适合度是生活史进化理论研究的焦点。探讨动物生活史对策的理论很多,影响最大的是MacArthur和Wilson提出的r对策及K对策理论。随年龄的增长,动物存活率及繁殖率逐步下降的过程,称为衰老;解释衰老的进化理论主要有突变-选择平衡假设和多效对抗假设。进化种群统计学将种群统计学应用于生活史进化研究,为探讨表型适合度的进化提供了有效的手段。将进化种群统计学、数量遗传学及特定种系效应理论进行整合,建立完整的动物生活史进化综合理论体系,是当代此领域的最大挑战。  相似文献   

4.
    
Neutral rates of molecular evolution vary across species, and this variation has been shown to be related to biological traits. One of the first patterns to be observed in vertebrates has been an inverse relationship between body mass (BM) and substitution rates. The effects of three major life‐history traits (LHT) that covary with BM – metabolic rate, generation time and longevity (LON) – have been invoked to explain this relationship. However, most of the theoretical and empirical evidence supporting this relationship comes from endothermic vertebrates, that is, mammals and birds, in which the environmental conditions, especially temperature, do not have a direct impact on cellular and molecular biology. We analysed the variations in mitochondrial and nuclear rates of synonymous substitution across 224 turtle species and examined their correlation with two LHT (LON and BM) and two environmental variables [latitude (LAT) and habitat]. Our analyses indicate that in turtles, neutral rates of molecular evolution are hardly correlated with LON or BM. Rather, both the mitochondrial and nuclear substitution rates are significantly correlated with LAT – faster evolution in the tropics – and especially so for aquatic species. These results question the generality of the relationships reported in mammals and birds and suggest that environmental factors might be the strongest determinants of the mutation rate in ectotherms.  相似文献   

5.
    
Patterns of parental care are strikingly diverse in nature, and parental care is thought to have evolved repeatedly multiple times. Surprisingly, relatively little is known about the most general conditions that lead to the origin of parental care. Here, we use a theoretical approach to explore the basic life‐history conditions (i.e., stage‐specific mortality and maturation rates, reproductive rates) that are most likely to favor the evolution of some form of parental care from a state of no care. We focus on parental care of eggs and eggs and juveniles and consider varying magnitudes of the benefits of care. Our results suggest that parental care can evolve under a range of life‐history conditions, but in general will be most strongly favored when egg death rate in the absence of care is high, juvenile survival in the absence of care is low (for the scenario in which care extends into the juvenile stage), adult death rate is relatively high, egg maturation rate is low, and the duration of the juvenile stage is relatively short. Additionally, parental care has the potential to be favored at a broad range of adult reproductive rates. The relative importance of these life‐history conditions in favoring or limiting the evolution of care depends on the magnitude of the benefits of care, the relationship between initial egg allocation and subsequent offspring survival, and whether care extends into the juvenile stage. The results of our model provide a general set of predictions regarding when we would expect parental care to evolve from a state of no care, and in conjunction with other work on the topic, will enhance our understanding of the evolutionary dynamics of parental care and facilitate comparative analyses.  相似文献   

6.
    
So far, only a few studies have explicitly investigated the consequences of admixture for the adaptative potential of invasive populations. We addressed this question in the invasive ladybird Harmonia axyridis. After decades of use as a biological control agent against aphids in Europe and North America, H. axyridis recently became invasive in four continents and has now spread widely in Europe. Despite this invasion, a flightless strain is still sold as a biological control agent in Europe. However, crosses between flightless and invasive individuals yield individuals able to fly, as the flightless phenotype is caused by a single recessive mutation. We investigated the potential consequences of admixture between invasive and flightless biological control individuals on the invasion in France. We used three complementary approaches: (i) population genetics, (ii) a mate‐choice experiment, and (iii) a quantitative genetics experiment. The invasive French population and the biological control strain showed substantial genetic differentiation, but there are no reproductive barriers between the two. Hybrids displayed a shorter development time, a larger size and a higher genetic variance for survival in starvation conditions than invasive individuals. We discuss the potential consequences of our results with respect to the invasion of H. axyridis in Europe.  相似文献   

7.
Although loss of genetic variation is frequently assumed to be associated with loss of adaptive potential, only few studies have examined adaptation in populations with little genetic variation. On the Swedish west coast, the northern fringe populations of the natterjack toad Bufo calamita inhabit an atypical habitat consisting of offshore rock islands. There are strong among‐population differences in the amount of neutral genetic variation, making this system suitable for studies on mechanisms of trait divergence along a gradient of within‐population genetic variation. In this study, we examined the mechanisms of population divergence using QST–FST comparisons and correlations between quantitative and neutral genetic variation. Our results suggest drift or weak stabilizing selection across the six populations included in this study, as indicated by low QSTFST values, lack of significant population × temperature interactions and lack of significant differences among the islands in breeding pond size. The six populations included in this study differed in both neutral and quantitative genetic variation. Also, the correlations between neutral and quantitative genetic variation tended to be positive, however, the relatively small number of populations prevents any strong conclusions based on these correlations. Contrary to the majority of QST–FST comparisons, our results suggest drift or weak stabilizing selection across the examined populations. Furthermore, the low heritability of fitness‐related traits may limit evolutionary responses in some of the populations.  相似文献   

8.
为评估西双版纳国家级自然保护区对樟科这一重要植物类群进化潜力的保护情况, 揭示将物种进化历史纳入生物多样性保护评估的重要性, 本研究通过对西双版纳地区长期的野外调查并查阅标本记录与文献资料, 整理出该地区樟科13属121种物种的具体分布信息, 以植物条形码ITS序列作为分子标记构建了反映整个西双版纳地区樟科植物系统发育关系的系统发育树。我们以此为基础, 从物种层面分析了各物种的进化特异性(evolutionary distinctiveness, ED), 从区域层面分析了自然保护区内、外以及32个行政乡镇的系统发育多样性(phylogenetic diversity, PD), 并结合物种丰富度(species richness, SR)与物种濒危等级, 综合探讨了西双版纳国家级自然保护区对樟科植物进化历史的保护情况。研究发现, 西双版纳国家级自然保护区仅拥有整个西双版纳地区54.5%的樟科物种数, 却保护了该地区樟科植物约88.8%的进化历史, 没有被列入保护范围但却拥有高系统发育多样性的区域有打洛镇、易武乡等。就物种而言, 进化特异性相对较高的19个物种中, 有5种(26.3%)在自然保护区内没有分布; 濒危等级高的54个物种中, 有20种(37.0%)在自然保护区没有分布, 同时拥有高进化特异性和濒危等级的物种仅有1种不在保护区内分布。结果表明, 虽然西双版纳国家级自然保护区对樟科这一植物类群的系统发育多样性以及高保护价值物种的保护较好, 但仍有部分重要樟科植物的进化历史没有涵盖在现有自然保护区范围内; 按照传统方法设定的自然保护区虽能在一定程度上保护樟科物种的进化历史, 但仍然存在与标准化系统发育多样性保护策略相矛盾的地方。因此, 今后在建立自然保护区时, 应将系统发育多样性考虑在内, 以保护生物多样性应对环境变化的潜力。  相似文献   

9.
    
Comparison of biological characteristics between diapausing and non‐diapausing strains of insects provides some insights into the mechanisms regulating diapause. In this study, biological characteristics, especially diapause characteristics and life‐history traits, of a non‐photoperiodic‐diapause (NPD) strain of the cabbage beetle Colaphellus bowringi were compared with those of a normal, high‐diapause (HD) strain that enters diapause in response to either long day length or low temperature. The NPD strain did not enter diapause at any photoperiod at 22°C or higher, but still had a capacity to enter diapause at low temperatures. Although diapause could be induced in both strains by exposure to 20°C, the proportion of individuals having shorter diapause duration was greater in the NPD strain compared to the HD strain. The NPD strain had significantly lower hatching and larval survival rates, longer developmental duration of immature stages, smaller body size and lower longevity and female fecundity compared to the HD strain. The NPD strain of this species is a promising model for investigating diapause regulation in insects in general.  相似文献   

10.
11.
    
The invasive spread of exotic plants in native vegetation can pose serious threats to native faunal assemblages. This is of particular concern for reptiles and amphibians because they form a significant component of the world's vertebrate fauna, play a pivotal role in ecosystem functioning and are often neglected in biodiversity research. A framework to predict how exotic plant invasion will affect reptile and amphibian assemblages is imperative for conservation, management and the identification of research priorities. Here, we present a new predictive framework that integrates three mechanistic models. These models are based on exotic plant invasion altering: (1) habitat structure; (2) herbivory and predator‐prey interactions; (3) the reproductive success of reptile and amphibian species and assemblages. We present a series of testable predictions from these models that arise from the interplay over time among three exotic plant traits (growth form, area of coverage, taxonomic distinctiveness) and six traits of reptiles and amphibians (body size, lifespan, home range size, habitat specialisation, diet, reproductive strategy). A literature review provided robust empirical evidence of exotic plant impacts on reptiles and amphibians from each of the three model mechanisms. Evidence relating to the role of body size and diet was less clear‐cut, indicating the need for further research. The literature provided limited empirical support for many of the other model predictions. This was not, however, because findings contradicted our model predictions but because research in this area is sparse. In particular, the small number of studies specifically examining the effects of exotic plants on amphibians highlights the pressing need for quantitative research in this area. There is enormous scope for detailed empirical investigation of interactions between exotic plants and reptile and amphibian species and assemblages. The framework presented here and further testing of predictions will provide a basis for informing and prioritising environmental management and exotic plant control efforts.  相似文献   

12.
    
Size‐selective harvest of fish stocks can lead to maturation at smaller sizes and younger ages, which may depress stock productivity and recovery. Such changes in maturation may be very slow to reverse, even following complete fisheries closures. We evaluated temporal trends in maturation of five Great Lakes stocks of yellow perch (Perca flavescens Mitchill) using indices that attempt to disentangle plastic and evolutionary changes in maturation: age at 50% maturity and probabilistic maturation reaction norms (PMRNs). Four populations were fished commercially throughout the time series, while the Lake Michigan fishery was closed following a stock collapse. We documented rapid increases in PMRNs of the Lake Michigan stock coincident with the commercial fishery closure. Saginaw Bay and Lake Huron PMRNs also increased following reduced harvest, while Lake Erie populations were continuously fished and showed little change. The rapid response of maturation may have been enhanced by the short generation time of yellow perch and potential gene flow between northern and southern Lake Michigan, in addition to potential reverse adaptation following the fishing moratorium. These results suggest that some fish stocks may retain the ability to recover from fisheries‐induced life history shifts following fishing moratoria.  相似文献   

13.
    
Central to evolutionary theory is the idea that living organisms face phenotypic and/or genetic trade‐offs when allocating resources to competing life‐history demands, such as growth, survival, and reproduction. These trade‐offs are increasingly considered to be crucial to further our understanding of cancer. First, evidences suggest that neoplastic cells, as any living entities subject to natural selection, are governed by trade‐offs such as between survival and proliferation. Second, selection might also have shaped trade‐offs at the organismal level, especially regarding protective mechanisms against cancer. Cancer can also emerge as a consequence of additional trade‐offs in organisms (e.g., eco‐immunological trade‐offs). Here, we review the wide range of trade‐offs that occur at different scales and their relevance for understanding cancer dynamics. We also discuss how acknowledging these phenomena, in light of human evolutionary history, may suggest new guidelines for preventive and therapeutic strategies.  相似文献   

14.
    
The aim was to study as to how biometric and life‐history traits of endemic lacertids in the Canary Islands (genus Gallotia) may have evolved, and possible factors affecting the diversification process of this taxon on successively appearing islands have been deduced. To that end, comparative analyses of sexual dimorphism and scaling of different body, head and life‐history traits to body size in 10 species/subspecies of Gallotia have been carried out. Both Felsenstein's independent contrasts and Huey and Bennett's ‘minimum evolution’ analyses show that male and female snout‐vent length (SVL) changed proportionally (sexual size dimorphism not changing with body size) throughout the evolution of these lizards and all within‐sex biometric traits have changed proportionally to SVL. Life‐history traits (size at sexual maturity, clutch size, hatchling SVL and mass, and life span) are highly correlated with adult female body size, the first two being the only traits with a positive allometry to female SVL. These results, together with the finding that the slope of hatchling SVL to female SVL regression was lower than that of SVL at maturity to female SVL, indicates that larger females reach maturity at a larger size, have larger clutches and, at the same time, have relatively smaller hatchlings than smaller females. There was no significant correlation between any pair of life‐history traits after statistically removing the effect of body size. As most traits changed proportionally to SVL, the major evolutionary change has been that of body size (a ca. threefold change between the largest and the smallest species), that is suggested to be the effect of variable ecological conditions faced by founder lizards in each island.  相似文献   

15.
16.
    
It has been demonstrated that phenotypic plasticity and genotype by environment interaction are important for coping with new and heterogeneous environments during invasions. Zaprionus indianus Gupta (Diptera: Drosophilidae) is an Afrotropical invasive fly species introduced to the South American continent in 1999. This species is generalist and polyphagous, since it develops and feeds in several different fruit species. These characteristics of Z. indianus suggest that phenotypic plasticity and genotype by environment interaction may be important in this species invasion process. In this sense, our aim was to investigate the role of genetic variation for phenotypic plasticity (genotype by environment interaction) in Z. indianus invasion of the South American continent. Specifically, we quantified quantitative genetic variation and genotype by environment interactions of morphological and life history traits in different developmental environments, that is, host fruits. This was done in different populations in the invasive range of Z. indianus in Argentina. Results showed that Z. indianus populations have considerable amounts of quantitative genetic variation. Also, genotype by environment interactions was detected for the different traits analyzed in response to the different developmental environments. Interestingly, the amounts and patterns of these parameters differed between populations. We interpreted these results as the existence of differences in evolutionary potential between populations that have an important role in the short‐ and long‐term success of the Z. indianus invasion process.  相似文献   

17.
    
Comparisons among populations from different localities represent an important tool in the study of evolution. Medflies have colonized many temperate and tropical areas all over the world during the last few centuries. In a common garden environment, we examined whether medfly populations obtained from six global regions [Africa (Kenya), Pacific (Hawaii), Central America (Guatemala), South America (Brazil), Extra-Mediterranean (Portugal) and Mediterranean (Greece)] have evolved different survival and reproductive schedules. Whereas females were either short-lived [life expectancy at eclosion (e0) 48–58 days; Kenya, Hawaii and Guatemala] or long-lived (e0 72–76 days; Greece, Portugal and Brazil], males with one exception (Guatemala) were generally long-lived (e0 106–122 days). Although males universally outlived females in all populations, the longevity gender gap was highly variable (20–58 days). Lifetime fecundity rates were similar among populations. However, large differences were observed in their age-specific reproductive patterns. Short-lived populations mature at earlier ages and allocate more of their resources to reproduction early in life compared with long-lived ones. In all populations, females experienced a post-reproductive lifespan, with this segment being significantly longer in Kenyan flies. Therefore, it seems plausible that medfly populations, inhabiting ecologically diverse habitats, have evolved different life history strategies to cope with local environmental conditions.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 106–117.  相似文献   

18.
Aim We used alien plant species introduced to a botanic garden to investigate the relative importance of species traits (leaf traits, dispersal syndrome) and introduction characteristics (propagule pressure, residence time and distance to forest) in explaining establishment success in surrounding tropical forest. We also used invasion scores from a weed risk assessment protocol as an independent measure of invasion risk and assessed differences in variables between high‐ and low‐risk species. Location East Usambara mountains, Tanzania. Methods Forest transect surveys identified species establishing in disturbed and intact forest. Leaf traits (specific leaf area and foliar nutrient concentrations) were measured from leaves sampled in high‐light environments. Results A leaf traits spectrum was apparent, but species succeeding or failing to establish in either disturbed or intact forest were not located in different parts of the spectrum. Species with high invasion risk did not differ in their location on the leaf trait spectrum compared with low‐risk species but were more likely to be bird/primate‐dispersed. For 15 species establishing in forest quadrats, median canopy cover of quadrats where seedlings were present was correlated with a species value along the leaf trait spectrum. Species establishing in disturbed forest were planted in twice as many plantations and were marginally more likely to be bird‐ or primate‐dispersed than species failing to become established in disturbed forest. Establishment in intact forest was more likely for species planted closer to forest edges. Main conclusions Leaf and dispersal traits appear less important in the colonization of tropical forest than introduction characteristics. It appears, given sufficient propagule pressure or proximity to forest, alien species are much more likely to establish independently of leaf traits or dispersal syndrome in continental tropical forests.  相似文献   

19.
    

Aim

Urbanization broadly affects the phylogenetic and functional diversity of natural communities through a variety of processes including habitat loss and the introduction of non‐native species. Due to the challenge of acquiring direct measurements, these effects have been studied primarily using “space‐for‐time” substitution where spatial urbanization gradients are used to infer the consequences of urbanization occurring across time. The ability of alternative sampling designs to replicate the findings derived using space‐for‐time substitution has not been tested.

Location

Global.

Methods

We contrasted the phylogenetic and functional diversity of breeding bird assemblages in 58 cities worldwide with the corresponding regional breeding bird assemblages estimated using geographic range maps.

Results

Compared to regional assemblages, urban assemblages contained lower phylogenetic diversity, lower phylogenetic beta diversity, a reduction in the least evolutionary distinct species and the loss of the most evolutionarily distinct species. We found no evidence that these effects were related to the presence of non‐native species. Urban assemblages contained fewer aquatic species and fewer aquatic foraging species. The distribution of body size and range size narrowed for urban assemblages with the loss of species at both tails of the distribution, especially large bodied and broadly distributed species. Urban assemblages contained a greater proportion of species classified as passerines, doves or pigeons; species identified as granivores; species that forage within vegetation or in the air; and species with more generalized associations with foraging strata.

Main conclusions

Urbanization is associated with the overall reduction and constriction of phylogenetic and functional diversity, results that largely replicate those generated using space‐for‐time substitution, increasing our confidence in the quality of the combined inferences. When direct measurements are unavailable, our findings emphasize the value of developing independent sampling methods that broaden and reinforce our understanding of the ecological implications of urbanization.
  相似文献   

20.
This is the first study to relate syrphid life history traits to environmental variables with a multi‐trait approach. We aimed to answer two questions: 1. Do syrphid species respond to small scale changes in environmental variables in seasonally flooded grasslands in a Central European floodplain (Elbe)? 2. Can species response to environmental variables be explained by the biological characteristics of the species expressed by their life history traits? Despite their large mobility, syrphids did respond significantly to small scale changes in environmental variables (groundwater (GW) depth, cation exchange capacity, amplitude of variation of the GW‐depth). On the other hand, the biological traits of the syrphids did not sufficiently explain syrphid occurrence at the sites. Possible explanations are discussed and an outlook for further studies is given. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号