首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species responses to climate change may be influenced by changes in available habitat, as well as population processes, species interactions and interactions between demographic and landscape dynamics. Current methods for assessing these responses fail to provide an integrated view of these influences because they deal with habitat change or population dynamics, but rarely both. In this study, we linked a time series of habitat suitability models with spatially explicit stochastic population models to explore factors that influence the viability of plant species populations under stable and changing climate scenarios in South African fynbos, a global biodiversity hot spot. Results indicate that complex interactions between life history, disturbance regime and distribution pattern mediate species extinction risks under climate change. Our novel mechanistic approach allows more complete and direct appraisal of future biotic responses than do static bioclimatic habitat modelling approaches, and will ultimately support development of more effective conservation strategies to mitigate biodiversity losses due to climate change.  相似文献   

2.
At secondary contact closely related species may both compete over similar resources and/or hybridize. Simulation models suggest that hybridization increases the risk of extinction beyond the risk resulting from interspecific competition alone, but such combined effects are rarely studied empirically. Here, we use detailed records on pairing patterns, breeding success, local recruitment and immigration collected during 8?years (2002–2009) to investigate the underlying mechanism of the rapid displacement of pied flycatchers by collared flycatchers on the Swedish island of ?land. We found no differences in average reproductive success or reproductive lifespan between the two species. However, we show that young male pied flycatchers failed to establish new territories as the density of male collared flycatchers increased. In addition, as the relative frequency of collared flycatchers increased, the risk of hybridization dramatically increased for female pied flycatchers, which speeds up the exclusion process since there is a high fitness cost associated with hybridization between the two species. In a nearby control area, within the same island, where pied flycatchers breed in the absence of collared flycatchers, no decline in the number of breeding pairs was observed during the same period of time. Our results demonstrate the crucial importance of studying the combined effects of various types of heterospecific interactions to understand and predict the ecological and evolutionary implications of secondary contact between congeneric species. These findings are particularly interesting in the light of recent climate change since the expected range shifts of many taxa will increase competitive and sexual interactions between previously separated species.  相似文献   

3.
Costly heterospecific mating interactions, such as hybridization, select for prezygotic reproductive isolation. One of the potential traits responding to the selection arising from maladaptive hybridization is habitat preference, whose divergence results in interspecific habitat segregation. Theoretical studies have so far assumed that habitat preference is a sexually shared trait. However, male and female habitat preferences can experience different selection pressures. Here, by combining analytical and simulation approaches, we theoretically examine the evolution of sex-specific habitat preferences. Habitat segregation can have demographic consequences, potentially generating eco-evolutionary dynamics. We thus explicitly consider demography in the simulation model. We also vary the degrees of species discrimination to examine how mate choice influences the evolution of habitat preferences. Results show that both sexes can reduce hybridisation risk by settling in the habitats where abundant conspecific mates reside. However, when females can discriminate species, excess conspecific male aggregation intensifies male–male competition for mating opportunities, posing an obstacle to conspecific aggregation. Meanwhile, conspecific female aggregation attracts conspecific males, by offering the mating opportunity. Therefore, under effective species discrimination, females play a leading role in initiating habitat use divergence. Simulations typically result in either the coexistence with established habitat segregation or the extinction of one of the species. The former result is especially likely when the species differ to some extent in habitat preferences upon secondary contact. Our results disentangle the selection pressures acting on male and female habitat preferences, deepening our understanding of the evolutionary process of habitat segregation due to hybridization.  相似文献   

4.
In this review, we discuss the importance of hybridization among species for the conservation of Hawaiian picture-winged Drosophila. Hybridization can be a positive evolutionary process that creates new species and increases the adaptation of populations and species through the spread of adaptive alleles and traits. Conversely, hybridization can disrupt the genetic integrity of species or populations and this may be most detrimental among taxa that are recently hybridizing due to recent ecological changes. The loss of biodiversity in Hawaiian Drosophila through hybridization may be facilitated by habitat alteration and introduced species that reduce population sizes and alter geographic distributions of native species. We briefly review the evidence for hybridization in the genus Drosophila and then focus on hybridization in the Hawaiian picture-winged Drosophila. We examine three general approaches for identifying hybrids and for assessing the factors that appear to contribute to hybridization and the potential ecological and evolutionary outcomes of hybrids in natural populations. Overall, the potential for hybridization among species will likely increase the risk of extinction for Hawaiian picture-winged Drosophila species. Thus, it is important to consider the potential for hybridization among species when developing plans for the conservation of Hawaiian Drosophila.  相似文献   

5.
Reproductive interference is interspecific sexual interactions that are costly to at least one species involved. Although many studies have reported a substantial fitness cost associated with reproductive interference, suggesting its ecological significance, others have not observed reproductive interference in study species. Reproductive interference that incurs a large fitness cost is more likely to occur during secondary contacts than between long-coexisting species. I first explain the rationale underlying this prediction using existing literature. Next, I present a conceptual framework to classify pairs of interacting species into one of four states, defined by the ecological and evolutionary stabilities of the species pairs. I discuss how the stability states of species pairs are likely to change over time, along with changes in the demographic and evolutionary role of reproductive interference. I then perform literature survey to test the prediction that reproductive interference should be more prevalent in secondary contact. Finally, I discuss the implications of the proposed conceptual framework and literature survey result.  相似文献   

6.
We urgently need to predict species responses to climate change to minimize future biodiversity loss and ensure we do not waste limited resources on ineffective conservation strategies. Currently, most predictions of species responses to climate change ignore the potential for evolution. However, evolution can alter species ecological responses, and different aspects of evolution and ecology can interact to produce complex eco‐evolutionary dynamics under climate change. Here we review how evolution could alter ecological responses to climate change on species warm and cool range margins, where evolution could be especially important. We discuss different aspects of evolution in isolation, and then synthesize results to consider how multiple evolutionary processes might interact and affect conservation strategies. On species cool range margins, the evolution of dispersal could increase range expansion rates and allow species to adapt to novel conditions in their new range. However, low genetic variation and genetic drift in small range‐front populations could also slow or halt range expansions. Together, these eco‐evolutionary effects could cause a three‐step, stop‐and‐go expansion pattern for many species. On warm range margins, isolation among populations could maintain high genetic variation that facilitates evolution to novel climates and allows species to persist longer than expected without evolution. This ‘evolutionary extinction debt’ could then prevent other species from shifting their ranges. However, as climate change increases isolation among populations, increasing dispersal mortality could select for decreased dispersal and cause rapid range contractions. Some of these eco‐evolutionary dynamics could explain why many species are not responding to climate change as predicted. We conclude by suggesting that resurveying historical studies that measured trait frequencies, the strength of selection, or heritabilities could be an efficient way to increase our eco‐evolutionary knowledge in climate change biology.  相似文献   

7.
New World mangrove trees are foundation species, and their range is predicted to expand northward with climate change. Foundation species are commonly prioritized for conservation, with the goal of preserving the entire community that depends on them. However, no studies have explicitly investigated whether mangrove-dependent species' ranges will track the northward expansion of New World mangrove forests. We use the mangrove rivulus fish, Kryptolebias marmoratus, to investigate shifts in habitat suitability in response to various climate change scenarios (Representative Concentration Pathways 2.6, 4.5, 6.0, and 8.5). Niche models for coastal species focus on traditional climatic variables (e.g., precipitation, temperature) even though coastal habitats also are directly influenced by marine variables (e.g., sea surface salinity). We employ a novel data integration method that combines marine and climatic variables, and that accounts for model selection uncertainty using model averaging to provide robust estimates of habitat suitability. Contrary to expectation, suitability of rivulus habitat is predicted to increase in the south and decrease or remain unchanged in the north across all climate change scenarios. Thus, rivulus might experience range contraction, not expansion. Habitat became more suitable with increased salinity of the saltiest month and precipitation of the driest quarter. In laboratory settings, rivulus have higher survival, reproductive success, and growth rates in low salinities. This discrepancy suggests that some combination of the responses of rivulus and its competitors to environmental change will restrict rivulus to habitats that laboratory experiments consider suboptimal. Our models suggest that focusing conservation decisions on foundation species could overestimate habitat availability and resilience of affiliated communities while simultaneously underestimating species declines and extinction risks.  相似文献   

8.
Although some organisms have moved to higher elevations and latitudes in response to recent climate change, there is little consensus regarding the capacity of different species to track rapid climate change via range shifts. Understanding species' abilities to shift ranges has important implications for assessing extinction risk and predicting future community structure. At an expanding front, colonization rates are determined jointly by rates of reproduction and dispersal. In addition, establishment of viable populations requires that individuals find suitable resources in novel habitats. Thus, species with greater dispersal ability, reproductive rate and ecological generalization should be more likely to expand into new regions under climate change. Here, we assess current evidence for the relationship between leading-edge range shifts and species' traits. We found expected relationships for several datasets, including diet breadth in North American Passeriformes and egg-laying habitat in British Odonata. However, models generally had low explanatory power. Thus, even statistically and biologically meaningful relationships are unlikely to be of predictive utility for conservation and management. Trait-based range shift forecasts face several challenges, including quantifying relevant natural history variation across large numbers of species and coupling these data with extrinsic factors such as habitat fragmentation and availability.  相似文献   

9.
Understanding altered ecological and evolutionary dynamics in novel environments is vital for predicting species responses to rapid environmental change. One fundamental concept relevant to such dynamics is the ecological trap, which arises from rapid anthropogenic change and can facilitate extinction. Ecological traps occur when formerly adaptive habitat preferences become maladaptive because the cues individuals preferentially use in selecting habitats lead to lower fitness than other alternatives. While it has been emphasized that traps can arise from different types of anthropogenic change, the resulting consequences of these different types of traps remain unknown. Using a novel model framework that builds upon the Price equation from evolutionary genetics, we provide the first analysis that contrasts the ecological and evolutionary consequences of ecological traps arising from two general types of perturbations known to trigger traps. Our model suggests that traps arising from degradation of existing habitats are more likely to facilitate extinction than those arising from the addition of novel trap habitat. Importantly, our framework reveals the mechanisms of these outcomes and the substantial scope for persistence via rapid evolution that may buffer many populations from extinction, helping to resolve the paradox of continued persistence of many species in dramatically altered landscapes.  相似文献   

10.
The potential impact of climate change on biodiversity is well documented. A well developed range of statistical methods currently exists that projects the possible future habitat of a species directly from the current climate and a species distribution. However, studies incorporating ecological and evolutionary processes remain limited. Here, we focus on the potential role that local adaptation to climate may play in driving the range dynamics of sessile organisms. Incorporating environmental adaptation into a stochastic simulation yields several new insights. Counter-intuitively, our simulation results suggest that species with broader ranges are not necessarily more robust to climate change. Instead, species with broader ranges can be more susceptible to extinction as locally adapted genotypes are often blocked from range shifting by the presence of cooler adapted genotypes that persist even when their optimum climate has left them behind. Interestingly, our results also suggest that it will not always be the cold-adapted phenotypes that drive polewards range expansion. Instead, range shifts may be driven by phenotypes conferring adaptation to conditions prevalent towards the centre of a species’ equilibrium distribution. This may have important consequences for the conservation method termed predictive provenancing. These initial results highlight the potential importance of local adaptation in determining how species will respond to climate change and we argue that this is an area requiring urgent theoretical and empirical attention.  相似文献   

11.
Dispersal is fundamental in determining biodiversity responses to rapid climate change, but recently acquired ecological and evolutionary knowledge is seldom accounted for in either predictive methods or conservation planning. We emphasise the accumulating evidence for direct and indirect impacts of climate change on dispersal. Additionally, evolutionary theory predicts increases in dispersal at expanding range margins, and this has been observed in a number of species. This multitude of ecological and evolutionary processes is likely to lead to complex responses of dispersal to climate change. As a result, improvement of models of species’ range changes will require greater realism in the representation of dispersal. Placing dispersal at the heart of our thinking will facilitate development of conservation strategies that are resilient to climate change, including landscape management and assisted colonisation. Synthesis This article seeks synthesis across the fields of dispersal ecology and evolution, species distribution modelling and conservation biology. Increasing effort focuses on understanding how dispersal influences species' responses to climate change. Importantly, though perhaps not broadly widely‐recognised, species' dispersal characteristics are themselves likely to alter during rapid climate change. We compile evidence for direct and indirect influences that climate change may have on dispersal, some ecological and others evolutionary. We emphasise the need for predictive modelling to account for this dispersal realism and highlight the need for conservation to make better use of our existing knowledge related to dispersal.  相似文献   

12.
Habitat loss has pervasive and disruptive impacts on biodiversity in habitat remnants. The magnitude of the ecological impacts of habitat loss can be exacerbated by the spatial arrangement -- or fragmentation -- of remaining habitat. Fragmentation per se is a landscape-level phenomenon in which species that survive in habitat remnants are confronted with a modified environment of reduced area, increased isolation and novel ecological boundaries. The implications of this for individual organisms are many and varied, because species with differing life history strategies are differentially affected by habitat fragmentation. Here, we review the extensive literature on species responses to habitat fragmentation, and detail the numerous ways in which confounding factors have either masked the detection, or prevented the manifestation, of predicted fragmentation effects.Large numbers of empirical studies continue to document changes in species richness with decreasing habitat area, with positive, negative and no relationships regularly reported. The debate surrounding such widely contrasting results is beginning to be resolved by findings that the expected positive species-area relationship can be masked by matrix-derived spatial subsidies of resources to fragment-dwelling species and by the invasion of matrix-dwelling species into habitat edges. Significant advances have been made recently in our understanding of how species interactions are altered at habitat edges as a result of these changes. Interestingly, changes in biotic and abiotic parameters at edges also make ecological processes more variable than in habitat interiors. Individuals are more likely to encounter habitat edges in fragments with convoluted shapes, leading to increased turnover and variability in population size than in fragments that are compact in shape. Habitat isolation in both space and time disrupts species distribution patterns, with consequent effects on metapopulation dynamics and the genetic structure of fragment-dwelling populations. Again, the matrix habitat is a strong determinant of fragmentation effects within remnants because of its role in regulating dispersal and dispersal-related mortality, the provision of spatial subsidies and the potential mediation of edge-related microclimatic gradients.We show that confounding factors can mask many fragmentation effects. For instance, there are multiple ways in which species traits like trophic level, dispersal ability and degree of habitat specialisation influence species-level responses. The temporal scale of investigation may have a strong influence on the results of a study, with short-term crowding effects eventually giving way to long-term extinction debts. Moreover, many fragmentation effects like changes in genetic, morphological or behavioural traits of species require time to appear. By contrast, synergistic interactions of fragmentation with climate change, human-altered disturbance regimes, species interactions and other drivers of population decline may magnify the impacts of fragmentation. To conclude, we emphasise that anthropogenic fragmentation is a recent phenomenon in evolutionary time and suggest that the final, long-term impacts of habitat fragmentation may not yet have shown themselves.  相似文献   

13.
Global warming and the disruption of plant-pollinator interactions   总被引:3,自引:0,他引:3  
Anthropogenic climate change is widely expected to drive species extinct by hampering individual survival and reproduction, by reducing the amount and accessibility of suitable habitat, or by eliminating other organisms that are essential to the species in question. Less well appreciated is the likelihood that climate change will directly disrupt or eliminate mutually beneficial (mutualistic) ecological interactions between species even before extinctions occur. We explored the potential disruption of a ubiquitous mutualistic interaction of terrestrial habitats, that between plants and their animal pollinators, via climate change. We used a highly resolved empirical network of interactions between 1420 pollinator and 429 plant species to simulate consequences of the phenological shifts that can be expected with a doubling of atmospheric CO2. Depending on model assumptions, phenological shifts reduced the floral resources available to 17–50% of all pollinator species, causing as much as half of the ancestral activity period of the animals to fall at times when no food plants were available. Reduced overlap between plants and pollinators also decreased diet breadth of the pollinators. The predicted result of these disruptions is the extinction of pollinators, plants and their crucial interactions.  相似文献   

14.
While previous studies on character displacement tended to focus on trait divergence and convergence as a result of long-term evolution, recent studies suggest that character displacement can be a special case of evolutionary rescue, where rapid evolution prevents species extinction by weakening interspecific competition. Here we analyzed a simple model to examine how the magnitude of genetic variation affects evolutionary rescue via ecological and reproductive character displacement that weakens interspecific competition in exploitation of shared resources (i.e., resource competition) and in the mating process caused by incomplete species recognition (i.e., reproductive interference), respectively. We found that slow trait divergence due to small genetic variance results in species extinction in reproductive character displacement but not in ecological character displacement. This is because one species becomes rare in slow character displacement, and this causes deterministic extinction due to minority disadvantage of reproductive interference. On the other hand, there is no deterministic extinction in the process of ecological character displacement. Furthermore, species extinction becomes less likely in the case of positive covariance between ecological and reproductive traits as divergence of the ecological trait (e.g., root depths) increases the divergence speed of the reproductive trait (e.g., flower colors) and vice versa. It will be interesting to compare intraspecific genetic (co)variance of ecological and reproductive traits in future studies for understanding how ecological and reproductive character displacement occur without extinction.  相似文献   

15.
气候变化背景下野生动物脆弱性评估方法研究进展   总被引:2,自引:2,他引:0  
李佳  刘芳  张宇  薛亚东  李迪强 《生态学报》2017,37(20):6656-6667
脆弱性评估是研究气候变化影响野生动物的重要内容,识别野生动物脆弱性,是适应和减缓气候变化影响的关键和基础。开展气候变化背景下野生动物的脆弱性评估工作,目的是为了确定易受气候变化影响的物种和明确导致物种脆弱性的因素,其评估结果有助于人类认识气候变化对野生动物的影响,为野生动物适应气候变化保护对策的制定提供科学依据。对野生动物而言(物种),脆弱性是物种受气候变化影响的程度,包括暴露度、敏感性和适应能力三大要素。其中,暴露度是由气候变化引起的外在因素,如温度、降雨量、极值天气等;敏感性是受物种自身因素影响,如种间关系、耐受性等;适应能力是物种通过自身调整来减小气候变化带来的影响,如迁移或扩散到适宜生境的能力、塑性反应和进化反应等。对近期有关气候变化背景下野生动物脆弱性评估方法予以综述,比较每种评估方法所选取指标的差异,总结在脆弱性评估中遇到的不确定性指标的处理方法,以及脆弱性评估结果在野生动物适应气候变化对策中的应用。通过总结野生动物脆弱性评估方法,以期为气候变化背景下评估我国野生动物资源的脆弱性提供参考方法。  相似文献   

16.

Habitat loss and fragmentation would often induce delayed extinction, referred to as extinction debt. Understanding potential extinction debts would allow us to reduce future extinction risk by restoring habitats or implementing conservation actions. Although growing empirical evidence has predicted extinction debts in various ecosystems exposed to direct human disturbances, potential extinction debts in natural ecosystems with minimal direct human disturbance are little studied. Ongoing climate change may cause habitat loss and fragmentation, particularly in natural ecosystems vulnerable to environmental change, potentially leading to future local extinctions. Recent climate change would lead to extended growing season caused by earlier snowmelt in spring, resulting in expansion of shrubby species and thereby habitat loss and fragmentation of mountainous moorlands. We examined the potential extinction debts of species diversity and functional diversity (FD; trait variation or multivariate trait differences within a community) in subalpine moorland ecosystems subjected to few direct human disturbances. Plant species richness for all species and for moorland specialists were primarily explained by the past kernel density of focal moorlands (a proxy for spatial clustering of moorlands around them) but not the past area of the focal moorlands, suggesting potential extinction debt in subalpine moorland ecosystems. The higher kernel density of the focal moorland in the past indicates that it was originally surrounded by more neighborhood moorlands and/or had been locally highly fragmented. Patterns in current plant species richness have been shaped by the historical spatial configuration of moorlands, which have disappeared over time. In contrast, we found no significant relationships between the FD and historical and current landscape variables depicting each moorland. The prevalence of trait convergence might result in a less sensitive response of FD to habitat loss and fragmentation compared to that of species richness. Our finding has an important implication that climate change induced by human activities may threaten biodiversity in natural ecosystems through habitat loss and fragmentation.

  相似文献   

17.
As habitat loss and fragmentation, urbanization, and global climate change accelerate, conservation of rare ecosystems increasingly relies on human intervention. However, any conservation strategy is vulnerable to unpredictable, catastrophic events. Whether active management increases or decreases a system's resilience to these events remains unknown. Following Hurricane Irma's landfall in our habitat restoration study sites, we found that rare ecosystems with active, human‐imposed management suffered less damage in a hurricane's path than unmanaged systems. At the center of Irma's landfall, we found Croton linearis' (a locally rare plant that is the sole host for two endangered butterfly species) survival and population growth rates in the year of the hurricane were higher in previously managed plots than in un‐managed controls. In the periphery of Irma's circulation, the effect of prior management was stronger than that of the hurricane. Maintaining the historical disturbance regime thus increased the resilience of the population to major hurricane disturbance. As climate change increases the probability and intensity of severe hurricanes, human management of disturbance‐adapted landscapes will become increasingly important for maintaining populations of threatened species in a storm's path. Doing nothing will accelerate extinction.  相似文献   

18.
Ecological models predict that, in the face of climate change, taxa occupying steep altitudinal gradients will shift their distributions, leading to the contraction or extinction of the high‐elevation (cold‐adapted) taxa. However, hybridization between ecomorphologically divergent taxa commonly occurs in nature and may lead to alternative evolutionary outcomes, such as genetic merger or gene flow at specific genes. We evaluate this hypothesis by studying patterns of divergence and gene flow across three replicate contact zones between high‐ and low‐elevation ecomorphs of the fire salamander (Salamandra salamandra) that have experienced altitudinal range shifts over the current postglacial period. Strong population structure with high genetic divergence in mitochondrial DNA suggests that vicariant evolution has occurred over several glacial–interglacial cycles and that it has led to cryptic differentiation within ecomorphs. In current parapatric boundaries, we do not find evidence for local extinction and replacement upon postglacial expansion. Instead, parapatric taxa recurrently show discordance between mitochondrial and nuclear markers, suggesting nuclear‐mediated gene flow across contact zones. Isolation with migration models support this hypothesis by showing significant gene flow across all five parapatric boundaries. Together, our results suggest that, while some genomic regions, such as the mitochondria, may follow morphologic species traits and retreat to isolated mountain tops, other genomic regions, such as nuclear markers, may flow across parapatric boundaries, sometimes leading to a complete genetic merger. We show that despite high ecologic and morphologic divergence over prolonged periods of time, hybridization allows for evolutionary outcomes alternative to extinction and replacement of taxa in response to climate change.  相似文献   

19.
The role of infectious diseases in biological conservation   总被引:1,自引:0,他引:1  
Recent increases in the magnitude and rate of environmental change, including habitat loss, climate change and overexploitation, have been directly linked to the global loss of biodiversity. Wildlife extinction rates are estimated to be 100–1000 times greater than the historical norm, and up to 50% of higher taxonomic groups are critically endangered. While many types of environmental changes threaten the survival of species all over the planet, infectious disease has rarely been cited as the primary cause of global species extinctions. There is substantial evidence, however, that diseases can greatly impact local species populations by causing temporary or permanent declines in abundance. More importantly, pathogens can interact with other driving factors, such as habitat loss, climate change, overexploitation, invasive species and environmental pollution to contribute to local and global extinctions. Regrettably, our current lack of knowledge about the diversity and abundance of pathogens in natural systems has made it difficult to establish the relative importance of disease as a significant driver of species extinction, and the context when this is most likely to occur. Here, we review the role of infectious diseases in biological conservation. We summarize existing knowledge of disease-induced extinction at global and local scales and review the ecological and evolutionary forces that may facilitate disease-mediated extinction risk. We suggest that while disease alone may currently threaten few species, pathogens may be a significant threat to already-endangered species, especially when disease interacts with other drivers. We identify control strategies that may help reduce the negative effects of disease on wildlife and discuss the most critical challenges and future directions for the study of infectious diseases in the conservation sciences.  相似文献   

20.
Despite an increase in conservation efforts for shorebirds, there are widespread declines of many species of North American shorebirds. We wanted to know whether these declines would be exacerbated by climate change, and whether relatively secure species might become at–risk species. Virtually all of the shorebird species breeding in the USA and Canada are migratory, which means climate change could affect extinction risk via changes on the breeding, wintering, and/or migratory refueling grounds, and that ecological synchronicities could be disrupted at multiple sites. To predict the effects of climate change on shorebird extinction risks, we created a categorical risk model complementary to that used by Partners–in–Flight and the U.S. Shorebird Conservation Plan. The model is based on anticipated changes in breeding, migration, and wintering habitat, degree of dependence on ecological synchronicities, migration distance, and degree of specialization on breeding, migration, or wintering habitat. We evaluated 49 species, and for 3 species we evaluated 2 distinct populations each, and found that 47 (90%) taxa are predicted to experience an increase in risk of extinction. No species was reclassified into a lower–risk category, although 6 species had at least one risk factor decrease in association with climate change. The number of species that changed risk categories in our assessment is sensitive to how much of an effect of climate change is required to cause the shift, but even at its least sensitive, 20 species were at the highest risk category for extinction. Based on our results it appears that shorebirds are likely to be highly vulnerable to climate change. Finally, we discuss both how our approach can be integrated with existing risk assessments and potential future directions for predicting change in extinction risk due to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号