首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
NR4A nuclear receptors are a diverse group of orphan nuclear receptors with critical roles in regulating cell proliferation and cell differentiation. The ortholog of the NR4A nuclear receptor in Caenorhabditis elegans, NHR‐6, also has a role in cell proliferation and cell differentiation during organogenesis of the spermatheca. Here we show that NHR‐6 is able to bind the canonical NR4A monomer response element and can transactivate from this site in mammalian HEK293 cells. Using a functional GFP‐tagged NHR‐6 fusion, we also demonstrate that NHR‐6 is nuclear localized during development of the spermatheca. Mutation of the DNA‐binding domain of NHR‐6 abolishes its activity in genetic rescue assays, demonstrating a requirement for the DNA‐binding domain. This study represents the first genetic demonstration of an in vivo requirement for an NR4A nuclear receptor DNA‐binding domain in a whole organism. genesis 48:485–491, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
3.
4.
Although dietary restriction (DR) is known to extend lifespan across species, from yeast to mammals, the signalling events downstream of food/nutrient perception are not well understood. In Caenorhabditis elegans, DR is typically attained either by using the eat‐2 mutants that have reduced pharyngeal pumping leading to lower food intake or by feeding diluted bacterial food to the worms. In this study, we show that knocking down a mammalian MEKK3‐like kinase gene, mekk‐3 in C. elegans, initiates a process similar to DR without compromising food intake. This DR‐like state results in upregulation of beta‐oxidation genes through the nuclear hormone receptor NHR‐49, a HNF‐4 homolog, resulting in depletion of stored fat. This metabolic shift leads to low levels of reactive oxygen species (ROS), potent oxidizing agents that damage macromolecules. Increased beta‐oxidation, in turn, induces the phase I and II xenobiotic detoxification genes, through PHA‐4/FOXA, NHR‐8 and aryl hydrocarbon receptor AHR‐1, possibly to purge lipophilic endotoxins generated during fatty acid catabolism. The coupling of a metabolic shift with endotoxin detoxification results in extreme longevity following mekk‐3 knock‐down. Thus, MEKK‐3 may function as an important nutrient sensor and signalling component within the organism that controls metabolism. Knocking down mekk‐3 may signal an imminent nutrient crisis that results in initiation of a DR‐like state, even when food is plentiful.  相似文献   

5.
The gene nhr-6 encodes the Caenorhabditis elegans ortholog of the NR4A nuclear receptor. We determined the biological functions of NHR-6 through the isolation and characterization of a deletion allele of nhr-6, lg6001. We demonstrate that nhr-6 has an essential role in the development of the C. elegans somatic gonad. Specifically, nhr-6 is required for the development of the hermaphrodite spermatheca, a somatic gonad organ that serves as the site of sperm storage and oocyte fertilization. Using a variety of spermatheca cell markers, we have determined that loss of nhr-6 function causes severe morphological defects in the spermatheca and associated spermathecal valves. This appears to be due to specific requirements for nhr-6 in regulating cell proliferation and cell differentiation during development of these structures. The improper development of these structures in nhr-6(lg6001) mutants leads to defects in ovulation and significantly reduced fecundity of C. elegans hermaphrodites. The phenotypes of nhr-6(lg6001) mutants are consistent with a role for nhr-6 in organogenesis, similar to the functions of its mammalian homologs.  相似文献   

6.
7.
Heparan sulfate (HS) interacts with numerous growth factors, morphogens, receptors, and extracellular matrix proteins. Disruption of HS synthetic enzymes causes perturbation of growth factor signaling and malformation in vertebrate and invertebrate development. Our previous studies show that the O‐sulfation patterns of HS are essential for the specific binding of growth factors to HS chains, and that depletion of O‐sulfotransferases results in remarkable developmental defects in Drosophila, zebrafish, chick, and mouse. Here, we show that inhibition of chick HS‐6‐O‐sulfotransferases (HS6ST‐1 and HS6ST‐2) in the prospective limb region by RNA interference (RNAi) resulted in the truncation of limb buds and reduced Fgf‐8 and Fgf‐10 expressions in the apical ectodermal ridge and in the underlying mesenchyme, respectively. HS6ST‐2 RNAi resulted in a higher frequency of limb truncation and a more marked change in both Fgf‐8 and Fgf‐10 expressions than that achieved with HS6ST‐1 RNAi. HS6ST‐1 RNAi and HS6ST‐2 RNAi caused a significant but distinct reduction in the levels of different 6‐O‐sulfation in HS, possibly as a result of their different substrate specificities. Our data support a model where proper levels and patterns of 6‐O‐sulfation of HS play essential roles in chick limb bud development.  相似文献   

8.
9.
10.
11.
12.
NDG‐4 is a predicted transmembrane acyltransferase protein that acts in the distribution of lipophilic factors. Consequently, ndg‐4 mutants lay eggs with a pale appearance due to lack of yolk, and they are resistant to sterility caused by dietary supplementation with the long‐chain omega‐6 polyunsaturated fatty acid dihommogamma‐linolenic acid (DGLA). Two other proteins, NRF‐5 and NRF‐6, a homolog of a mammalian secreted lipid binding protein and a NDG‐4 homolog, respectively, have previously been shown to function in the same lipid transport pathway. Here, we report that mutation of the NDG‐4 protein results in increased organismal stress resistance and lifespan. When NDG‐4 function and insulin/IGF‐1 signaling are reduced simultaneously, maximum lifespan is increased almost fivefold. Thus, longevity conferred by mutation of ndg‐4 is partially overlapping with insulin signaling. The nuclear hormone receptor NHR‐80 (HNF4 homolog) is required for longevity in germline less animals. We find that NHR‐80 is also required for longevity of ndg‐4 mutants. Moreover, we find that nrf‐5 and nrf‐6 mutants also have extended lifespan and increased stress resistance, suggesting that altered lipid transport and metabolism play key roles in determining lifespan.  相似文献   

13.
14.
15.
16.
17.
18.
Nuclear receptor subfamily 6, group A, member 1 (NR6A1), also known as germ cell nuclear factor/retinoid receptor‐related testis‐associated receptor and neuronal cell nuclear factor, is a member of the nuclear orphan receptor superfamily. NR6A1 has been cloned in various species including humans and mice, but it has been scarcely investigated in avian species. In the present study, we cloned the chicken NR6A1 (cNR6A1) from a testis cDNA library. The cloned cNR6A1 sequence was mapped to chromosome 17 and contained an open reading frame of 1.4 kb encoding 445 amino acids. Multiple alignment analysis of the cNR6A1 protein‐coding sequence with NR6A1s from humans, mice, boars, rats, zebrafish, and Xenopus showed high degrees of homology, 89%, 90%, 89%, 88%, 83%, and 87%, respectively. Using RNA interference, changes in the expression of pluripotency‐, germ cell‐, and differentiation‐related key genes by silencing of cNR6A1 were validated in chicken blastoderm‐derived embryonic stem cells. Among those genes, the relative expression levels of POU5F1, CRIPTO, DAZL, DDX4, BMP15, GSC, and SOX7 changed significantly compared to the control group. We also confirmed that the activity of alkaline phosphatase, known as a pluripotency marker, was maintained by cNR6A1 gene silencing in chicken blastodermal cells. Collectively, our data suggest that cNR6A1 may play an important role during chicken embryonic development and differentiation. Mol. Reprod. Dev. 77: 273–284, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
In Caenorhabditis elegans, longevity is increased by a partial loss‐of‐function mutation in the mitochondrial complex III subunit gene isp‐1. Longevity is also increased by RNAi against the expression of a variety of mitochondrial respiratory chain genes, including isp‐1, but it is unknown whether the isp‐1(qm150) mutation and the RNAi treatments trigger the same underlying mechanisms of longevity. We have identified nuo‐6(qm200), a mutation in a conserved subunit of mitochondrial complex I (NUDFB4). The mutation reduces the function of complex I and, like isp‐1(qm150), results in low oxygen consumption, slow growth, slow behavior, and increased lifespan. We have compared the phenotypes of nuo‐6(qm200) to those of nuo‐6(RNAi) and found them to be distinct in crucial ways, including patterns of growth and fertility, behavioral rates, oxygen consumption, ATP levels, autophagy, and resistance to paraquat, as well as expression of superoxide dismutases, mitochondrial heat‐shock proteins, and other gene expression markers. RNAi treatments appear to generate a stress and autophagy response, while the genomic mutation alters electron transport and reactive oxygen species metabolism. For many phenotypes, we also compared isp‐1(qm150) to isp‐1(RNAi) and found the same pattern of differences. Most importantly, we found that, while the lifespan of nuo‐6, isp‐1 double mutants is not greater than that of the single mutants, the lifespan increase induced by nuo‐6(RNAi) is fully additive to that induced by isp‐1(qm150), and the increase induced by isp‐1(RNAi) is fully additive to that induced by nuo‐6(qm200). Our results demonstrate that distinct and separable aspects of mitochondrial biology affect lifespan independently.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号