首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
We used a series of laboratory studies to investigate factors contributing to variability in egg load of the parasitoid Binodoxys communis (Gahan) (Hymenoptera: Braconidae), a biological control agent of the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae). The change in egg load in newly emerged females over time was determined in response to three treatments: post‐eclosion temperature, sugar meals, and host density. Binodoxys communis females emerge with an average egg load of approximately 40 mature eggs that increases to approximately 200 eggs within 24 h of emergence. The egg maturation rate over this time period is higher when females are held at 26 °C than at 18 °C. And although the egg load of sugar‐fed females was slightly higher than that of starved females, this difference was not statistically significant. Binodoxys communis females that were held with 150 hosts for 8 h laid more eggs than those that were held with 30 hosts, and they also matured more eggs over the subsequent 16 h than those held with 30 hosts or no hosts at all. However, we detected no difference in the egg maturation pattern between B. communis females held with the low host density and that of control females held with no hosts at all. Thus, we conclude that enhanced egg maturation in the higher host‐density treatment is more likely explained by a rapid replenishing of partially depleted ovaries than a host‐induced stimulus of egg maturation per se. Taken together, these results suggest a strategy of maintaining a high egg load and thus avoiding or mitigating the negative effects of egg limitation.  相似文献   

2.
Natural enemies suppress many aphid populations, and yet, population outbreaks sometimes occur. The reasons predation fails to suppress such outbreaks are not clearly understood. While manipulating predators to examine their role in soybean aphid population growth, a natural immigration of soybean aphids occurred that enabled us to compare the roles immigration and predation played in population growth. Using predator exclusion cages, we found that predation on the top of the plant accounted for 42.3 ± 11.4% (mean ± SE) reduction in aphid population growth rates. When 90–100% of the canopy was exposed, predation failed to reduce aphid population growth because winged immigrants colonized plants, with an observed 6‐fold increase in alates compared to plants completely covered or exposing only the top nodes (approximately 10% of the total canopy). We conclude that reproduction by immigrants contributed to population growth rates sufficiently to compensate for predation. These results demonstrate that immigration can counteract high levels of predation and lead to aphid population growth rates that could result in outbreak population densities.  相似文献   

3.
Crop rotations alter the soil environment and physiology of the subsequent crop in ways that may affect the abundance of herbivores and their natural enemies. Soybean aphids are a consistent pest of soybean throughout North America, but little work has focused on how preceding crops may affect pest–predator dynamics. In a replicated experiment over three years, we examined how two preceding crops (spring wheat or an oat/pea mixture) affected seasonal soybean aphid pressure and the ratio of aphids to their predator community. Peak aphid populations were reduced by 40% and 75% in years 1 and 2 by planting spring wheat before soybeans (relative to the oat–pea mixture). Aphid densities were unaffected by preceding crop in the third year of study (aphids were at threshold in this year). Predators responded positively to aphid population increases and were unaffected by preceding crops. Additional research on how crop rotations can be used as a tool to manage soybean aphids warrants further attention.  相似文献   

4.
A theoretical debate about whether parasitoids should be time or egg limited now recognizes both as feasible, and interest has turned to determining the circumstances under which each might arise in the field, and their implications for parasitoid behaviour and evolution. Egg loads of parasitoids sampled from the field are predicted to show a negative response to host availability, but empirical support for this relationship is scarce. We measured how a parasitoid's egg load responded to seasonal fluctuations in host population density and recorded the predicted correlation. In early summer, parasitoids were at high risk of time limitation due to low host availability, and in late summer, their offspring were at greater risk of egg limitation due to high host availability. Despite clear seasonal changes in selection pressures on egg load and lifespan, the parasitoid showed no evidence of seasonal variation in its reproductive strategy. We made minor modifications to a previously published model to explore the effects of seasonal variation in host availability on optimal investments in eggs and lifespan and obtained several new results. In particular, under circumstances analogous to some of those observed in our field study, temporal stochasticity in reproductive opportunities can cause investments in eggs to increase, rather than decrease as previously predicted. Our model results helped to explain the parasitoid's lack of a seasonally varying reproductive strategy. Understanding the evolution of parasitoid egg load would benefit from a shift of research emphasis from purely stochastic variation in parasitoid reproductive opportunities to greater consideration of host dynamics.  相似文献   

5.
Soybean varieties that exhibit resistance to the soybean aphid Aphis glycines have been developed for use in North America. In principle, host-plant resistance to soybean aphid can influence the interactions between the soybean aphid and its natural enemies. Resistance could change the quality of soybean aphids as a food source, the availability of soybean aphids, or resistance traits could directly affect aphid predators and parasitoids. Here, we focus on the effect of soybean aphid resistance on the interactions between soybean aphids, the parasitoid Binodoxys communis (Hymenoptera: Braconidae), and predators of these two species. We determined whether host-plant resistance affected within-season persistence of B. communis by releasing parasitoids into resistant and susceptible soybean plots. We observed higher B. communis densities in susceptible soybean plots than in resistant plots. There were also higher overall levels of intraguild predation of B. communis in susceptible plots, although the per-capita risk of intraguild predation of B. communis was affected neither by plant genotype nor by aphid density. We discuss these effects and whether they were caused by direct effects of the resistant plants on B. communis or indirect effects through soybean aphid or predators.  相似文献   

6.
The quantity and quality of host nutrients can affect fitness‐related traits in hymenopteran parasitoids, including oogenesis. The present study tested the prediction that a high host quality will influence oogenesis‐related traits positively in synovigenic parasitoids, and that a high‐quality adult parasitoid diet can positively affect the same parameters, potentially compensating for development on low‐quality hosts. Four braconid parasitoid species with contrasting life histories are reared on a low‐quality diet [Anastrepha ludens Loew (Diptera: Tephritidae) larvae reared on mango] or a high‐quality (artificial) diet. Adult parasitoids are provided with a high‐quality (honey ad libitum), moderate‐quality (honey every other day) or low‐quality (guava pulp) diet. Generalist species that encounter high variation in host quality naturally are predicted to be more flexible in dealing with nutrient shortfalls than specialist species. By contrast to the predictions, low‐quality hosts yield parasitoids with higher egg loads in two species: Opius hirtus Fisher and Diachasmimorpha longicaudata Ashmead. However, as predicted, a high‐quality adult diet exerts a positive effect on egg load (Utetes anastrephae Viereck), egg size (Doryctobracon crawfordi Viereck) and egg maturation rate (D. longicaudata, O. hirtus and U. anastrephae). The generalist D. longicaudata varies in egg load and maturation rate depending on host quality and adult diet, respectively. Evidence of the combined effect of both factors on parasitoid fertility is presented for the specialist O. hirtus. The theoretical and practical implications of these findings are discussed.  相似文献   

7.
Several models and experimental studies conducted in confined environments have shown that intraguild predation (IGP) can modulate population abundances and structure communities. A number of ecological and abiotic factors determine the nature and frequency of IGP. This study examined the effect of plant architecture and extraguild prey density, and their interactions, on the occurrence of IGP between two species of ladybird, Harmonia axyridis (Pallas) and Propylea quatuordecimpunctata L. (both Coleoptera: Coccinellidae). Theoretical concepts predict that IGP levels would increase with a decrease of both extraguild prey density and plant structural complexity. We conducted a factorial experiment in an open soybean field into which coccinellid larvae were introduced in experimental plots for a period of 5 days. We tested two levels of soybean aphid [Aphis glycines Matsumara (Hemiptera: Aphididae)] density, low and high (100 and 1 000 aphids per plot, respectively), and two levels of plant complexity, low (by removing half of the branches from the soybean plants) and high (by leaving plants intact). We used species‐specific molecular markers to detect the presence of P. quatuordecimpunctata in the digestive tract of H. axyridis. Molecular gut‐content analysis of H. axyridis revealed that rates of IGP were higher (20%) at low aphid density than at high aphid density (<6%). Decreased plant complexity did not impact the frequency of IGP. In accordance with existing literature, this study demonstrates that IGP is amplified at low extraguild prey density. We conclude that considering environmental factors, such as extraguild prey density, is crucial to improve our ability to predict the impact of intraguild predation on community structure and, from an applied perspective, biological control.  相似文献   

8.
《Ecology and evolution》2017,7(9):3143-3148
Egg limitation is known to destabilize host–parasitoid dynamics. This study reexamines the effect of egg limitation in light of the individual variation in parasitization risk among hosts (e.g., some hosts are more likely to be parasitized than others). Previous studies have considered egg limitation (predicted as a destabilizing factor) and individual variation among hosts (predicted as a stabilizing factor) in isolation; however, their interaction is not known. An individual‐based model was used to examine the effects of each factor and their interaction. The model‐based analysis shows a clear interaction between egg limitation and individual variation in risk among hosts. Egg limitation can both stabilize and destabilize host–parasitioid dynamics depending on the presence and absence of the risk variation. The result suggests that the population‐dynamic consequences of egg limitation are more complex than previously thought and emphasizes the importance of the simultaneous consideration of multiple ecological factors (with individual‐level details) to uncover potential interactions among them.  相似文献   

9.
Genotype‐by‐genotype interactions demonstrate the existence of variation upon which selection acts in host–parasite systems at respective resistance and infection loci. These interactions can potentially be modified by environmental factors, which would entail that different genotypes are selected under different environmental conditions. In the current study, we checked for a G × G × E interaction in the context of average temperature and the genotypes of asexual lines of the endoparasitoid wasp Lysiphlebus fabarum and isolates of Hamiltonella defensa, a protective secondary endosymbiont of the wasp's host, the black bean aphid Aphis fabae. We exposed genetically identical aphids harbouring different isolates of H. defensa to three asexual lines of the parasitoid and measured parasitism success under three different temperatures (15, 22 and 29 °C). Although there was clear evidence for increased susceptibility to parasitoids at the highest average temperature and a strong G × G interaction between the host's symbionts and the parasitoids, no modifying effect of temperature, that is, no significant G × G × E interaction, was detected. This robustness of the observed specificity suggests that the relative fitness of different parasitoid genotypes on hosts protected by particular symbionts remains uncomplicated by spatial or temporal variation in temperature, which should facilitate biological control strategies.  相似文献   

10.
Heritable bacterial endosymbionts are common in aphids (Hemiptera: Aphididae), and they can influence ecologically important traits of their hosts. It is generally assumed that their persistence in a population is dependent on a balance between the costs and benefits they confer. A good example is Hamiltonella defensa Moran et al., a facultative symbiont that provides a benefit by strongly increasing aphid resistance to parasitoid wasps, but becomes costly to the host in the absence of parasitoids. Regiella insecticola Moran et al. is another common symbiont of aphids and generally does not influence resistance to parasitoids. In the green peach aphid, Myzus persicae (Sulzer), however, one strain (R5.15) was discovered that behaves like H. defensa in that it provides strong protection against parasitoid wasps. Here we compare R5.15‐infected and uninfected lines of three M. persicae clones to test whether this protective symbiont is costly as well, i.e., whether it has any negative effects on aphid life‐history traits. Furthermore, we transferred R5.15 to two other aphid species, the pea aphid, Acyrthosiphon pisum (Harris), and the black bean aphid, Aphis fabae Scopoli, where this strain is also protective against parasitoids and where we could compare its effects with those of additional, non‐protective strains of R. insecticola. Negative effects of R5.15 on host survival and lifetime reproduction were limited and frequently non‐significant, and these effects were comparable or in one case weaker than those of R. insecticola strains that are not protective against parasitoid wasps. Unless the benefit of protection is counteracted by detrimental effects on traits that were not considered in this study, R. insecticola strain R5.15 should have a high potential to spread in aphid populations.  相似文献   

11.
The efficiency of local augmentation releases of the egg parasitoid Anaphes nitens to control the Eucalyptus snout‐beetle Gonipterus platensis was tested in Eucalyptus globulus plantations in Galicia (NW Spain). On May–June 2006, at two localities of Pontevedra province, the release of host egg capsules parasitized by A. nitens at a potential rate of 300 adults/ha was compared with a release density of 900 adults/ha, and a control group of eucalypts not subjected to augmentation. Parasitism rate after 1–2 weeks did not significantly increase over the control plots at both localities. The high release rate did not ensure a higher crop protection and therefore could be not economically justified. On March–April 2017, at four localities of Pontevedra province, the test was replicated by releasing 300 parasitoids/ha. Parasitism level did significantly increase over the control just in one locality. Augmentation of A. nitens at small scale generally failed to achieve a higher protection from the pest, possibly due to the large extension of the E. globulus plantations, the magnitude of the G. platensis population and the fluctuations of the established parasitoid population, whose density is in turn affected by host egg availability and density‐dependent dispersal.  相似文献   

12.
We studied egg production and the occurrence of adaptive superparasitism in Anaphes nitens, an egg parasitoid of the Eucalyptus snout beetle Gonipterus scutellatus. First, we determined whether A. nitens females were synovigenic or pro‐ovigenic. Newly emerged females were allowed to lay eggs alone during 3 days on six fresh egg capsules. A first group of females (n = 25) were killed by freezing and the remaining females (n = 21) were maintained during two extra days with food, but without hosts. Their fecundity was measured by dissection of host eggs and females’ ovarioles. We found that the second group of females increased their fecundity by about 20%, suggesting they were weakly synovigenic. To test for the occurrence of adaptive superparasitism in relation to competitors’ density, we compared the oviposition behaviour of females kept alone, in pairs, or in groups of four during patch visit. Results indicated that the females superparasited significantly more often in this last treatment. Synovigeny and the ability to modulate the use of superparasitism could be mentioned as important attributes that allow A. nitens to efficiently control the pest population.  相似文献   

13.
Feeding on floral nectar has multiple positive effects on parasitic wasps, including increased longevity and fecundity, and in addition, nectar feeding can also alter parasitoid behaviour. To advance understanding of the effects of nectar feeding on Diaeretiella rapae (McIntosh) [Hymenoptera: Braconidae], the activities of 1‐day‐old female D. rapae with or without a prior buckwheat (Fagopyrum esculentum) nectar meal were quantified. Nectar increased searching time of D. rapae by a factor of 40 compared with individuals provided with water only and reduced the time spent stationary. The number of attacks to aphids by nectar‐fed parasitoids was not significantly (P = 0.06) higher than that of unfed D. rapae, suggesting that the conditions of the experiment facilitated host finding by ‘quiet’ parasitoids. Nevertheless, nectar feeding modified the behaviour of D. rapae in a way that parasitoids were more explorative and less inactive. This represents one additional mechanism through which nectar feeding impacts parasitoid biology and suggests that a synergy between increased host searching, increased longevity and increased fecundity should lead to an enhancement of biocontrol when D. rapae females have access to nectar in the field.  相似文献   

14.
Biological invasions are a global issue with far‐reaching consequences for single species, communities and whole ecosystems. Our understanding of modes and mechanisms of biological invasions requires knowledge of the genetic processes associated with successful invasions. In many instances, this information is particularly difficult to obtain as the initial phases of the invasion process often pass unnoticed and we rely on inferences from contemporary population genetic data. Here, we combined historic information with the genetic analysis of resting eggs to reconstruct the invasion of Daphnia pulicaria into Lower Lake Constance (LLC) in the 1970s from the resting egg bank in the sediments. We identified the invader as ‘European D. pulicaria’ originating from meso‐ and eutrophic lowland lakes and ponds in Central Europe. The founding population was characterized by extremely low genetic variation in the resting egg bank that increased considerably over time. Furthermore, strong evidence for selfing and/or biparental inbreeding was found during the initial phase of the invasion, followed by a drop of selfing rate to low levels in subsequent decades. Moreover, the increase in genetic variation was most pronounced during early stages of the invasion, suggesting additional introductions during this period. Our study highlights that genetic data covering the entire invasion process from its beginning can be crucial to accurately reconstruct the invasion history of a species. We show that propagule banks can preserve such information enabling the study of population genetic dynamics and sources of genetic variation in successful invasive populations.  相似文献   

15.
The brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), poses a new threat to soybean, Glycine max (L.) Merrill (Fabaceae), production in the north central USA. As H. halys continues to spread and increase in abundance in the region, the interaction between H. halys and management tactics deployed for other pests must be determined. Currently, the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is the most abundant and damaging insect pest of soybean in the region. Aphid‐resistant soybean, mainly with the Rag1 gene, is commercially available for management of A. glycines. Here, experiments were performed to evaluate the effects of Rag1 aphid‐resistant soybean on the mortality, development, and preference of H. halys. In a no‐choice test, mortality of H. halys reared on Rag1 aphid‐resistant soybean pods was significantly lower than when reared on aphid‐susceptible soybean pods (28 vs. 53%). Development time, adult weight, and proportion females of surviving adults did not differ when reared on Rag1 aphid‐resistant or aphid‐susceptible soybean pods. In choice tests, H. halys exhibited a preference for Rag1 aphid‐resistant over aphid‐susceptible soybean pods after 4 h, but not after 24 h. Halyomorpha halys exhibited no preference when tested with vegetative‐stage or reproductive‐stage soybean plants. The preference by H. halys for Rag1 aphid‐resistant soybean pods and the decreased mortality when reared on these pods suggests that the use of Rag1 aphid‐resistant soybean may favor this emerging pest in the north central USA.  相似文献   

16.
We used field observations of freely foraging Aphytis aonidiae parasitoids in conjunction with results of laboratory studies of A. aonidiae and other Aphytis species to simulate lifetime patterns of behavior and reproduction. Field observations provided estimates of encounter rates with three classes of hosts, the mortality rate from predation on adult parasitoids, and host-handling times for oviposition and host feeding by adult wasps. A series of physiological parameters, including the egg maturation rate and the value of host-feeding meals, were estimated from previously published studies. Plasticity in parasitoid behavior was incorporated in two ways. For one set of simulations we used a behavioral rule derived empirically from observations of parasitoids made in the field, and for another we used a dynamic state-variable model to generate a set of behavioral rules that maximize lifetime reproductive success. As was expected, the empirically derived rule led to better matches with field observations than did simulations using the output of the dynamic model. Projections of lifetime reproductive success in the field ranged between three and 37 eggs within the 95% confidence intervals of the mortality rate and host encounter rate and depending on which behavioral rule was used. Lifetime reproductive success from the simulation with central estimates of the mortality and host encounter rates that incorporated the empirical rule was 6.25 eggs. Using the empirical versus the theoretical rule in the simulations led to a 10%-30% decline in projections of lifetime reproductive success, depending on mortality and host encounter rates. Regardless of the behavioral rule, the simulations underscored the observation that the host encounter rate was greater than the egg maturation rate. The overall oviposition rate was sufficiently high to lead to daily episodes of temporary egg limitation during which parasitoids must mature an egg before being able to oviposit.  相似文献   

17.
This study tested effects of maternal body size on foraging behavior and progeny development in a thelytokous population of Lysiphlebus fabarum (Marshall) (Hymenoptera: Braconidae). Small and large wasps were reared from first and second instar hosts [black bean aphid, Aphis fabae Scopoli (Hemiptera: Aphididae)], respectively, and each was provided with a patch (bean leaf disk) containing either 15 small (second instar) or 15 large (fourth instar) hosts for a 30‐min foraging period. Neither body size nor host size affected time allocation to various behaviors within a patch, but second instar aphids produced significantly more mummies than fourth instars. The preferred attack orientation was from the side of the aphid, suggesting wasps were sensitive to the risk of smearing with cornicle secretions. Few wasps developed in fourth instar hosts, suggesting later host instars were somewhat resistant to parasitism. Second instar hosts, the most suitable stage for L. fabarum development, relied more on defensive behavior, specifically kicking and secreting cornicle droplets. Large wasps were more likely to elicit a double cornicle secretion, indicating that aphids graded their response to the size of the attacker. Larger wasps were also more likely to be smeared with cornicle secretion, suggesting they were more vulnerable than small wasps. Although small wasps had smaller eggs than large wasps, there was no effect of maternal egg size on the size of progeny. However, daughters of small females emerged with larger egg loads than daughters of large mothers, and their eggs tended to be slightly smaller, although not significantly. Regression analysis revealed a positive correlation between maternal egg size and progeny developmental time for small and large wasps, and between maternal egg size and progeny egg load for small wasps. These results confirm maternal effects of body size in an aphid parasitoid, and reveal that vulnerability to host behavioral defenses is also body size dependent.  相似文献   

18.
Experiments were conducted in small arenas and on whole plants to explore the effect of cotton aphids, Aphis gossypii Glover (Hemiptera: Aphididae), as alternative prey on the predation of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) larvae by green lacewing larvae, Mallada signatus Schneider (Neuroptera: Chrysopidae). Transgenic Bt (Bollgard II®) and conventional cotton plants were included to explore potential differences in the predator's performance on these cotton types. In small arenas, the presence of 20 aphids reduced predation on H. armigera larvae by 22% (from 5.5 to 3.3 of 10) by a single lacewing larva over a 24‐h period. The presence of H. armigera reduced predation on aphids by ca. 29% (from 16.8 to 11.0 of 20) over 24 h. On whole plants, the presence of alternative prey had no effect on the number of H. armigera larvae or aphids remaining after 3 days. The presence of H. armigera larvae alone, without the predator, caused a 24% reduction in the numbers of aphids on conventional, but not on Bt cotton plants. The combination of Bt cotton and lacewing larvae caused a 96.6% removal of early‐stage H. armigera larvae, a statistically significant increase over the addition of the proportions (91.6%) removed by each factor measured separately, providing evidence of synergism. These studies suggest that the presence of aphids as alternative prey would not necessarily disrupt the predation by green lacewing on larvae of H. armigera, especially on Bt cotton.  相似文献   

19.
Performance and prospects of Rag genes for management of soybean aphid   总被引:1,自引:0,他引:1  
The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is an invasive insect pest of soybean [Glycine max (L.) Merr. (Fabaceae)] in North America, and it has led to extensive insecticide use in northern soybean‐growing regions there. Host plant resistance is one potential alternative strategy for managing soybean aphid. Several Rag genes that show antibiosis and antixenosis to soybean aphid have been recently identified in soybean, and field‐testing and commercial release of resistant soybean lines have followed. In this article, we review results of field tests with soybean lines containing Rag genes in North America, then present results from a coordinated regional test across several field sites in the north‐central USA, and finally discuss prospects for use of Rag genes to manage soybean aphids. Field tests conducted independently at multiple sites showed that soybean aphid populations peaked in late summer on lines with Rag1 or Rag2 and reached economically injurious levels on susceptible lines, whereas lines with a pyramid of Rag1 + Rag2 held soybean aphid populations below economic levels. In the regional test, aphid populations were generally suppressed by lines containing one of the Rag genes. Aphids reached putative economic levels on Rag1 lines for some site years, but yield loss was moderated, indicating that Rag1 may confer tolerance to soybean aphid in addition to antibiosis and antixenosis. Moreover, no yield penalty has been found for lines with Rag1, Rag2, or pyramids. Results suggest that use of aphid‐resistant soybean lines with Rag genes may be viable for managing soybean aphids. However, virulent biotypes of soybean aphid were identified before release of aphid‐resistant soybean, and thus a strategy for optimal deployment of aphid‐resistant soybean is needed to ensure sustainability of this technology.  相似文献   

20.
豆柄瘤蚜茧蜂Lysiphlebus fabarum Marshall和广双瘤蚜茧蜂Binodoxys communis Gahan是大豆田大豆蚜的重要寄生蜂。2009—2010年,采取棋盘式采样和随机抽样调查相结合的方法,在辽宁岫岩对大豆田内的豆柄瘤蚜茧蜂和广双瘤蚜茧蜂的发生动态进行了研究。结果显示,2009年,豆柄瘤蚜茧蜂6月20号前后在田间开始少量发生,7月上旬数量急速上升,中旬达到最高值,然后开始下降;8月中旬出现第2个高峰,数量上明显小于第1个高峰期,但2010年只有1个高峰,第2个高峰不明显;广双瘤蚜茧蜂6月底开始出现并不断上升,到7月上、中旬达到一定量后持续到8月底。总体来说,豆柄瘤蚜茧蜂发生的时间比广双瘤蚜茧蜂早,且数量也较多。同时在大田按照不同的处理,对豆柄瘤蚜茧蜂进行大田罩笼繁殖研究,当豆柄瘤蚜茧蜂与适龄蚜虫数量比值为1:100的情况下产生的僵蚜数量最多。为大田有效利用蚜茧蜂控制大豆蚜提供了必要的基础资料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号