首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fertilization proteins of marine broadcast spawning species often show signals of positive selection. Among geographically isolated populations, positive selection within populations can lead to differences between them, and may result in reproductive isolation upon secondary contact. Here, we test for positive selection in the reproductive compatibility locus, bindin, in two populations of a sea star on either side of a phylogeographic break. We find evidence for positive selection at codon sites in both populations, which are under neutral or purifying selection in the reciprocal population. The signal of positive selection is stronger and more robust in the population where effective population size is larger and bindin diversity is greater. In addition, we find high variation in coding sequence length caused by large indels at two repetitive domains within the gene, with greater length diversity in the larger population. These findings provide evidence of population‐divergent positive selection in a fertilization compatibility locus, and suggest that sexual selection can lead to reproductive divergence between conspecific marine populations.  相似文献   

2.
When individuals have higher evolutionary fitness because of being heterozygous at a given gene region, it is known as overdominance. Although overdominant selection could represent an important mechanism for maintaining genetic variation within species, the prevalence of this mode of selection appears to be relatively low. Identification of cases of true single‐locus heterozygote advantage are thus useful reference points in our overall understanding of how various forms of balancing selection influence and maintain genetic variation in natural populations. Here we report the apparent long‐term maintenance of diversity via overdominant selection with homozygous lethality at an elongation factor locus in the sea star Pisaster ochraceus. Observing this pattern in a gene with such major effects on protein assembly indicates that overdominant selection could be a more prevalent factor in maintaining allelic diversity in the wild than previously recognized.  相似文献   

3.
Abstract Sea urchins are widely used to study both fertilization and development. In this study we combine the two fields to examine the evolution of reproductive isolation in the genus Heliocidaris . Heliocidaris tuberculata develops indirectly via a feeding larva, whereas the only other species in the genus, H. erythrogramma , has evolved direct development through a nonfeeding larva. We estimated the time of divergence between H. erythrogramma and H. tuberculata from mitochondrial DNA divergence, quantified levels of gametic compatibility between the two species in cross-fertilization assays, and examined the mode of evolution of the sperm protein bindin by sequencing multiple alleles of the two species. Bindin is the major component of the sea urchin sperm acrosomal vesicle, and is involved in sperm-egg attachment and fusion. Based on our analyses, we conclude that: the two species of Heliocidaris diverged less than five million years ago, indicating that direct development can evolve rapidly in sea urchins; since their divergence, the two species have become gametically incompatible; Heliocidaris bindin has evolved under positive selection; and this positive selection is concentrated on the branch leading to H. erythrogramma . Three hypotheses can explain the observed pattern of selection on bindin: (1) it is a correlated response to the evolution of direct development in H. erythrogramma; (2) it is the result of an intraspecific process acting in H. erythrogramma but not in H. tuberculata; or (3) it is the product of reinforcement on the species that invests more energy into each egg to avoid hybridization.  相似文献   

4.
5.
Summary Seven asteroid species common to the northern California coast were studied for their defensive responses to the predator Solaster dawsoni. The presence or absence of an escape response was used to predict whether or not these species were susceptible to predation from Solaster. Strong escape responses were displayed by Patiria miniata, Henricia leviuscula, Leptasterias hexactis, Pycnopodia helianthoides, and small Pisaster ochraceus. Subsequent capture and consumption of Patiria, Henricia, Leptasterias and small P. ochraceus were observed. Solaster attacked all Pisaster spp. tested, but Pisaster brevispinus and larger P. ochraceus protected themselves from predation by utilizing their pedicellariae against Solaster whenever contact occurred. Dermasterias imbricata appeared to be immune to predation by Solaster. Contact between these two asteroids failed to elicit a defensive response in the former or an attack by the latter asteroid.  相似文献   

6.
Increasing our understanding of how evolutionary processes drive the genomic landscape of variation is fundamental to a better understanding of the genomic consequences of speciation. However, genome‐wide patterns of within‐ and between‐ species variation have not been fully investigated in most forest tree species despite their global ecological and economic importance. Here, we use whole‐genome resequencing data from four Populus species spanning the speciation continuum to reconstruct their demographic histories and investigate patterns of diversity and divergence within and between species. Using Populus trichocarpa as an outgroup species, we further infer the genealogical relationships and estimate the extent of ancient introgression among the three aspen species (Populus tremula, Populus davidiana and Populus tremuloides) throughout the genome. Our results show substantial variation in these patterns along the genomes with this variation being strongly predicted by local recombination rates and the density of functional elements. This implies that the interaction between recurrent selection and intrinsic genomic features has dramatically sculpted the genomic landscape over long periods of time. In addition, our findings provide evidence that, apart from background selection, recent positive selection and long‐term balancing selection have also been crucial components in shaping patterns of genome‐wide variation during the speciation process.  相似文献   

7.
Beginning in 2013, sea stars throughout the Eastern North Pacific were decimated by wasting disease, also known as “asteroid idiopathic wasting syndrome” (AIWS) due to its elusive aetiology. The geographic extent and taxonomic scale of AIWS meant events leading up to the outbreak were heterogeneous, multifaceted, and oftentimes unobserved; progression from morbidity to death was rapid, leaving few tell‐tale symptoms. Here, we take a forensic genomic approach to discover candidate genes that may help explain sea star wasting syndrome. We report the first genome and annotation for Pisaster ochraceus, along with differential gene expression (DGE) analyses in four size classes, three tissue types, and in symptomatic and asymptomatic individuals. We integrate nucleotide polymorphisms associated with survivors of the wasting disease outbreak, DGE associated with temperature treatments in P. ochraceus, and DGE associated with wasting in another asteroid Pycnopodia helianthoides. In P. ochraceus, we found DGE across all tissues, among size classes, and between asymptomatic and symptomatic individuals; the strongest wasting‐associated DGE signal was in pyloric caecum. We also found previously identified outlier loci co‐occur with differentially expressed genes. In cross‐species comparisons of symptomatic and asymptomatic individuals, consistent responses distinguish genes associated with invertebrate innate immunity and chemical defence, consistent with context‐dependent stress responses, defensive apoptosis, and tissue degradation. Our analyses thus highlight genomic constituents that may link suspected environmental drivers (elevated temperature) with intrinsic differences among individuals (age/size, alleles associated with susceptibility) that elicit organismal responses (e.g., coelomocyte proliferation) and manifest as sea star wasting mass mortality.  相似文献   

8.
A hybrid zone along an environmental gradient should contain a clinal pattern of genetic and phenotypic variation. This occurs because divergent selection in the two parental habitats is typically strong enough to overcome the homogenizing effects of gene flow across the environmental transition. We studied hybridization between two parapatric tree squirrels (Tamiasciurus spp.) across a forest gradient over which the two species vary in coloration, cranial morphology and body size. We sampled 397 individuals at 29 locations across a 600‐km transect to seek genetic evidence for hybridization; upon confirming hybridization, we examined levels of genetic admixture in relation to maintenance of phenotypic divergence despite potentially homogenizing gene flow. Applying population assignment analyses to microsatellite data, we found that Tamiasciurus douglasii and T. hudsonicus form two distinct genetic clusters but also hybridize, mostly within transitional forest habitat. Overall, based on this nuclear analysis, 48% of the specimens were characterized as T. douglasii, 9% as hybrids and 43% as T. hudsonicus. Hybrids appeared to be reproductively viable, as evidenced by the presence of later‐generation hybrid genotypes. Observed clines in ecologically important phenotypic traits—fur coloration and cranial morphology—were sharper than the cline of putatively neutral mtDNA, which suggests that divergent selection may maintain phenotypic distinctiveness. The relatively recent divergence of these two species (probably late Pleistocene), apparent lack of prezygotic isolating mechanisms and geographic coincidence of cline centres for both genetic and phenotypic variation suggest that environmental factors play a large role in maintaining the distinctiveness of these two species across the hybrid zone.  相似文献   

9.
Studies on the evolution of reproductive proteins have shown that they tend to evolve more rapidly than other proteins, frequently under positive selection. Progress on understanding the implications of these patterns is possible for marine invertebrates, where molecular evolution can be linked to gamete compatibility. In this study, we surveyed data from the literature from five genera of sea urchins for which there was information on gamete compatibility, divergence of the sperm-egg recognition protein bindin, and mitochondrial divergence. We draw three conclusions: (1) bindin divergence at nonsynonymous sites predicts gamete compatibility, whereas (2) bindin divergence at synonymous sites and mitochondrial DNA divergence do not, and (3) as few as 10 amino acid changes in bindin can lead to complete gamete incompatibility between species. Using mitochondrial divergence as a proxy for time, we find that complete gamete incompatibility can evolve in approximately one and a half million years, whereas sister species can maintain complete gamete compatibility for as long as five million years.  相似文献   

10.
Bindin, a sea urchin sperm protein, mediates sperm-egg attachment and membrane fusion and is thus important in species recognition and speciation. Patterns of bindin variation differed among three genera that had been studied previously. In two genera of the superorder Camarodonta, Echinometra and Strongylocentrotus, both of which contain sympatric species, bindin is highly variable within and between species; a region of the molecule evolves at high rates under strong positive selection. In Arbacia, which belongs to the superorder Stirodonta and whose extant species are all allopatric, bindin variation is low, and there is no evidence of positive selection. We cloned and sequenced bindin from Tripneustes, a sea urchin that belongs to the Camarodonta but whose three species are found in different oceans. Worldwide sampling of bindin alleles shows that the bindin of Tripneustes (1) contains the highly conserved core characteristic of all other bindins characterized to date, (2) has an intron in the same position, and (3) has approximately the same length. Its structure is more like that of bindin from other camarodont sea urchins than to bindin from the stirodont ARBACIA: The resemblances to other camarodonts include a glycine-rich repeat structure upstream of the core and lack of a hydrophobic domain 3' of the core, a characteristic of Arbacia bindin. Yet the mode of evolution of Tripneustes bindin is more like that of Arbacia. Differences between bindins of the Caribbean Tripneustes ventricosus and the eastern Pacific T. depressus, separated for 3 my by the Isthmus of Panama, are limited to four amino acid changes and a single indel. There are no fixed amino acid differences or indels between T. depressus from the eastern Pacific and T. gratilla from the Indo-Pacific. Bindin of Tripneustes, like that of Arbacia, also shows no evidence of diversifying selection that would manifest itself in a higher proportion of amino acid replacements than of silent nucleotide substitutions. When the rate of intrageneric bindin divergence is standardized by dividing it by cytochrome oxidase I (COI) divergence, Tripneustes and Arbacia show a lower ratio of bindin to COI substitutions between the species of each genus than exists between the species of either Echinometra or Strongylocentrotus. Thus, mode of bindin evolution is not correlated with phylogenetic affinities or molecular structure, but rather with whether the species in a genus are allopatric or sympatric. For a molecule involved in gametic recognition, this would suggest a pattern of evolution via reinforcement. However, in bindin the process that gave rise to this pattern is not likely to have been selection to avoid hybridization, because there is no excess of amino acid replacements between species versus within species in the bindins of Echinometra and Strongylocentrotus, as would have been expected if specific recognition were the driving force in their evolution. We suggest instead that the pattern of reinforcement is a secondary effect of the ability of species with rapidly evolving bindins to coexist in sympatry.  相似文献   

11.
We analyzed nucleotide variation in the hsp70 genes of Drosophila melanogaster (five genes) and D. simulans (four genes) to characterize the homogenizing and diversifying roles of gene conversion in their evolution. Gene conversion within and between the 87A7 and 87C1 gene clusters homogenize the hsp70 coding regions; in both D. melanogaster and D. simulans, same-cluster paralogues are virtually identical, and large intercluster conversion tracts diminish 87A7/87C1 divergence. Same-cluster paralogues share many polymorphisms, consistent with frequent intracluster conversion. Shared polymorphism is highly biased toward silent variation; homogenizing conversion interacts with purifying selection. In contrast to the coding regions, some hsp70 flanking regions show conversion-mediated diversification. Strong reductions of nucleotide variability and linkage disequilibria among conversion-mediated sites in hsp70Ab and hsp70Bb alleles sampled from a single natural population are consistent with a selective sweep. Comparison of the D. melanogaster and D. simulans hsp70 genes reveals whole-family fixed differences, consistent with rapid propagation of novel mutations among duplicate genes. These results suggest that the homogenizing and diversifying roles of conversion interact to drive dynamic concerted evolution of the hsp70 genes. Received: 25 June 2001 / Accepted: 10 October 2001  相似文献   

12.
Reproductive character displacement occurs when sympatric and allopatric populations of a species differ in traits crucial to reproduction, and it is commonly thought of as a signal of selection acting to limit hybridization. Most documented cases of reproductive character displacement involve characters that are poorly understood at the genetic level, and rejecting alternative hypotheses for biogeographic shifts in reproductive traits is often very difficult. In sea urchins, the gamete recognition protein bindin evolves under positive selection when species are broadly sympatric, suggesting character displacement may be operating in this system. We sampled sympatric and allopatric populations of two species in the sea urchin genus Echinometra for variation in bindin and for the mitochondrial cytochrome oxidase I to examine patterns of population differentiation and molecular evolution at a reproductive gene. We found a major shift in bindin alleles between central Pacific (allopatric) and western Pacific (sympatric) populations of E. oblonga. Allopatric populations of E. oblonga are polyphyletic with E. sp. C at bindin, whereas sympatric populations of the two species are reciprocally monophyletic. There is a strong signal of positive selection (P(N)/P(S) = 4.5) in the variable region of the first exon of bindin, which is associated with alleles found in sympatric populations of E. oblonga. These results indicate that there is a strong pattern of reproductive character displacement between E. oblonga and E. sp. C and that the divergence is driven by selection. There is much higher population structure in sympatric populations at the bindin locus than at the neutral mitochondrial locus, but this difference is not seen in allopatric populations. These data suggest a pattern of speciation driven by selection for local gamete coevolution as a result of interactions between sympatric species. Although this pattern is highly suggestive of speciation by reinforcement, further research into hybrid fitness and egg-sperm interactions is required to address this potential mechanism for character displacement.  相似文献   

13.
14.
15.
Reinforcement of species boundaries may alter mate recognition in a way that also affects patterns of mate preference among conspecific populations. In the fly Drosophila subquinaria, females sympatric with the closely related species D. recens reject mating with heterospecific males as well as with conspecific males from allopatric populations. Here, we assess geographic variation in behavioral isolation within and among populations of D. subquinaria and use cline theory to understand patterns of selection on reinforced discrimination and its consequences for sexual isolation within species. We find that selection has fixed rejection of D. recens males in sympatry, while significant genetic variation in this behavior occurs within allopatric populations. In conspecific matings sexual isolation is also asymmetric and stronger in populations that are sympatric with D. recens. The clines in behavioral discrimination within and between species are similar in shape and are maintained by strong selection in the face of gene flow, and we show that some of their genetic basis may be either shared or linked. Thus, while reinforcement can drive extremely strong phenotypic divergence, the long‐term consequences for incipient speciation depend on gene flow, genetic linkage of discrimination traits, and the cost of these behaviors in allopatry.  相似文献   

16.
17.
Bindin is a gamete recognition protein known to control species-specificsperm-egg adhesion and membrane fusion in sea urchins. Previousanalyses have shown that diversifying selection on bindin aminoacid sequence is found when gametically incompatible speciesare compared, but not when species are compatible. The presentstudy analyzes bindin polymorphism and divergence in the threeclosely related species of Echinometra in Central America: E.lucunter and E. viridis from the Caribbean, and E. vanbruntifrom the eastern Pacific. The eggs of E. lucunter have evolveda strong block to fertilization by sperm of its neotropicalcongeners, whereas those of the other two species have not.As in the Indo-West Pacific (IWP) Echinometra, the neotropicalspecies show high intraspecific bindin polymorphism in the samegene regions as in the IWP species. Maximum likelihood analysisshows that many of the polymorphic codon sites are under mildpositive selection. Of the fixed amino acid replacements, mosthave accumulated along the bindin lineage of E. lucunter. Weanalyzed the data with maximum likelihood models of variationin positive selection across lineages and codon sites, and withmodels that consider sites and lineages simultaneously. Ourresults show that positive selection is concentrated along theE. lucunter bindin lineage, and that codon sites with aminoacid replacements fixed in this species show by far the highestsignal of positive selection. Lineage-specific positive selectionparalleling egg incompatibility provides support that adaptiveevolution of sperm proteins acts to maintain recognition ofbindin by changing egg receptors. Because both egg incompatibilityand bindin divergence are greater between allopatric speciesthan between sympatric species, the hypothesis of selectionagainst hybridization (reinforcement) cannot explain why adaptiveevolution has been confined to a single lineage in the AmericanEchinometra. Instead, processes acting to varying degrees withinspecies (e.g., sperm competition, sexual selection, and sexualconflict) are more promising explanations for lineage-specificpositive selection on bindin.  相似文献   

18.
Early stages of lineage divergence in insect herbivores are often related to shifts in host plant use and divergence in mating capabilities, which may lead to sexual isolation of populations of herbivorous insects. We examined host preferences, degree of differentiation in mate choice, and divergence in cuticular morphology using near‐infrared spectroscopy in the grasshopper Hesperotettix viridis aiming to understand lineage divergence. In Kansas (USA), H. viridis is an oligophagous species feeding on Gutierrezia and Solidago host species. To identify incipient mechanisms of lineage divergence and isolation, we compared host choice, mate choice, and phenotypic divergence among natural grasshopper populations in zones of contact with populations encountering only one of the host species. A significant host‐based preference from the two host groups was detected in host‐paired feeding preference studies. No‐choice mate selection experiments revealed a preference for individuals collected from the same host species independent of geographic location, and little mating was observed between individuals collected from different host species. Female mate choice tests between males from the two host species resulted in 100% fidelity with respect to host use. Significant differentiation in colour and cuticular composition of individuals from different host plants was observed, which correlated positively with host choice and mate choice. No evidence for reinforcement in the zone of contact was detected, suggesting that divergent selection for host plant use promotes sexual isolation in this species. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 866–878.  相似文献   

19.
The relative roles of natural and sexual selection in promoting evolutionary lineage divergence remains controversial and difficult to assess in natural systems. Local adaptation through natural selection is known to play a central role in promoting evolutionary divergence, yet secondary sexual traits can vary widely among species in recent radiations, suggesting that sexual selection may also be important in the early stages of speciation. Here, we compare rates of divergence in ecologically relevant traits (morphology) and sexually selected signalling traits (coloration) relative to neutral structure in genome‐wide molecular markers and examine patterns of variation in sexual dichromatism to explore the roles of natural and sexual selection in the diversification of the songbird genus Junco (Aves: Passerellidae). Juncos include divergent lineages in Central America and several dark‐eyed junco (J. hyemalis) lineages that diversified recently as the group recolonized North America following the last glacial maximum (ca. 18,000 years ago). We found an accelerated rate of divergence in sexually selected characters relative to ecologically relevant traits. Moreover, sexual dichromatism measurements suggested a positive relationship between the degree of colour divergence and the strength of sexual selection when controlling for neutral genetic distance. We also found a positive correlation between dichromatism and latitude, which coincides with the geographic axis of decreasing lineage age in juncos but also with a steep ecological gradient. Finally, we found significant associations between genome‐wide variants linked to functional genes and proxies of both sexual and natural selection. These results suggest that the joint effects of sexual and ecological selection have played a prominent role in the junco radiation.  相似文献   

20.
Microgeographic adaptation occurs when populations evolve divergent fitness advantages across the spatial scales at which focal organisms regularly disperse. Although an increasing number of studies find evidence for microgeographic adaptation, the underlying causes often remain unknown. Adaptive divergence requires some combination of limited gene flow and strong divergent natural selection among populations. In this study, we estimated the relative influence of selection, gene flow, and the spatial arrangement of populations in shaping patterns of adaptive divergence in natural populations of the spotted salamander (Ambystoma maculatum). Within the study region, A. maculatum co‐occur with the predatory marbled salamander (Ambystoma opacum) in some ponds, and past studies have established a link between predation risk and adaptive trait variation in A. maculatum. Using 14 microsatellite loci, we found a significant pattern of genetic divergence among A. maculatum populations corresponding to levels of A. opacum predation risk. Additionally, A. maculatum foraging rate was strongly associated with predation risk, genetic divergence, and the spatial relationship of ponds on the landscape. Our results indicate the sorting of adaptive genotypes by selection regime and strongly suggest that substantial selective barriers operate against gene flow. This outcome suggests that microgeographic adaptation in A. maculatum is possible because strong antagonistic selection quickly eliminates maladapted phenotypes despite ongoing and substantial immigration. Increasing evidence for microgeographic adaptation suggests a strong role for selective barriers in counteracting the homogenizing influence of gene flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号