首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on data from Norwegian streams with sympatric populations of Atlantic salmon and brown trout, it is suggested that temporal segregation is the main mechanism segregating Atlantic salmon and brown trout during spawning. Peak spawning of trout was about 15 days earlier than that of salmon. Physical factors, such as water depth, water velocity and distance from the river banks segregate spawning sites of salmon and trout poorly. Gravel sizes of the redds of salmon and trout were significantly different, though with a considerable overlap, and mean egg depth of salmon and trout were 0.18 and 0.12 m, respectively, probably attributable to the different size of spawners of salmon and trout. None of the temporal or spatial parameters analysed segregate spawners of salmon and trout completely. Species determination of eggs and alevins from the redds showed no interspecific superimposition of redds. It is, therefore, concluded that low survival of hybrids after hatching does not explain the low frequency of hybrids observed in sympatric populations of salmon and trout.  相似文献   

2.
Spawning patterns in female brown trout Salmo trutta were examined by documenting the construction of nests in a small stream and later excavating them to recover progeny. The maternal provenance of nests was determined by genetic typing of embryos using microsatellite markers. Seventy-two nests, for which position and date of construction were known, were made by 59 individuals. Position and date of construction were known for a further 35 nests, comprising 11 Atlantic salmon Salmo salar nests and 24 nests which contained few or no progeny. Salmo trutta showed a behavioural preference for spawning near (≤ 1 m) prior nests; nests made by different individuals tended to accumulate in a spatial sequence that progressed upstream. The directionality of the association between prior and new nests suggests that later spawners use the residual depressions created by previous spawners as the first element of their own nests.  相似文献   

3.
Trade-off between egg mass and egg number in brown trout   总被引:2,自引:0,他引:2  
Individual egg mass and fecundity increased with somatic mass in first time and repeat spawning wild anadromous and freshwater resident brown trout Salmo trutta . The egg mass was larger for similar-sized trout in south (58° N) than mid Norway (63° N), whereas fecundity was higher in mid- than in south Norway, making total gonadal investment similar in the two areas. Repeat spawners had heavier eggs than similar-sized first time spawners. The egg mass of residents was c. 10% larger than that of similar-sized first time spawning anadromous trout. Common garden experiments with offspring of wild anadromous trout showed no significant correlation between egg and somatic mass in first time spawners in two of the three populations studied. In the third population, a slight positive correlation was found. Similar results were found for repeat spawners. In the three populations, fecundity increased significantly with somatic mass in both first time and repeat spawners. Wild and hatchery-reared trout showed negative correlation between egg mass and fecundity when the effect of body size was excluded, indicating a trade-off between the two parameters. In wild trout, this was caused by variation among populations, whereas in hatchery fish, within population variation was observed in egg mass over fecundity. Furthermore, the egg mass of first time and repeat spawners were positively correlated, when adjusted for fish size. Size-specific gonadal investment was significantly higher in wild anadromous than resident trout. There was no significant difference in gonadal investment between first time and repeat spawners in wild anadromous trout. However, in the hatchery-reared trout, gonadal investment was significantly higher at repeat than first time maturation. The hatchery trout did not spawn naturally, but were artificially stripped. Among populations, a part of the variation in egg mass and fecundity is phenotypically plastic, a part appears genetically determined.  相似文献   

4.
Life-history effects of migratory costs in anadromous brown trout   总被引:2,自引:0,他引:2  
Mean size of sexually mature anadromous brown trout (sea trout) Salmo trutta in south-east Norway increased significantly with migratory distance ( D ) between the feeding area at sea and the spawning area in fresh water, from 32 cm for those spawning close to the river mouth to 43 cm at the spawning grounds 40 km inland. This was largely due to an increased size of the smallest anadromous spawners with increasing D . The raised mean size of the long-distance migrants is paralleled by an increased age at sexual maturity. Body mass at the same length of sea trout decreased with D in fresh water, meaning that the fish moving far inland was slimmer than those spawning near the coast. Gonadal mass of first-time spawning anadromous males declined significantly with D , and the fecundity and the ratio of fecundity over mean mass of the individual eggs adjusted for variation in fish mass, increased with D . There was no clear relationship between the ratio of anadromous to resident fish and D , probably because more variables than D , influence this relationship in the study streams.  相似文献   

5.
Jan Heggenes  Tor Traaen 《Ecography》1988,11(3):194-201
Brown trout ( Salmo trutta ), Atlantic salmon ( Salmo salar ), brook trout ( Salvelinus fontinalis ) and lake trout ( Salvelinus namaycush ) fry entering the free-feeding stage, were tested for overhead cover preferences in stream channels at different temperatures and water velocities. Atlantic salmon showed strong preferences for overhead cover, brown trout moderate preferences, whereas lake trout had preferences only at high temperatures, i.e. 12.4–19.2°C. Brook trout showed no cover preferences. Temperature influenced cover preferences of Atlantic salmon and brown trout considerably. The fry tended to seek more cover at low temperatures, i.e. 6.0–8.3°C  相似文献   

6.
The present paper reviews the effects of water temperature and flow on migrations, embryonic development, hatching, emergence, growth and life‐history traits in light of the ongoing climate change with emphasis on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta. The expected climate change in the Atlantic is for milder and wetter winters, with more precipitation falling as rain and less as snow, decrease in ice‐covered periods and frequent periods with extreme weather. Overall, thermal limits for salmonids are species specific. Scope for activity and growth and optimal temperature for growth increase with temperature to an optimal point before constrain by the oxygen content of the water. The optimal temperature for growth decreases with increasing fish size and varies little among populations within species, whereas the growth efficiency may be locally adapted to the temperature conditions of the home stream during the growth season. Indirectly, temperature influences age and size at smolting through its effect on growth. Time of spawning, egg hatching and emergence of the larvae vary with temperature and selective effects on time of first feeding. Traits such as age at first maturity, longevity and fecundity decrease with increasing temperature whilst egg size increases with temperature. Water flow influences the accessibility of rivers for returning adults and speed of both upstream and downstream migration. Extremes in water flow and temperature can decrease recruitment and survival. There is reason to expect a northward movement of the thermal niche of anadromous salmonids with decreased production and population extinction in the southern part of the distribution areas, migrations earlier in the season, later spawning, younger age at smolting and sexual maturity and increased disease susceptibility and mortality. Future research challenges are summarized at the end of the paper.  相似文献   

7.
The recruitment dynamics and life history of migratory brown trout, Sulmo trutta L., were investigated in a small Baltic coast stream subject to recurring drought. Spawning males consisted of both mature male parr (101–206 mm t.l. ) and migrant males (205–780 mm t.l. ). Spawning females were all migrants which delayed maturity until reaching a significantly greater size on average (424–805 mm t.l. ) than migrant males. Male: female ratios were very high in spawning aggregations (9–12 males: 1 female) with males representing up to five year-classes or more. Gametes from several generations of males per spawning event may be important for maintaining the genetic viability of this population with few female spawners per year. The amount of spawning was dependent on precipitation just prior to and during the spawning period since migrants could not enter the stream under drought conditions. Migrants did not overwinter in the stream.
Drought also caused variable fry mortality following emergence in early summer. Recruitment of 0+ parr in autumn varied from c . 175 to 3000 during 3 years. Smolts were relatively young (ages 1–2) and small (≥8 cm), and were significantly longer on average than sibling parr. Yet emigration of 1-year-olds was not related to 0+ parr size the previous autumn because of overlapping growth rates.
Persistence of the migratory brown trout in this unstable environment may be the consequence of (i) life history adaptation (e.g. short freshwater residence of both juveniles and spawners), and (ii) a complementary set of individual life histories where variation in age of migrant spawners and the occurrence of mature male parr result in a stable spawner population despite inconsistent recruitment of migrants to the sea.  相似文献   

8.
Stream substratum restoration is a widely applied tool to improve spawning habitat quality for salmonid fishes. However, there is a lack of studies which comprehensively assess effects of the restoration on site, as well as on downstream habitats. Our study addressed effects at both locations and compared abiotic (analyses of texture, penetration resistance, oxygen concentration, redox, nitrite, nitrate, ammonium, pH, electric conductivity, temperature) with biotic (depth-specific macroinvertrebrate abundance and diversity, brown trout hatching success) indicators before and after excavation of the substratum in a highly colmated brown trout spawning site. Strong improvements of hyporheic water conditions (increased oxygen supply and redox potential, reduced concentrations of nitrite and ammonium) as well as ~50 % reductions of substratum compaction and fine sediment content were observed 1 day after the restoration measure. Improvements of habitat quality were still detectable 3 months after treatment. Consequently, the hatching success of Salmo trutta eggs increased from 0 % to 77 % after the restoration. Short-term decrease of macroinvertebrate abundance (from 13.1 to 3.9 macroinvertebrates/kg substratum) was observed within the hyporheic zone of the restoration site, but after 3 months, the number of taxa increased from 13 to 22 taxa and abundance reached 17.9 macroinvertebrates/kg. Significantly increased fine sediment deposition was detected within 1 km downstream of the restoration site and may negatively affect these habitats. Trade-offs between positive effects at restored sites and negative effects in downstream habitats need to be considered for a comprehensive evaluation of stream substratum restoration.  相似文献   

9.
The study describes some key elements of the reproductive biology, including spawning season, age at sexual maturity, fecundity and egg diameter of the native brown trout, Salmo trutta macrostigma, in a tributary of the Ceyhan River. A total of 197 brown trout (118 females and 79 males) were captured in 2000–2001 by electric fishing. In observations on monthly changes, the gonadosomatic index (GSI) and the monthly frequency distribution of egg diameter confirmed that spawning lasted from November to January. Some 27.7% of the females and 62.5% of the males attained sexual maturity in their second year. The smallest fork length (FL) of brown trout attaining sexual maturity was 17.4 cm for males and 17.8 cm for females. Mean fecundity in age groups II, III, IV and V were 360, 452, 693 and 1283 eggs per female, respectively. One 9‐year‐old female had a unique 3232 egg count. The mean fecundity of the sampled population was 554 eggs per fish, positively correlated with the FL (mm) (R = 0.8227 ) and body weight (R = 0.8130). The diameter of mature eggs in the spawning season ranged from 3.250 to 5.930 mm, with a 4.146 mm average. Mean egg diameter in age groups II, III, IV and V in the spawning season were 0.813, 3.799, 4.663 and 5.243 mm, respectively. Fecundity, egg weight and diameter were statistically different in all age groups.  相似文献   

10.
Factors influencing the spawning migration of female anadromous brown trout   总被引:2,自引:0,他引:2  
Radio telemetry was employed to study movements of adult female anadromous brown trout Salmo trutta (sea trout) during upstream spawning migration and following spawning in a stream with tributaries. Sea trout were monitored by manual tracking and by automatic listening stations. The latter suggested that initiation of upstream migration was positively correlated with stream discharge. Individual sea trout performed repeated upstream migration 'initiations'(visits) to areas where they were detected by the automatic listening stations. The first and subsequent upstream migration 'initiations' occurred under conditions of similar water temperature and stream discharge. Manual tracking indicated that in the pre‐spawning state, the distance migrated over 3 days was positively correlated with stream discharge and water temperature, whereas in the post‐spawning state, the total distance migrated was not correlated with any of these two environmental variables.  相似文献   

11.
Otoliths of Atlantic salmon, Salmo salar L., are more slender than the otoliths of brown trout, Salmo trutta L. Discriminant analysis on otolith measurements of juvenile Atlantic salmon and brown trout from four river systems revealed a discriminant function which distinguished more than 94% of the cases. This function was tested by using data from a fifth river with cohabiting Atlantic salmon and brown trout: all Atlantic salmon and 91 % of the brown trout were correctly classified.  相似文献   

12.
13.
By combining behavioural observations on adult resident brown trout Salmo trutta in the laboratory with radio telemetry studies in a natural stream, information on movement and space use in relation to social status was obtained. Dominant individuals moved longer distances and also tended to have larger home ranges than subordinates during the summer. In general, home ranges were larger during daytime than at night. Fish were not strictly territorial since the average overlap in interquartile range was 36% during the summer. During the spawning period, the brown trout moved to specific spawning areas resulting in an increased overlap (89%) in space use. Subordinate individuals now tended to increase both home range and interquartile range and were also less frequently observed in spawning areas relative to dominants.  相似文献   

14.
Direct underwater observation of micro‐habitat use by 1838 young Atlantic salmon Salmo salar [mean LT 7·9 ± 3.1(s.d.) cm, range 3·19] and 1227 brown trout Salmo trutta (LT 10·9 ± 5·0 cm, range 3·56) showed both species were selective in habitat use, with differences between species and fish size. Atlantic salmon and brown trout selected relatively narrow ranges for the two micro‐habitat variables snout water velocity and height above bottom, but with differences between size‐classes. The smaller fishes <7 cm held positions in slower water closer to the bottom. On a larger scale, the Atlantic salmon more often used shallower stream areas, compared with brown trout. The larger parr preferred the deeper stream areas. Atlantic salmon used higher and slightly more variable mean water velocities than brown trout. Substrata used by the two species were similar. Finer substrata, although variable, were selected at the snout position, and differences were pronounced between size‐classes. On a meso‐habitat scale, brown trout were more frequently observed in slow pool‐glide habitats, while young Atlantic salmon favoured the faster high‐gradient meso‐habitats. Small juveniles <7 cm of both species were observed most frequently in riffle‐chute habitats. Atlantic salmon and brown trout segregated with respect to use of habitat, but considerable niche overlap between species indicated competitive interactions. In particular, for small fishes <7 cm of the two species, there was almost complete niche overlap for use of water depth, while they segregated with respect to water velocity. Habitat suitability indices developed for both species for mean water velocity and water depth, tended to have their optimum at lower values compared with previous studies in larger streams, with Atlantic salmon parr in the small streams occupying the same habitat as favoured by brown trout in larger streams. The data indicate both species may be flexible in their habitat selection depending on habitat availability. Species‐specific habitat overlap between streams may be complete. However, between‐species habitat partitioning remains similar.  相似文献   

15.
The interaction between brown bears (Ursus arctos) and Pacific salmon (Oncorhynchus spp.) is important to the population dynamics of both species and a celebrated example of consumer‐mediated nutrient transport. Yet, much of the site‐specific information we have about the bears in this relationship comes from observations at a few highly visible but unrepresentative locations and a small number of radio‐telemetry studies. Consequently, our understanding of brown bear abundance and behavior at more cryptic locations where they commonly feed on salmon, including small spawning streams, remains limited. We employed a noninvasive genetic approach (barbed wire hair snares) over four summers (2012–2015) to document patterns of brown bear abundance and movement among six spawning streams for sockeye salmon, O. nerka, in southwestern Alaska. The streams were grouped into two trios on opposite sides of Lake Aleknagik. Thus, we predicted that most bears would forage within only one trio during the spawning season because of the energetic costs associated with swimming between them or traveling around the lake and show fidelity to particular trios across years because of the benefits of familiarity with local salmon dynamics and stream characteristics. Huggins closed‐capture models based on encounter histories from genotyped hair samples revealed that as many as 41 individuals visited single streams during the annual 6‐week sampling season. Bears also moved freely among trios of streams but rarely moved between these putative foraging neighborhoods, either during or between years. By implication, even small salmon spawning streams can serve as important resources for brown bears, and consistent use of stream neighborhoods by certain bears may play an important role in spatially structuring coastal bear populations. Our findings also underscore the efficacy of noninvasive hair snagging and genetic analysis for examining bear abundance and movements at relatively fine spatial and temporal scales.  相似文献   

16.
1. Adult Pacific salmon (Oncorhynchus spp.) transport marine nutrients to fresh waters and disturb sediments during spawning. The relative importance of nutrient fertilisation and benthic disturbance by salmon spawners can be modulated by environmental conditions (e.g. biological, chemical and physical conditions in the catchment, including human land use). 2. To determine the importance of the environmental context in modifying the uptake and incorporation of salmon‐derived material into stream biota, we measured the nitrogen (δ15N) and carbon (δ13C) isotopic composition of benthic algae (i.e. epilithon) and juvenile coho salmon (Oncorhynchus kisutch) in seven streams across a timber‐harvest gradient (8–69% catchment area harvested), both before and during the salmon run. Conditional bootstrap modelling simulations were used to assess variability in the response of epilithon and juvenile coho salmon to spawning salmon. 3. In response to spawning salmon, epilithon exhibited enrichment in both δ15N (mean: 1.5‰) and δ13C (2.3‰). Juvenile coho were also enriched in both δ15N (0.7‰) and δ13C (1.4‰). Conditional bootstrap models indicate decreased variation in data as spatial replication increases, suggesting that the number of study sites can influence the results of Pacific salmon isotope studies. 4. Epilithon isotopic enrichment was predicted by environmental conditions, with δ15N enrichment predicted by stream temperature and timber harvest (R2 = 0.87) and δ13C enrichment by discharge, sediment size, timber harvest and spawner density (R2 = 0.96). Furthermore, we found evidence for a legacy effect of salmon spawners, with pre‐spawner δ15N and δ13C of both epilithon and juvenile coho predicted by salmon run size in the previous year. 5. Our results show that the degree of incorporation of salmon‐derived nitrogen and carbon differs among streams. Furthermore, the environmental context, including putative legacy effects of spawning salmon, can influence background isotopic concentrations and utilisation of salmon‐derived materials in southeast Alaska salmon streams. Future studies should consider the variation in isotopic composition of stream biota when deciding on the number of study sites and samples needed to generate meaningful results.  相似文献   

17.
Hatchery‐reared brown trout Salmo trutta stocked in a natural stream in addition to resident wild brown trout grew more slowly than those stocked with an experimentally reduced density of brown wild trout. In both cases, hatchery‐reared brown trout grew more slowly than resident wild fish in control sections. Mortality and movements did not differ among the three categories of fish. The results showed that growth of stocked hatchery‐reared brown trout parr was density‐dependent, most likely as a consequence of increased competition. Thus, supplementary release of hatchery‐reared fish did not necessarily increase biomass.  相似文献   

18.
Population dynamics of brown trout (Salmo trutta) in a breton stream (France): The non-migrant spawners.The biological factors of the population dynamic of brown trout in a tributary of the Scorff river, have been studied during 4 years. The characteristics of the spawners, present in the stream before the spawning migration from the main river, are described. These spawners were born in the stream and stayed there during their entire life-span. Among mature fish the sex ratio was always in favour of males. During the third and the fourth years of life, annual mortality rate was 70% for males and 50% for females. 1+ spawners were these which had the best 0+ growth rate. A majority of males first matured at 1+ years of age. On an average, 1+ females were responsible for 25% of the total reproductive potential. The number of 3+ and 4+ females seemed to depend on the fishing effort.
  相似文献   

19.
Is selection for territorial aggression in brown trout density‐dependent?   总被引:1,自引:0,他引:1  
A comparison between a high-density (migratory) and a low-density (stream-resident) population of brown trout Salmo trutta , from the same stream, showed there was no support for the view that aggression was density-dependent.  相似文献   

20.
Factors controlling brown trout Salmo trutta recruitment in Mediterranean areas are largely unknown, despite the relevance this may have for fisheries management. The effect of hydrological variability on survival of young brown trout was studied during seven consecutive years in five resident populations from the southern range of the species distribution. Recruit density at the end of summer varied markedly among year-classes and rivers during the study period. Previous work showed that egg density the previous fall did not account for more than 50% of the observed variation in recruitment density. Thus, we expected that climatic patterns, as determinants of discharge and water temperature, would play a role in the control of young trout abundance. We tested this by analyzing the effects of flow variation and predictability on young trout survival during the spawning to emergence and the summer drought periods. Both hatching and emergence times and length of hatching and emergence periods were similar between years within each river but varied considerably among populations, due to differences in water temperature. Interannual variation in flow attributes during spawning to emergence and summer drought affected juvenile survival in all populations, once the effect of endogenous factors was removed. Survival rate was significantly related to the timing, magnitude and duration of extreme water conditions, and to the rate of change in discharge during hatching and emergence times in most rivers. The magnitude and duration of low flows during summer drought appeared to be a critical factor for survival of young trout. Our findings suggest that density-independent factors, i.e., hydrological variability, play a central role in the population dynamics of brown trout in populations from low-latitude range margins. Reported effects of hydrologic attributes on trout survival are likely to be increasingly important if, as predicted, climate change leads to greater extremes and variability of flow regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号