首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Species that specialize in disturbed habitats may have considerably different dispersal strategies than those adapted to more stable environments. However, little is known of the dispersal patterns and population structure of such species. This information is important for conservation because many postfire specialists are at risk from anthropogenic changes to natural disturbance regimes. We used microsatellite markers to assess the effect of landscape variation and recent disturbance history on dispersal by a small mammal species that occupies the early seral stage of vegetation regeneration in burnt environments. We predicted that a postfire specialist would be able to disperse over multiple habitat types (generalist) and not exhibit sex‐biased dispersal, as such strategies should enable effective colonization of spatially and temporally variable habitat. We found significant differentiation between sites that fitted an isolation‐by‐distance pattern and spatial autocorrelation of multilocus genotypes to a distance of 2–3 km. There was no consistent genetic evidence for sex‐biased dispersal. We tested the influence of different habitat‐ and fire‐specific landscape resistance scenarios on genetic distance between individuals and found a significant effect of fire. Our genetic data supported recently burned vegetation having greater conductance for gene flow than unburnt habitat, but variation in habitat quality between vegetation types and occupied patches had no effect on gene flow. Postfire specialists must evolve an effective dispersal ability to move over distances that would ensure access to early successional stage vegetation. Natural disturbance and natural heterogeneity may therefore not influence population genetic structure as negatively as expected.  相似文献   

2.
Understanding how landscape structure influences biodiversity patterns and ecological processes are essential in ecological research and conservation practices. Forest discontinuity is a primary driver affecting the population persistence and genetic structure of forest‐dwelling species. However, the actual impacts on populations are highly species‐specific. In this study, we tested whether dispersal capability and host specialization are associated with susceptibility to forest discontinuity using three closely related, sympatric fungivorous ciid beetle species (two host specialists, Octotemnus assimilis and O. crassus; one host generalist, O. kawanabei). Landscape genetic analyses and the estimation of effective migration surfaces (EEMS) method consistently demonstrated contrasting differences in the relationships between genetic structure and configuration of forest land cover. Octotemnus assimilis, one of the specialists with a presumably higher dispersal capability due to lower wing loading, lacked a definite spatial genetic structure in our study landscape. The remaining two species showed clear spatial genetic structure, but the results of landscape genetic analyses differed between the two species: while landscape resistance appeared to describe the spatial genetic structure of the specialist O. crassus, genetic differentiation of the generalist O. kawanabei was explained by geographic distance alone. This finding is consistent with the prediction that nonforest areas act more strongly as barriers between specialist populations. Our results suggest that differences in host range can influence the species‐specific resistance to habitat discontinuity among closely related species inhabiting the same landscape.  相似文献   

3.
Jaan Liira  Taavi Paal 《Plant Ecology》2013,214(3):455-470
Woody corridors in fragmented landscapes have been proposed as alternative habitats for forest plants, but the great variation in species-specific responses blurs the overall assessment. The aim of this study was to estimate the dispersal success of forest-dwelling plants from a stand into and along an attached woody corridor, and to explain the observed patterns from the point of view of species’ dispersal traits and corridor properties. We sampled 47 forest–corridor transects in the agricultural landscapes of southeastern Estonia. Regionally common forest-dwelling species (observed in at least 10 % of seed-source forests) were classified on the basis of their ecological response profile—forest-restricted species (F-type) and forest-dwelling generalists (G-type). Species richness and the proportion of F-type species decreased sharply from the seed-source forest core to the forest edge and to the first 10–15 m of the corridor, while G-type species richness remained constant throughout the transect. Corridor structure had a species-specific effect—F species were promoted by old (≥50 years) and wide (≥10 m) corridors, while G species were supported by young and narrow corridors with ditch-related soil disturbances. Moderate shade (canopy cover <75 %) was optimal for all forest-dwelling species. Large dispersule weight, and not seed weight, dispersal vector or Ellenberg’s indicator values, was the trait that differentiated F species from G species. We conclude that most woody corridors are only dispersal stepping-stone habitats for habitat generalist species, and not for specialists. Only century old corridors can relieve the dispersal limitation of forest-restricted species.  相似文献   

4.
As human population, food consumption, and demand for forest products continue to rise over the next century, the pressures of land‐use change on biodiversity are projected to intensify. In tropical regions, countryside habitats that retain abundant tree cover and structurally complex canopies may complement protected areas by providing suitable habitats and landscape connectivity for a significant portion of the native biota. Species with low dispersal capabilities are among the most at risk of extinction as a consequence of land‐use change. We assessed how the spatial distribution of the brown‐throated sloth (Bradypus variegatus), a model species for a vertebrate with limited dispersal ability, is shaped by differences in habitat structure and landscape patterns of countryside habitats in north‐central Costa Rica using a multi‐scale framework. We quantified the influence of local habitat characteristics and landscape context on sloth occurrence using mixed‐effects logistic regression models. We recorded 27 sloths within countryside habitats and found that both local and landscape factors significantly influenced their spatial distribution. Locally, sloths favored structurally complex habitats, with greater canopy cover and variation in tree height and basal area. At the landscape scale, sloths demonstrated a preference for habitats with high proportions of forest and nearby large tracts of forest. Although mixed‐use areas and tree plantations are not substitutes for protected forests, our results suggest they provide important supplemental habitats for sloths. To promote the conservation and long‐term viability of sloth populations in the tropical countryside, we recommend that land managers retain structurally complex vegetation and large patches of native habitat.  相似文献   

5.
Aim To investigate how local, regional and historical factors shape the herbaceous plant communities in fragmented riverine forests, and how the community composition and species richness of these fragments is related to the interplay between the environmental factors and specific plant life‐trait combinations. Location Riverine forest fragments in the Grand‐duché de Luxembourg. Methods Forest fragments were surveyed for their abundance in herbaceous plant species. All plant species where clustered into Emergent Groups (EG) by means of a formal classification based on 14 life‐history traits. Within each EG, the local, regional and historical factors were related to the community composition using partial Canonical Correspondence Analyses (pCCA) and to the species richness using Generalized Linear Models (GLMs). The EG colonization ability was characterized by means of logistic regressions. Results We defined and characterized seven EGs, among which three consisted of forest specialist species (barochorous perennials, short geophytes and zoochorous perennials), which exhibited specific life‐trait combinations: large and short‐lived seeds and/or vernal phenology. Differences in EG composition between forest fragments were mainly explained by local environmental factors such as soil productivity and pH. The richness of barochorous perennials and short geophytes was well predicted by the historical and regional factors. The colonization ability appeared very low for barochorous perennials and short geophytes. Main conclusions Local environmental conditions appear to drive the differentiation of the riverine forest plant communities owing to the specific habitat requirements of many forest species. Spatial and temporal forest discontinuities affect the richness of forest specialist species, due to dispersal and/or recruitment limitations. The emergent group approach enhances the understanding of the relative influence of local, regional and historical factors by distinguishing between forest specialists from generalists or ‘matrix’ species, which have a masking effect.  相似文献   

6.
Extensive afforestation of agricultural areas has increased the importance of green corridors as a dispersal network. We tested the effect of spatiotemporal connectivity, edge effect and habitat structural quality of wooded corridors on the long-term immigration success of forest specialist plants relative to the performance of forest generalists. In agricultural landscapes of central and southern Estonia, we sampled 28 historically connected and 52 isolated tree lines and alleys with a minimum age of 50 years, and 93 edges of ancient forests. The regional pool of common forest plants was compiled using species’ frequency data in 91 ancient forests. Both landscape connectivity and habitat quality affected the richness of response groups, but specialists and generalists responded to different drivers. Forest specialists required long-term neighbourhoods of ancient forest and benefited from a direct connection between forest and corridor. Habitat generalists reacted positively to the recently modified structure of the landscape. When a corridor was connected to forest, the dual edge in the corridor did not result in an increased negative edge effect on forest specialist arrival. Even if both specialists and generalists required wide corridors with optimum shade, forest specialists also benefited from mature overstorey and outward overhanging branches, whereas forest generalists used disturbance-created microhabitats. We conclude that only wooded corridors with long-term connectivity to seed source forests and widely branched tree canopies will function as a green infrastructure supporting forest-specific biodiversity.  相似文献   

7.
A major conservation challenge in mosaic landscapes is to understand how trait‐specific responses to habitat edges affect bird communities, including potential cascading effects on bird functions providing ecosystem services to forests, such as pest control. Here, we examined how bird species richness, abundance and community composition varied from interior forest habitats and their edges into adjacent open habitats, within a multi‐regional sampling scheme. We further analyzed variations in Conservation Value Index (CVI), Community Specialization Index (CSI) and functional traits across the forest‐edge‐open habitat gradient. Bird species richness, total abundance and CVI were significantly higher at forest edges while CSI peaked at interior open habitats, i.e., furthest from forest edge. In addition, there were important variations in trait‐ and species‐specific responses to forest edges among bird communities. Positive responses to forest edges were found for several forest bird species with unfavorable conservation status. These species were in general insectivores, understorey gleaners, cavity nesters and long‐distance migrants, all traits that displayed higher abundance at forest edges than in forest interiors or adjacent open habitats. Furthermore, consistently with predictions, negative edge effects were recorded in some forest specialist birds and in most open‐habitat birds, showing increasing densities from edges to interior habitats. We thus suggest that increasing landscape‐scale habitat complexity would be beneficial to declining species living in mosaic landscapes combining small woodlands and open habitats. Edge effects between forests and adjacent open habitats may also favor bird functional guilds providing valuable ecosystem services to forests in longstanding fragmented landscapes.  相似文献   

8.
Cacao agroforestry have been considered as biodiversity‐friendly farming practices by maintaining habitats for a high diversity of species in tropical landscapes. However, little information is available to evaluate whether this agrosystem can maintain functional diversity, given that agricultural changes can affect the functional components, but not the taxonomic one (e.g., species richness). Thus, considering functional traits improve the understanding of the agricultural impacts on biodiversity. Here, we measured functional diversity (functional richness‐FD, functional evenness‐FEve, and functional divergence‐Rao) and taxonomic diversity (species richness and Simpson index) to evaluate changes of bird diversity in cacao agroforestry in comparison with nearby mature forests (old‐growth forests) in the Brazilian Atlantic Forest. We used data from two landscapes with constraining areas of mature forest (49% Una and 4.8% Ilhéus) and cacao agroforestry cover (6% and 82%, respectively). To remove any bias of species richness and to evaluate assembly processes (functional overdispersion or clustering), all functional indices were adjusted using null models. Our analyses considered the entire community, as well as separately for forest specialists, habitat generalists, and birds that contribute to seed dispersal (frugivores/granivores) or invertebrate removal (insectivores). Our findings showed that small cacao agroforestry in the forested landscape sustains functional diversity (FD and FEve) as diverse as nearby forests when considering the entire community, forest specialist, and habitat generalists. However, we observed declines for frugivores/granivores and insectivores (FD and Rao). These responses of bird communities differed from those observed by taxonomic diversity, suggesting that even species‐rich communities in agroforestry may capture lower functional diversity. Furthermore, communities in both landscapes showed either functional clustering or neutral processes as the main driver of functional assembly. Functional clustering may indicate that local conditions and resources were changed or lost, while neutral assemblies may reveal high functional redundancy at the landscape scale. In Ilhéus, the neutral assembly predominance suggests an effect of functional homogenization between habitats. Thus, the conservation value of cacao agroforestry to harbor species‐rich communities and ecosystem functions relies on smallholder production with reduced farm management in a forested landscape. Finally, we emphasize that seed dispersers and insectivores should be the priority conservation targets in cacao systems.  相似文献   

9.
10.
Most edges are anthropogenic in origin, but are distinguishable by their maintaining processes (natural vs. continued anthropogenic interventions: forestry, agriculture, urbanization). We hypothesized that the dissimilar edge histories will be reflected in the diversity and assemblage composition of inhabitants. Testing this “history‐based edge effect” hypothesis, we evaluated published information on a common insect group, ground beetles (Coleoptera: Carabidae) in forest edges. A meta‐analysis showed that the diversity‐enhancing properties of edges significantly differed according to their history. Forest edges maintained by natural processes had significantly higher species richness than their interiors, while edges with continued anthropogenic influence did not. The filter function of edges was also essentially different depending on their history. For forest specialist species, edges maintained by natural processes were penetrable, allowing these species to move right through the edges, while edges still under anthropogenic interventions were impenetrable, preventing the dispersal of forest specialists out of the forest. For species inhabiting the surrounding matrix (open‐habitat and generalist species), edges created by forestry activities were penetrable, and such species also invaded the forest interior. However, natural forest edges constituted a barrier and prevented the invasion of matrix species into the forest interior. Preserving and protecting all edges maintained by natural processes, and preventing anthropogenic changes to their structure, composition, and characteristics are key factors to sustain biodiversity in forests. Moreover, the increasing presence of anthropogenic edges in a landscape is to be avoided, as they contribute to the loss of biodiversity. Simultaneously, edges under continued anthropogenic disturbance should be restored by increasing habitat heterogeneity.  相似文献   

11.
Although human‐driven landscape modification is generally characterized by habitat destruction and fragmentation, it may also result in the creation of new habitat patches, providing conditions conducive to spontaneous colonization. In this article, we propose the concept of “colonization credit” (i.e., the number of species yet to colonize a patch, following landscape changes) as a framework to evaluate the success of colonization, in terms of species richness, in new/restored habitats, taking into account the spatial structure of landscapes. The method mirrors similar approaches used to estimate extinction debt in the context of habitat fragmentation, that is, comparisons, between old and new habitat patches, of the relationships among spatial patch metrics and patch species richness. We applied our method to the case of spontaneous colonization of newly created habitat patches suitable for wet heathland plant communities in South Belgium. Colonization credit was estimated for the total species richness, the specialist species richness, and the species richness of three emergent groups (EGs) of specialist species, delineated on the basis of dispersal traits. No significant colonization credit was identified either in patches created 25–55 years ago or in those created within the past 25 years, with the exception of species from our first EG (mostly anemochorous species with long‐term persistent seed bank). However, the differential response of species in that first EG could not be explained through their characteristic life history traits. The results of this study are encouraging and suggest that deliberate, directed restoration activities could yield positive developments in a relatively short period of time.  相似文献   

12.
One of the main challenges in biodiversity conservation is to curb a further degradation and loss of high-quality habitats. In agricultural matrix landscapes, the detection of alternative habitats for habitat specialists may be a solution. Historic old parks or landscape gardens around manor houses and castles are cultural heritage of nobles, but their value in harbouring biodiversity is poorly acknowledged. Therefore we evaluated the potential of old rural parks to serve as a habitat for nemoral forest species. We recorded stand structure and the presence of forest biodiversity indicators in 74 closed-canopy stands of historic parks and compared them with 93 neighbouring mature forest remnants on ancient forest land. We estimated the importance of stand structure in relation to habitat type on biodiversity indicators. Finally we suggest single-value indicator-complexes for the cost-efficient assessment of the conservation value of forests and forest-like habitats. Park stands outclassed reference forests in several individual structural characteristics, and in combined indicators of habitat quality and biodiversity. Forests had higher estimates for the combined indicator of dead wood, but large-diameter dead wood types were more abundant in parks. Woodpeckers, several old-growth indicator epiphytes and forest herbs had successfully become established in planted forest-like park fragments. Old rural parks resemble high-conservation-value forests more than the best preserved contemporary forest remnants. After the century needed to overcome immigration delay, old parks do provide a refugium for temperate deciduous forest species. Consequently, biodiversity-targeted management should retain and enhance old-growth attributes in forests and on the peripheries of parks: e.g. preserving old trees to provide service for epiphytes, hollow trees and an understorey mosaic for birds and bats; dead wood elements for saproxylic insects and fungi; limited mowing frequency and increased cutting height for forest herbs. Forestry should enhance the recovery of mixed deciduous stands and avoid conifer plantations.  相似文献   

13.
Biodiversity conservation is confronted with increasing risk of extinction in isolated small-area remnants and the limitation of species to colonize recently formed habitats. We hypothesized that the equilibrium pattern of forest herb layer in long-term fragmented landscape should comply with the theory of island biogeography. Forests on mineral soil islands located in large mires of western Estonia were considered as dispersal target habitats, and forests on mainland and peninsulas in mires as sources. Species richness was the lowest in mainland forests and the effect was confounded by habitat structure, suggesting a negative effect of silvicultural management in easily accessible forests. We observed the ‘small island effect’, i.e. greater overall species richness in small-area habitats, which was determined by the habitat preference of shade tolerant generalists. The average species richness of common mainland forest specialists varied little, but capitalizing on the traditional approach and analyzing only island data, weak effects of distance and habitat quality were detected. At single species level, unexpectedly, many habitat specialists were observed to have successfully dispersed to islands, indicating insufficient knowledge of the long-distance dispersal mechanisms of forest-dwelling plants. In fragmented forest landscapes the theory of island biogeography can be applied to habitat specialist plant species, but only regarding the effect of isolation and in conditions of persistent forest structural quality. In the light of global changes, optimized conservation planning should primarily target on (i) the conservation of ancient habitat fragments independent of their current area, and (ii) the promotion of diversity of potential dispersal vectors in the landscape.  相似文献   

14.
Seed dispersal constitutes a pivotal process in an increasingly fragmented world, promoting population connectivity, colonization and range shifts in plants. Unveiling how multiple frugivore species disperse seeds through fragmented landscapes, operating as mobile links, has remained elusive owing to methodological constraints for monitoring seed dispersal events. We combine for the first time DNA barcoding and DNA microsatellites to identify, respectively, the frugivore species and the source trees of animal‐dispersed seeds in forest and matrix of a fragmented landscape. We found a high functional complementarity among frugivores in terms of seed deposition at different habitats (forest vs. matrix), perches (isolated trees vs. electricity pylons) and matrix sectors (close vs. far from the forest edge), cross‐habitat seed fluxes, dispersal distances and canopy‐cover dependency. Seed rain at the landscape‐scale, from forest to distant matrix sectors, was characterized by turnovers in the contribution of frugivores and source‐tree habitats: open‐habitat frugivores replaced forest‐dependent frugivores, whereas matrix trees replaced forest trees. As a result of such turnovers, the magnitude of seed rain was evenly distributed between habitats and landscape sectors. We thus uncover key mechanisms behind “biodiversity–ecosystem function” relationships, in this case, the relationship between frugivore diversity and landscape‐scale seed dispersal. Our results reveal the importance of open‐habitat frugivores, isolated fruiting trees and anthropogenic perching sites (infrastructures) in generating seed dispersal events far from the remnant forest, highlighting their potential to drive regeneration dynamics through the matrix. This study helps to broaden the “mobile‐link” concept in seed dispersal studies by providing a comprehensive and integrative view of the way in which multiple frugivore species disseminate seeds through real‐world landscapes.  相似文献   

15.
Species occupying the same geographic range can exhibit remarkably different population structures across the landscape, ranging from highly diversified to panmictic. Given limitations on collecting population‐level data for large numbers of species, ecologists seek to identify proximate organismal traits—such as dispersal ability, habitat preference and life history—that are strong predictors of realized population structure. We examined how dispersal ability and habitat structure affect the regional balance of gene flow and genetic drift within three aquatic insects that represent the range of dispersal abilities and habitat requirements observed in desert stream insect communities. For each species, we tested for linear relationships between genetic distances and geographic distances using Euclidean and landscape‐based metrics of resistance. We found that the moderate‐disperser Mesocapnia arizonensis (Plecoptera: Capniidae) has a strong isolation‐by‐distance pattern, suggesting migration–drift equilibrium. By contrast, population structure in the flightless Abedus herberti (Hemiptera: Belostomatidae) is influenced by genetic drift, while gene flow is the dominant force in the strong‐flying Boreonectes aequinoctialis (Coleoptera: Dytiscidae). The best‐fitting landscape model for M. arizonensis was based on Euclidean distance. Analyses also identified a strong spatial scale‐dependence, where landscape genetic methods only performed well for species that were intermediate in dispersal ability. Our results highlight the fact that when either gene flow or genetic drift dominates in shaping population structure, no detectable relationship between genetic and geographic distances is expected at certain spatial scales. This study provides insight into how gene flow and drift interact at the regional scale for these insects as well as the organisms that share similar habitats and dispersal abilities.  相似文献   

16.
Aim We used alien plant species introduced to a botanic garden to investigate the relative importance of species traits (leaf traits, dispersal syndrome) and introduction characteristics (propagule pressure, residence time and distance to forest) in explaining establishment success in surrounding tropical forest. We also used invasion scores from a weed risk assessment protocol as an independent measure of invasion risk and assessed differences in variables between high‐ and low‐risk species. Location East Usambara mountains, Tanzania. Methods Forest transect surveys identified species establishing in disturbed and intact forest. Leaf traits (specific leaf area and foliar nutrient concentrations) were measured from leaves sampled in high‐light environments. Results A leaf traits spectrum was apparent, but species succeeding or failing to establish in either disturbed or intact forest were not located in different parts of the spectrum. Species with high invasion risk did not differ in their location on the leaf trait spectrum compared with low‐risk species but were more likely to be bird/primate‐dispersed. For 15 species establishing in forest quadrats, median canopy cover of quadrats where seedlings were present was correlated with a species value along the leaf trait spectrum. Species establishing in disturbed forest were planted in twice as many plantations and were marginally more likely to be bird‐ or primate‐dispersed than species failing to become established in disturbed forest. Establishment in intact forest was more likely for species planted closer to forest edges. Main conclusions Leaf and dispersal traits appear less important in the colonization of tropical forest than introduction characteristics. It appears, given sufficient propagule pressure or proximity to forest, alien species are much more likely to establish independently of leaf traits or dispersal syndrome in continental tropical forests.  相似文献   

17.
Habitat loss and plant invasions are two major drivers of global change in subtropical and tropical ecosystems. Both lead to a loss of biodiversity and alter species interactions, which may imperil vital ecosystem processes such as seed dispersal by frugivores. Reponses of frugivores to disturbance are often linked to their specialization on certain habitats or resources. Yet, it is poorly understood how habitat loss and plant invasion structure interactions between plants and different habitat or feeding guilds. Here we investigated whether visitation rates of frugivores change guild‐specifically with increasing habitat loss and invasion level in a heterogeneous subtropical landscape. In 756 h of observations, we recorded 1446 plant–frugivore interactions among 18 plant species and 42 avian frugivore species. Visitation rates of forest specialists decreased with increasing habitat loss, but not with changes in invasion level. In contrast forest generalists and forest visitors were unaffected by either driver. Similarly, obligate frugivores that overall showed a generalized fruit choice were unaffected by habitat loss and changes in invasion level. Contrary, visitation rates of specialized partial and opportunistic frugivores decreased with higher invasion level. Importantly, the negative effect of plant invasion on partial frugivores was more pronounced as habitat loss in the same study site increased, indicating a synergistic effect of the two drivers. The implications of our study are twofold: first, frugivores respond guild‐specifically to habitat loss and plant invasion. Thereby forest dependency is mainly related to habitat loss, and degree of frugivory mainly related to plant invasion. Forest generalists and obligate frugivores in turn may play a key‐role for forest regeneration in disturbed forest landscapes. Second, particularly frugivores with a specialized fruit choice may be threatened by synergistic effects between habitat loss and plant invasion.  相似文献   

18.
Large‐scale modifications of natural ecosystems lead to mosaics of natural, semi‐natural and intensively used habitats. To improve communication in conservation planning, managers and other stakeholders need spatially explicit projections at the landscape scale of future biodiversity under different land‐use scenarios. For that purpose, we visualized the potential effect of five forest management scenarios on the avifauna of Kakamega Forest, western Kenya using different measures of bird diversity and GIS data. Future projections of bird diversity combined: (1) remotely sensed data on the spatial distribution of different forest management types; (2) field‐based data on the biodiversity of birds in the different management types; and (3) forest management scenarios that took into account possible views of various stakeholder groups. Management scenarios based on the species richness of forest specialists were very informative, because they reflected differences in the proportions of near‐natural forest types among the five scenarios. Projections based on community composition were even more meaningful, as they mirrored not only the proportions of near‐natural forest types, but also their perimeter to area ratios. This highlights that it is important to differentiate effects of the total area of available habitat and the degree of habitat fragmentation, both for species richness and community composition. Furthermore, our study shows that an approach that combines land‐use scenarios, remote sensing and field data on biodiversity can be used to visualize future biodiversity. As such, visualizations of alternative scenarios are valuable for successful communication about conservation planning considering different groups of stakeholders in species‐rich tropical forests.  相似文献   

19.
Habitat loss is the main driver of the current biodiversity crisis, a landscape-scale process that affects the survival of spatially-structured populations. Although it is well-established that species responses to habitat loss can be abrupt, the existence of a biodiversity threshold is still the cause of much controversy in the literature and would require that most species respond similarly to the loss of native vegetation. Here we test the existence of a biodiversity threshold, i.e. an abrupt decline in species richness, with habitat loss. We draw on a spatially-replicated dataset on Atlantic forest small mammals, consisting of 16 sampling sites divided between forests and matrix habitats in each of five 3600-ha landscapes (varying from 5% to 45% forest cover), and on an a priori classification of species into habitat requirement categories (forest specialists, habitat generalists and open-area specialists). Forest specialists declined abruptly below 30% of forest cover, and spillover to the matrix occurred only in more forested landscapes. Generalists responded positively to landscape heterogeneity, peaking at intermediary levels of forest cover. Open area specialists dominated the matrix and did not spillover to forests. As a result of these distinct responses, we observed a biodiversity threshold for the small mammal community below 30% forest cover, and a peak in species richness just above this threshold. Our results highlight that cross habitat spillover may be asymmetrical and contingent on landscape context, occurring mainly from forests to the matrix and only in more forested landscapes. Moreover, they indicate the potential for biodiversity thresholds in human-modified landscapes, and the importance of landscape heterogeneity to biodiversity. Since forest loss affected not only the conservation value of forest patches, but also the potential for biodiversity-mediated services in anthropogenic habitats, our work indicates the importance of proactive measures to avoid human-modified landscapes to cross this threshold.  相似文献   

20.
  • Meta‐communities of habitat islands may be essential to maintain biodiversity in anthropogenic landscapes allowing rescue effects in local habitat patches. To understand the species‐assembly mechanisms and dynamics of such ecosystems, it is important to test how local plant‐community diversity and composition is affected by spatial isolation and hence by dispersal limitation and local environmental conditions acting as filters for local species sorting.We used a system of 46 small wetlands (kettle holes)—natural small‐scale freshwater habitats rarely considered in nature conservation policies—embedded in an intensively managed agricultural matrix in northern Germany. We compared two types of kettle holes with distinct topographies (flat‐sloped, ephemeral, frequently plowed kettle holes vs. steep‐sloped, more permanent ones) and determined 254 vascular plant species within these ecosystems, as well as plant functional traits and nearest neighbor distances to other kettle holes.Differences in alpha and beta diversity between steep permanent compared with ephemeral flat kettle holes were mainly explained by species sorting and niche processes and mass effect processes in ephemeral flat kettle holes. The plant‐community composition as well as the community trait distribution in terms of life span, breeding system, dispersal ability, and longevity of seed banks significantly differed between the two habitat types. Flat ephemeral kettle holes held a higher percentage of non‐perennial plants with a more persistent seed bank, less obligate outbreeders and more species with seed dispersal abilities via animal vectors compared with steep‐sloped, more permanent kettle holes that had a higher percentage of wind‐dispersed species. In the flat kettle holes, plant‐species richness was negatively correlated with the degree of isolation, whereas no such pattern was found for the permanent kettle holes.Synthesis: Environment acts as filter shaping plant diversity (alpha and beta) and plant‐community trait distribution between steep permanent compared with ephemeral flat kettle holes supporting species sorting and niche mechanisms as expected, but we identified a mass effect in ephemeral kettle holes only. Flat ephemeral kettle holes can be regarded as meta‐ecosystems that strongly depend on seed dispersal and recruitment from a seed bank, whereas neighboring permanent kettle holes have a more stable local species diversity.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号