首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Specialization is fundamentally important in biology because specialized traits allow species to expand into new environments, in turn promoting population differentiation and speciation. Specialization often results in trade‐offs between traits that maximize fitness in one environment but not others. Despite the ubiquity of trade‐offs, we know relatively little about how consistently trade‐offs evolve between populations when multiple sets of populations experience similarly divergent selective regimes. In the present study, we report a case study on Brachyrhaphis fishes from different predation environments. We evaluate apparent within/between population trade‐offs in burst‐speed and endurance at two levels of evolutionary diversification: high‐ and low‐predation populations of Brachyrhaphis rhabdophora, and sister species Brachyrhaphis roseni and Brachyrhaphis terrabensis, which occur in high‐ and low‐predation environments, respectively. Populations of Brachyrhaphis experiencing different predation regimes consistently evolved swimming specializations indicative of a trade‐off between two swimming forms that are likely highly adaptive in the environment in which they occur. We show that populations have become similarly locally adapted at both levels of diversification, suggesting that swimming specialization has evolved rather rapidly and persisted post‐speciation. Our findings provide valuable insight into how local adaptation evolves at different stages of evolutionary divergence.  相似文献   

2.
Predation can drive morphological divergence in prey populations, although examples of divergent selection are typically limited to nonreproductive individuals. In livebearing females, shape often changes drastically during pregnancy, reducing speed and mobility and enhancing susceptibility to predation. In the present study, we document morphological divergence among populations of nonreproductive female livebearing fish (Brachyrhaphis rhabdophora) in predator and nonpredator environments. We then test the hypothesis that shape differences among nonreproductive females are maintained among reproductive females between predator and nonpredator environments. Nonreproductive females in predator environments had larger caudal regions and more fusiform bodies than females in nonpredator environments; traits that are associated with burst speed in fish. Shape differences were maintained in reproductive females, although the magnitude of this difference declined relative to nonreproductive females, suggesting morphological convergence during pregnancy. Phenotypic change vector analysis revealed that females in predator environments became more similar to females in nonpredator environments in the transition from nonreproductive to reproductive. Furthermore, the level of reproductive allocation affected shape similarly between predator environments. These results suggest a life‐history constraint on morphology, in which predator‐driven morphological divergence among nonreproductive B. rhabdophora is not maintained at the same level during pregnancy. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 386–392.  相似文献   

3.
Individual variation in resource acquisition should have consequences for life‐history traits and trade‐offs between them because such variation determines how many resources can be allocated to different life‐history functions, such as growth, survival and reproduction. Since resource acquisition can vary across an individual's life cycle, the consequences for life‐history traits and trade‐offs may depend on when during the life cycle resources are limited. We tested for differential and/or interactive effects of variation in resource acquisition in the burying beetle Nicrophorus vespilloides. We designed an experiment in which individuals acquired high or low amounts of resources across three stages of the life cycle: larval development, prior to breeding and the onset of breeding in a fully crossed design. Resource acquisition during larval development and prior to breeding affected egg size and offspring survival, respectively. Meanwhile, resource acquisition at the onset of breeding affected size and number of both eggs and offspring. In addition, there were interactive effects between resource acquisition at different stages on egg size and offspring survival. However, only when females acquired few resources at the onset of breeding was there evidence for a trade‐off between offspring size and number. Our results demonstrate that individual variation in resource acquisition during different stages of the life cycle has important consequences for life‐history traits but limited effects on trade‐offs. This suggests that in species that acquire a fixed‐sized resource at the onset of breeding, the size of this resource has larger effects on life‐history trade‐offs than resources acquired at earlier stages.  相似文献   

4.
Sexually selected ornaments and signals are costly to maintain if they are maladaptive in nonreproductive contexts. The jumping spider Cosmophasis umbratica exhibits distinct sexual dichromatism with males displaying elaborate UV body markings that signal male quality. Female C. umbratica respond favorably to UV‐reflecting males and ignore males that have their UV masked. However, Portia labiata, a UV‐sensitive spider‐eating specialist and a natural predator of C. umbratica, is known to use UV reflectance as a cue when hunting prey. We investigated the cost of these UV signals in C. umbratica in terms of their predation risk. Under experimental conditions, three choice scenarios were presented to P. labiata individuals. Choices by P. labiata were made between male C. umbratica with and without the UV signal; a UV‐reflecting male and non‐UV‐reflecting female; and a UV‐masked male and female. The presence and absence of UV signals was manipulated using an optical filter. Portia labiata exhibited a strong bias toward UV+ individuals. These results suggest the sexually selected trait of UV reflectance increases the visibility of males to UV‐sensitive predators. The extent of this male‐specific UV signal then is potentially moderated by predation pressure. Interestingly though, P. labiata still preferred males to females irrespective of whether UV reflectance was present or not. This suggests P. labiata can switch cues when conditions to detect UV reflectance are not optimal.  相似文献   

5.
Seasonal polyphenism constitutes a specific type of phenotypic plasticity in which short‐lived organisms produce different phenotypes in different times of the year. Seasonal generations of such species frequently differ in their overall lifespan and in the values of traits closely related to fitness. Seasonal polyphenisms provide thus excellent, albeit underused model systems for studying trade‐offs between life‐history traits. Here, we compare immunological parameters between the two generations of the European map butterfly (Araschnia levana), a well‐known example of a seasonally polyphenic species. To reveal possible costs of immune defence, we also examine the concurrent differences in several life‐history traits. Both in laboratory experiments and in the field, last instar larvae heading towards the diapause (overwintering) had higher levels of both phenoloxidase (PO) activity and lytic activity than directly developing individuals. These results suggest that individuals from the diapausing generation with much longer juvenile (pupal) period invest more in their immune system than those from the short‐living directly developing generation. The revealed negative correlation between pupal mass and PO activity may be one of the reasons why, in this species, the diapausing generation has a smaller body size than the directly developing generation. Immunological parameters may thus well mediate trade‐offs between body size‐related traits.  相似文献   

6.
Evolutionary dynamics of integrative traits such as phenology are predicted to be critically important to range expansion and invasion success, yet there are few empirical examples of such phenomena. In this study, we used multiple common gardens to examine the evolutionary significance of latitudinal variation in phenology of a widespread invasive species, the Asian short‐day flowering annual grass Microstegium vimineum. In environmentally controlled growth chambers, we grew plants from seeds collected from multiple latitudes across the species' invasive range. Flowering time and biomass were both strongly correlated with the latitude of population origin such that populations collected from more northern latitudes flowered significantly earlier and at lower biomass than populations from southern locations. We suggest that this pattern may be the result of rapid adaptive evolution of phenology over a period of less than one hundred years and that such changes have likely promoted the northward range expansion of this species. We note that possible barriers to gene flow, including bottlenecks and inbreeding, have apparently not forestalled evolutionary processes for this plant. Furthermore, we hypothesize that evolution of phenology may be a widespread and potentially essential process during range expansion for many invasive plant species.  相似文献   

7.
Invasive species cope with novel environments through both phenotypic plasticity and evolutionary change. However, the environmental factors that cause evolutionary divergence in invasive species are poorly understood. We developed predictions for how different life‐history traits, and plasticity in those traits, may respond to environmental gradients in seasonal temperatures, season length and natural enemies. We then tested these predictions in four geographic populations of the invasive cabbage white butterfly (Pieris rapae) from North America. We examined the influence of two rearing temperatures (20 and 26.7 °C) on pupal mass, pupal development time, immune function and fecundity. As predicted, development time was shorter and immune function was greater in populations adapted to longer season length. Also, phenotypic plasticity in development time was greater in regions with shorter growing seasons. Populations differed significantly in mean and plasticity of body mass and fecundity, but these differences were not associated with seasonal temperatures or season length. Our study shows that some life‐history traits, such as development time and immune function, can evolve rapidly in response to latitudinal variation in season length and natural enemies, whereas others traits did not. Our results also indicate that phenotypic plasticity in development time can also diverge rapidly in response to environmental conditions for some traits.  相似文献   

8.
1. It was determined if the predatory midge Corethrella appendiculata Grabham imposes a fitness cost in a native mosquito, Ochlerotatus triseriatus Say, and an invasive mosquito, Aedes albopictus Skuse. The hypothesis that decreased activity of immature prey in the presence of predator cues is associated with life history costs through all life cycle stages was tested. 2. In experiment 1, individual larvae of O. triseriatus or A. albopictus were raised in the presence or absence of predation cues at two resource levels. Prey were video recorded to detect behavioural responses and to measure development time, size at emergence, and adult longevity. In experiment 2, prey populations were reared in similar environments and the frequency of predator cue additions was varied. 3. Only O. triseriatus reduced its activity in the presence of predation cues. Predation cues were associated with longer immature development times and shorter adult life spans in O. triseriatus, whereas in A. albopictus, the cues were associated with a larger size of emerging adults. 4. In the present study, it was found that behavioural modifications during the larval stage can affect mosquitoes through multiple stages of their complex life cycle. The species‐specific behavioural differences are probably attributable to the longer evolutionary history O. triseriatus has with predators, relative to the invasive A. albopictus.  相似文献   

9.
The intertidal snail Littorina saxatilis has repeatedly evolved two parallel ecotypes assumed to be wave adapted and predatory shore crab adapted, but the magnitude and targets of predator‐driven selection are unknown. In Spain, a small, wave ecotype with a large aperture from the lower shore and a large, thick‐shelled crab ecotype from the upper shore meet in the mid‐shore and show partial size‐assortative mating. We performed complementary field tethering and laboratory predation experiments; the first set compared the survival of two different size‐classes of the crab ecotype while the second compared the same size‐class of the two ecotypes. In the first set, the large size‐class of the crab ecotype survived significantly better than the small size‐class both on the upper shore and in the laboratory. In the second set, the small size‐class of the crab ecotype survived substantially better than that of the wave ecotype both on the upper shore and in the laboratory. Shell‐breaking predation on tethered snails was almost absent within the lower shore. In the laboratory shore crabs (Pachygrapsus marmoratus) with larger claw heights selected most strongly against the small size‐class of the crab ecotype, whereas those with medium claw heights selected most strongly against the thin‐shelled wave ecotype. Sexual maturity occurred at a much larger size in the crab ecotype than in the wave ecotype. Our results showed that selection on the upper shore for rapid attainment of a size refuge from this gape‐limited predator favors large size, thick shells, and late maturity. Model parameterization showed that size‐selective predation restricted to the upper shore resulted in the evolution of the crab ecotype despite gene flow from the wave ecotype snails living on the lower shore. These results on gape‐limited predation and previous ones showing size‐assortative mating between ecotypes suggest that size may represent a magic trait for the thick‐shelled ecotype.  相似文献   

10.
The limited availability of resources is predicted to impose trade‐offs between growth, reproduction and self‐maintenance in animals. However, although some studies have shown that early reproduction suppresses growth, reproduction positively correlates with size in others. We use detailed records from a large population of semi‐captive elephants in Myanmar to assess the relationships between size (height and weight), reproduction and survival in female Asian elephants, a species characterized by slow, costly life history. Although female height gain during the growth period overlapped little with reproductive onset in the population, there was large variation in age at first reproduction and only 81% of final weight had been reached by peak age of reproduction at the population level (19 years). Those females beginning reproduction early tended to be taller and lighter later in life, although these trends were not significant. We found that taller females were more likely to have reproduced by a given age, but such effects diminished with age, suggesting there may be a size threshold to reproduction which is especially important in young females. Because size was not linked with female survival during reproductive ages, the diminishing effect of height on reproduction with age is unlikely to be due to biased survival of larger females. We conclude that although reproduction may not always impose significant costs on growth, height may be a limiting factor to reproduction in young female Asian elephants, which could have important implications considering their birth rates are low and peak reproduction is young – 19 years in this population.  相似文献   

11.
Legumes can preferentially select beneficial rhizobial symbionts and sanction ineffective strains that fail to fix nitrogen. Yet paradoxically, rhizobial populations vary from highly beneficial to ineffective in natural and agricultural soils. Classic models of symbiosis focus on the single dimension of symbiont cost‐benefit to sympatric hosts, but fail to explain the widespread persistence of ineffective rhizobia. Here, we test a novel framework predicting that spatio‐temporal and community dynamics can maintain ineffective strains in rhizobial populations. We used clonal and multistrain inoculations and quantitative culturing to investigate the relative fitness of four focal Bradyrhizobium strains varying from effective to ineffective on Acmispon strigosus. We found that an ineffective Bradyrhizobium strain can be sanctioned by its native A. strigosus host across the host's range, forming fewer and smaller nodules compared to beneficial strains. But the same ineffective Bradyrhizobium strain exhibits a nearly opposite pattern on the broadly sympatric host Acmispon wrangelianus, forming large nodules in both clonal and multistrain inoculations. These data suggest that community‐level effects could favour the persistence of ineffective rhizobia and contribute to variation in symbiotic nitrogen fixation.  相似文献   

12.
Cases of geographically restricted co‐occurring sister taxa are rare and may point to potential divergence with gene flow. The two bat species Murina gracilis and Murina recondita are both endemic to Taiwan and are putative sister species. To test for nonallopatric divergence and gene flow in these taxa, we generated sequences using Sanger and next‐generation sequencing, and combined these with microsatellite data for coalescent‐based analyses. MtDNA phylogenies supported the reciprocally monophyletic sister relationship between M. gracilis and M. recondita; however, clustering of microsatellite genotypes revealed several cases of species admixture suggesting possible introgression. Sequencing of microsatellite flanking regions revealed that admixture signatures stemmed from microsatellite allele homoplasy rather than recent introgressive hybridization, and also uncovered an unexpected sister relationship between M. recondita and the continental species Murina eleryi, to the exclusion of M. gracilis. To dissect the basis of these conflicts between ncDNA and mtDNA, we analysed sequences from 10 anonymous ncDNA loci with *beast and isolation‐with‐migration and found two distinct clades of M. eleryi, one of which was sister to M. recondita. We conclude that Taiwan was colonized by the ancestor of M. gracilis first, followed by the ancestor of M. recondita after a period of allopatric divergence. After colonization, the mitochondrial genome of M. recondita was replaced by that of the resident M. gracilis. This study illustrates how apparent signatures of sympatric divergence can arise from complex histories of allopatric divergence, colonization and hybridization, thus highlighting the need for rigorous analyses to distinguish between such scenarios.  相似文献   

13.
Reproductive traits differ between intralacustrine Arctic charr morphs. Here, we examine three sympatric lacustrine Arctic charr morphs with respect to fecundity, egg size and spawning time/site to assess reproductive investments and trade‐offs, and possible fitness consequences. The littoral omnivore morph (LO‐morph) utilizes the upper water for feeding and reproduction and spawn early in October. The large profundal piscivore morph (PP‐morph) and the small profundal benthivore morph (PB‐morph) utilize the profundal habitat for feeding and reproduction and spawn in December and November, respectively. Females from all morphs were sampled for fecundity and egg‐size analysis. There were large differences between the morphs. The PB‐morph had the lowest fecundity (mean = 45, SD = 13) and smallest egg size (mean = 3.2 mm, SD = 0.32 mm). In contrast, the PP‐morph had the highest fecundity (mean = 859.5, SD = 462) and the largest egg size (mean = 4.5 mm, SD = 0.46 mm), whereas the LO‐morph had intermediate fecundity (mean = 580, SD = 225) and egg size (mean = 4.3, SD = 0.24 mm). Fecundity increased with increasing body size within each morph. This was not the case for egg size, which was independent of body sizes within morph. Different adaptations to feeding and habitat utilization have apparently led to a difference in the trade‐off between fecundity and egg size among the three different morphs.  相似文献   

14.
In the honey bee, hygienic behaviour, the removal of dead or diseased brood from capped cells by workers, is a heritable trait that confers colony‐level resistance against brood diseases. This behaviour is quite rare. Only c. 10% of unselected colonies show high levels of hygiene. Previous studies suggested that hygiene might be rare because it also results in the removal of healthy brood, thereby imposing an ongoing cost even when brood diseases are absent. We tested this hypothesis by quantifying hygienic behaviour in 10 colonies using a standard technique, the freeze‐killed brood (FKB) bioassay. At the same time, we also quantified the removal of untreated brood. The study colonies showed a wide range in hygienic behaviour, removing 19.7–100% of the FKB. The removal of untreated brood ranged from 2% to 44.4%. However, there was no correlation between the two removal rates for any of the four age groups of untreated brood studied (eggs, young larvae, older larvae from uncapped cells and larvae/pupae from capped cells). These results do not support the cost‐to‐healthy‐brood hypothesis for the rarity of hygienic behaviour.  相似文献   

15.
Female birds may adjust their offspring phenotype to the specific requirements of the environment by differential allocation of physiologically active substances into yolks, such as androgens. Yolk androgens have been shown to accelerate embryonic development, growth rate and competitive ability of nestlings, but they can also entail immunological costs. The balance between costs and benefits of androgen allocation is expected to depend on nestling environment. We tested this hypothesis in a multibrooded passerine, the spotless starling, Sturnus unicolor. We experimentally manipulated yolk androgen levels using a between‐brood design and evaluated its effects on nestling development, survival and immune function. Both in first and replacement broods, the embryonic development period was shorter for androgen‐treated chicks than controls, but there were no differences in second broods. In replacement broods, androgen‐treated chicks were heavier and larger than those hatched from control eggs, but this effect was not observed in the other breeding attempts. Androgen exposure reduced survival with respect to controls only in second broods. Regarding immune function, we detected nonsignificant trends for androgen treatment to activate two important components of innate and adaptive immunity (IL‐6 and Ig‐A levels, respectively). Similarly, androgen‐treated chicks showed greater lymphocyte proliferation than controls in the first brood and an opposite trend in the second brood. Our results indicate that yolk androgen effects on nestling development and immunity depend on the environmental conditions of each breeding attempt. Variation in maternal androgen allocation to eggs could be explained as the result of context‐dependent optimal strategies to maximize offspring fitness.  相似文献   

16.
In a rapidly changing world, phenotypic plasticity may be a critical mechanism allowing populations to rapidly acclimate when faced with novel anthropogenic stressors. Theory predicts that if exposure to anthropogenic stress is heterogeneous, plasticity should be maintained as it allows organisms to avoid unnecessary expression of costly traits (i.e., phenotypic costs) when stressors are absent. Conversely, if exposure to stressors becomes constant, costs or limits of plasticity may lead to evolutionary trait canalization (i.e., genetic assimilation). While these concepts are well‐established in theory, few studies have examined whether these factors explain patterns of plasticity in natural populations facing anthropogenic stress. Using wild populations of wood frogs that vary in plasticity in tolerance to pesticides, the goal of this study was to evaluate the environmental conditions under which plasticity is expected to be advantageous or detrimental. We found that when pesticides were absent, more plastic populations exhibited lower pesticide tolerance and were more fit than less plastic populations, likely avoiding the cost of expressing high tolerance when it was not necessary. Contrary to our predictions, when pesticides were present, more plastic populations were as fit as less plastic populations, showing no signs of costs or limits of plasticity. Amidst unprecedented global change, understanding the factors shaping the evolution of plasticity will become increasingly important.  相似文献   

17.
Both constitutive and inducible antipredator strategies are ubiquitous in nature and serve to maximize fitness under a predation threat. Inducible strategies may be favored over constitutive defenses depending on their relative cost and benefit and temporal variability in predator presence. In African temporary ponds, annual killifish of the genus Nothobranchius are variably exposed to predators, depending on whether larger fish invade their habitat from nearby rivers during floods. Nonetheless, potential plastic responses to predation risk are poorly known. Here, we studied whether Nothobranchius furzeri individuals adjust their life history in response to a predation threat. For this, we monitored key life history traits in response to cues that signal the presence of predatory pumpkinseed sunfish (Lepomis gibbosus). While growth rate, adult body size, age at maturation, and initial fecundity were not affected, peak and total fecundity were higher in the predation risk treatment. This contrasts with known life history strategies of killifish from permanent waters, which tend to reduce reproduction in the presence of predators. Although our results show that N. furzeri individuals are able to detect predators and respond to their presence by modulating their reproductive output, these responses only become evident after a few clutches have been deposited. Overall our findings suggest that, in the presence of a predation risk, it can be beneficial to increase the production of life stages that can persist until the predation risk has faded.  相似文献   

18.
The role of species divergence due to ecologically based divergent selection—or ecological speciation—in generating and maintaining biodiversity is a central question in evolutionary biology. Comparison of the genomes of phylogenetically related taxa spanning a selective habitat gradient enables discovery of divergent signatures of selection and thereby provides valuable insight into the role of divergent ecological selection in speciation. Tidal marsh ecosystems provide tractable opportunities for studying organisms' adaptations to selective pressures that underlie ecological divergence. Sharp environmental gradients across the saline–freshwater ecotone within tidal marshes present extreme adaptive challenges to terrestrial vertebrates. Here, we sequence 20 whole genomes of two avian sister species endemic to tidal marshes—the saltmarsh sparrow (Ammospiza caudacutus) and Nelson's sparrow (A. nelsoni)—to evaluate the influence of selective and demographic processes in shaping genome‐wide patterns of divergence. Genome‐wide divergence between these two recently diverged sister species was notably high (genome‐wide FST = 0.32). Against a background of high genome‐wide divergence, regions of elevated divergence were widespread throughout the genome, as opposed to focused within islands of differentiation. These patterns may be the result of genetic drift resulting from past tidal march colonization events in conjunction with divergent selection to different environments. We identified several candidate genes that exhibited elevated divergence between saltmarsh and Nelson's sparrows, including genes linked to osmotic regulation, circadian rhythm, and plumage melanism—all putative candidates linked to adaptation to tidal marsh environments. These findings provide new insights into the roles of divergent selection and genetic drift in generating and maintaining biodiversity.  相似文献   

19.
Large genetic variations in starvation tolerance in animals indicate that there are multiple strategies to cope with low‐nutrient conditions. Fruit flies (Drosophila melanogaster) typically respond to starvation by suppressing sleep and enhancing locomotor activity presumably to search for food. However, we hypothesized that in a natural population, there are costs and benefits to sleep suppression under low‐nutrient conditions and that conserving energy through sleep could be a better strategy depending on food availability. In this study, we quantified the variation in sleep‐related traits in 21 wild‐derived inbred lines from Katsunuma, Japan, under fed and starved conditions and analysed the relationship between those traits and starvation tolerance. Although most of the lines responded to starvation by suppressing the total time in sleep, there were indeed two lines that responded by significantly increasing the sleep‐bout durations and thus not reducing the total time in sleep. These genotypes survived longer in acute starvation conditions compared to genotypes that responded by the immediate suppression of sleep, which could be due to the reduced metabolic rate during the long uninterrupted sleep bouts. The coexistence of the enhanced foraging and resting strategies upon starvation within a single population is consistent with the presence of a behavioural trade‐off between food search and energy conservation due to unpredictable food availability in nature. These results provide insights into the evolutionary mechanisms that contribute to the maintenance of genetic variations underlying environmental stress resistance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号