首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BACKGROUND: The number of mouse mutants and strains with neural tube closure defects (NTDs) now exceeds 190, including 155 involving known genes, 33 with unidentified genes, and eight "multifactorial" strains. METHODS: The emerging patterns of mouse NTDs are considered in relation to the unknown genetics of the common human NTDs, anencephaly, and spina bifida aperta. RESULTS: Of the 150 mouse mutants that survive past midgestation, 20% have risk of either exencephaly and spina bifida aperta or both, parallel to the majority of human NTDs, whereas 70% have only exencephaly, 5% have only spina bifida, and 5% have craniorachischisis. The primary defect in most mouse NTDs is failure of neural fold elevation. Most null mutations (>90%) produce syndromes of multiple affected structures with high penetrance in homozygotes, whereas the "multifactorial" strains and several null-mutant heterozygotes and mutants with partial gene function (hypomorphs) have low-penetrance nonsyndromic NTDs, like the majority of human NTDs. The normal functions of the mutated genes are diverse, with clusters in pathways of actin function, apoptosis, and chromatin methylation and structure. The female excess observed in human anencephaly is found in all mouse exencephaly mutants for which gender has been studied. Maternal agents, including folate, methionine, inositol, or alternative commercial diets, have specific preventative effects in eight mutants and strains. CONCLUSIONS: If the human homologs of the mouse NTD mutants contribute to risk of common human NTDs, it seems likely to be in multifactorial combinations of hypomorphs and low-penetrance heterozygotes, as exemplified by mouse digenic mutants and the oligogenic SELH/Bc strain.  相似文献   

2.
Mammalian SWI/SNF complexes are evolutionary conserved, ATP-dependent chromatin remodeling units. BAF155 in the SWI/SNF complex contains several highly conserved domains, including SANT, SWIRM, and leucine zipper domains. The biological roles of the SWIRM domain remain unclear; however, both structural and biochemical analyses of this domain have suggested that it could mediate protein-protein or protein-DNA interactions during the chromatin remodeling process. The human BAF155 SWIRM domain was cloned into the Escherichia coli expression vector pMAL-c2X and purified using affinity chromatography for structural analysis. We report the backbone 1H, 15N, and 13C resonance assignments and secondary structure of this domain using nuclear magnetic resonance (NMR) spectroscopy and the TALOS+ program. The secondary structure consists of five α-helices that form a typical histone fold for DNA interactions. Our data suggest that the BAF155 SWIRM domain interacts with nucleosome DNA (K d = 0.47 μM).  相似文献   

3.
BACKGROUND: Valproic acid (VPA) causes the failure of neural tube closure in newborn mice. However, the molecular mechanism of its teratogenesis is unknown. This study was conducted to investigate the genomewide effects of VPA disruption of normal neural tube development in mice. METHODS: Microarray analysis was performed on the head part of NMRI mouse embryos treated for 1 hr with VPA on gestational day (GD) 8. Subsequently, we attempted to isolate genes that changed in correlation with the teratogenic action of VPA by employing reduced teratogenic VPA analogs, valpromide (VPD) and valnoctamide (VCD), in a real-time PCR study. RESULTS: Microarray results demonstrated that during neurulation, many genes, some of whose functions are known and some unknown, were either increased or decreased after VPA injection. Some genes were affected by VPD or VCD in the same way as VPA, but others were not changed by the analogs. In this way, our system identified 11 increased and 20 decreased genes. Annotation analysis revealed that the increased genes included gadd45b, ier5, per1, phfl3, pou3f1, and sox4, and the decreased genes included ccne2, ccnl, gas5, egr2, sirt1, and zfp105. CONCLUSIONS: These findings demonstrate that expression changes in genes having roles in the cell cycle and apoptosis pathways of neural tube cells were strongly expected to relate to the teratogenic, but not antiepileptic, activity of VPA. Our approach has allowed the expansion of the catalog of molecules immediately affected by VPA in the developing neural tube.  相似文献   

4.
5.
BACKGROUND: In the past, northern China's Shanxi Province has reported the highest incidence of neural tube defects (NTDs) in the world. However, little is known about the epidemiology of NTDs in this area in recent years. METHODS: Data were collected from a population-based birth defects surveillance system in 4 counties that captures information on all live births, stillbirths of at least 20 weeks' gestation, and pregnancy terminations at any gestational age resulting from prenatal diagnosis of a birth defect. We also surveyed mothers of NTD case patients to determine their use of folic acid before and during early pregnancy. RESULTS: During 2003, 160 NTD cases were identified among 11,534 births (NTD birth prevalence = 138.7/10,000 births). The rates of anencephaly, spina bifida and encephalocele were 65.9, 58.1, and 14.7 per 10,000, respectively, and a female predominance was observed among anencephaly cases (male-to-female relative risk [RR], 0.49; 95% confidence interval [CI], 0.30-0.79), but not among spina bifida (RR, 0.90; 95% CI, 0.55-1.45) and encephalocele (RR, 1.03; 95% CI, 0.40-2.69) cases. The percentages of pregnancy termination following prenatal diagnosis of anencephaly, spina bifida, and encephalocele were 50%, 41.8%, and 35.3%, respectively. NTD birth prevalence tended to be higher among mothers aged <20 or > or =30 years (P = .06) and was markedly associated with lower levels of maternal education (P < .001). Among 143 NTD mothers, only 6 (4.2%) used folic acid supplements during the periconceptional period. CONCLUSIONS: The NTD birth prevalence rate in the study area is among the highest worldwide. Folic acid deficiency may be one important risk factor.  相似文献   

6.
BACKGROUND: Folate deficiencies have been associated with many adverse congenital abnormalities. It is not clear, however, whether these defects are due to a folate deficiency or to an increase in homocysteine. Homocysteine has been shown to be teratogenic in the chicken-embryo model and it has been suggested that homocysteine-induced defects are mediated by inhibiting the N-methyl-D-aspartate (NMDA) receptor on neural crest cells. The majority of the teratology studies have been carried out using the chicken embryo model. In an effort to develop a murine model of homocysteine-induced neural tube defects, several inbred mouse strains were treated with homocysteine or the NMDA inhibitor MK801 and the fetuses examined for any induced-NTD. METHODS: Several in-bred mouse strains were administered homocysteine once on gestational day (GD) E8.5 or once daily on GD 6.5-10.5. Additionally, because homocysteine was been reported to mediate its effects through the NMDA receptor, the effect of MK801, an antagonist of this receptor, was also investigated. RESULTS: Regardless of the mouse treatment time, homocysteine failed to induce neural tube defects in our in-bred mouse strains. Homocysteine also failed to increase the number of neural tube defects in the splotch strain, regardless of the genotype. CONCLUSIONS: Irrespective of the mouse strain or treatment, homocysteine failed to induce neural tube defects in our mouse models, which is in contrast to what has been reported in the chicken embryo models.  相似文献   

7.
8.
BACKGROUND: The etiology of neural tube defects (NTDs) is multifactorial, with environmental and genetic determinants. Folate supplementation prevents the majority of NTDs, and a polymorphism in methylenetetrahydrofolate reductase (MTHFR) has become recognized as a genetic risk factor. The mechanisms by which folate affects NTD development are unclear. The Splotch (Sp) mouse is a well-characterized mouse model for studying spontaneous NTDs. To assess the potential interaction between folate metabolism and the Sp mutant in NTD development, we studied mice with both Sp and Mthfr mutations, as well as the interaction between Sp and low dietary folate. METHODS: Wild-type, single Mthfr+/-mutant, single Sp/+mutant, and double mutant (Mthfr+/-, Sp/+) female mice were mated with males of the same genotype. Embryos were examined for NTDs on gestational day (GD) 13.5. To investigate the effects of folate deficiency on Sp mice, Sp/+female mice were fed a control diet (CD), a moderately folic acid-deficient diet (MFADD), or a severely folic acid-deficient diet (SFADD). They were mated with Sp/+males and the embryos were examined. RESULTS: There were no differences in the incidence or severity of NTDs in embryos from double-mutant mating pairs compared to those from single Sp mutants. Embryos from Mthfr+/-dams did not exhibit NTDs. Diets deficient in folate did not influence the incidence or severity of NTDs in embryos from Sp/+mice. CONCLUSIONS: We did not observe an interaction between Sp and Mthfr mutations, or between the Sp mutation and low dietary folate, in NTD development in Splotch mice.  相似文献   

9.
10.
11.
BACKGROUND: Maternal exposure to flu or fever has been associated with increased risk for neural tube defects (NTDs); however, few studies have considered the effects of medications on the effects of flu or fever. We evaluated the effect of maternal flu or fever, medication use (antibiotics, antipyretics), and their joint effect on NTDs. METHODS: Data came from an ongoing population-based case-control study of infants with external malformations in northern China. The case group included 363 infants with NTDs identified between January 2003 and June 2005. Controls were 523 newborn infants without identified congenital anomalies matched by county, sex, maternal ethnic group, and the closest date of conception for infants with any major external malformation. Data were collected by a trained health worker through face-to-face interviews after delivery. RESULTS: NTD risks were significantly associated with maternal flu or fever (adjusted odds ratio [AOR] = 3.93, 95% CI: 2.48-6.23) and antipyretic use (AOR = 4.86, 95% CI: 1.33-17.78), but not with antibiotic use (AOR = 1.75, 95% CI: 0.91-3.38) after adjusting for potential confounders. NTD risk associated with maternal antipyretic use was markedly higher for anencephaly (AOR = 7.03, 95% CI: 1.70-29.04) than for spina bifida (AOR = 3.98, 95% CI: 0.95-16.74). Mothers with flu or fever who were also using antipyretics showed a markedly higher AOR for anencephaly (14.75 vs. 4.52), spina bifida (16.30 vs. 3.85), and all NTDs combined (13.91 vs. 4.04) than mothers with flu or fever who were not using antipyretics. Maternal antibiotics did not markedly change the effects of flu or fever on anencephaly (4.17 vs. 4.83), spina bifida (5.08 vs. 4.21), and all NTDs combined (5.05 vs. 4.29). CONCLUSIONS: Maternal flu or fever and antipyretic use during the periconceptional period increases the risk for NTDs. Maternal exposure to antipyretics together with flu or fever results in a markedly higher risk of NTDs than exposure to flu or fever alone.  相似文献   

12.
13.
14.
BACKGROUND: Hyperthermia produces neural tube defects (NTDs) in a variety of animal species. Elevated maternal body temperatures may also place the developing human embryo at risk. We examined the relation between maternal hyperthermia and the development of NTDs in a high-risk Mexican-American population. METHODS: Case-women were Mexican-American women with NTD-affected pregnancies who resided and delivered in any of the 14 Texas counties bordering Mexico, during 1995-2000. Control-women were randomly selected from study area residents delivering normal live births, frequency-matched to cases by hospital and year. Information on maternal fevers, febrile illnesses, exposures to heat generated from external sources, and hyperthermia-inducing activities was gathered through in-person interviews, conducted about six weeks postpartum. RESULTS: The risk effect (OR) associated with maternal fever in the first trimester, compared to no fever, was 2.9 (95% CI, 1.5-5.7). Women taking fever-reducing medications showed a lower risk effect (OR, 2.4; 95% CI, 1.0-5.6) than those who did not (OR, 3.8; 95% CI, 1.4-10.9). First-trimester maternal exposures to heat devices such as hot tubs, saunas, or electric blankets were associated with an OR of 3.6 (95% CI, 1.1-15.9). Small insignificant effects were observed for activities such as cooking in a hot kitchen (OR, 1.6; 95% CI, 1.0-2.6) and working or exercising in the sun (OR, 1.4; 95% CI, 0.9-2.2). CONCLUSIONS: Maternal hyperthermia increases the risk for NTD-affected offspring. Women intending to become pregnant should avoid intense heat exposures, carefully monitor and manage their febrile illnesses, and routinely consume folic acid supplements.  相似文献   

15.
16.
17.
To shed light on the biological origins of sex differences in neural tube defects (NTDs), we examined Trp53-null C57BL/6 mouse embryos and neonates at 10.5 and 18.5 days post coitus (dpc) and at birth. We confirmed that female embryos show more NTDs than males. We also examined mice in which the testis-determining gene Sry is deleted from the Y chromosome but inserted onto an autosome as a transgene, producing XX and XY gonadal females and XX and XY gonadal males. At birth, Trp53 nullizygous mice were predominantly XY rather than XX, irrespective of gonadal type, showing that the sex difference in the lethal effect of Trp53 nullizygosity by postnatal day 1 is caused by differences in sex chromosome complement. At 10.5 dpc, the incidence of NTDs in Trp53-null progeny of XY* mice, among which the number of the X chromosomes varies independently of the presence or absence of a Y chromosome, was higher in mice with two copies of the X chromosome than in mice with a single copy. The presence of a Y chromosome had no protective effect, suggesting that sex differences in NTDs are caused by sex differences in the number of X chromosomes.  相似文献   

18.
Both the BMP and Wnt pathways have been implicated in directing aspects of dorsal neural tube closure and cell fate specification. However, the mechanisms that control the diverse responses to these signals are poorly understood. In this study, we provide genetic and functional evidence that the secreted sFRP1 and sFRP2 proteins, which have been primarily implicated as negative regulators of Wnt signaling, can also antagonize BMP signaling in the caudal neural tube and that this function is critical to maintain proper neural tube closure and dorsal cell fate segregation. Our studies thus reveal a novel role for specific sFRP proteins in balancing the response of cells to two critical extracellular signaling pathways.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号