首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fire suppression and climate change are leading to habitat fragmentation in temperate montane meadows across the globe, raising concerns about biodiversity loss. Restoration strategies may depend on the rate and nature of species response to habitat loss. We examined the effects of habitat loss and fragmentation on plants and nocturnal moths in natural montane meadows in the western Cascades, Oregon, USA, using generalized additive mixed models, non-metric multidimensional scaling, and multiple response permutation procedure. Historic (1949) rather than current (2005) meadow size explained species richness of herbaceous plants and herb-feeding moths and meadow plant community structure, indicating that loss of meadow species may be delayed by many decades following loss of meadow habitat, resulting in an extinction debt. In contrast, abundance of herb-feeding moths and species richness and abundance of woody plant-feeding moths were related to recent meadow configuration: as meadows are invaded by woody plants, abundance of meadow species declines, and woody plants and associated moths increase. Despite decades of fire suppression and climate change, montane meadows in many temperate mountain landscapes may still be amenable to restoration.  相似文献   

2.
A negative species richness–productivity relationship is often described in grasslands at smaller scales. We aimed to study the effect of management on this relationship. In particular, we addressed the relative importance of biomass cutting, hay removal and nutrient impoverishment on species richness and growth form structure. We conducted fieldwork in flooded meadows in Alam-Pedja Nature Reserve, central Estonia. We sampled vegetation in managed and abandoned stands of two types of alluvial meadows, sedge and tall forb meadow. Aboveground biomass and litter were harvested, weighed and analysed for major plant nutrients by near infrared reflectance spectroscopy. Three groups of general additive models were developed and compared, addressing the impact of (i) productivity, (ii) nutrients and (iii) management regime on species richness. Management—mowing and hay removal—reduced the amount of litter but not aboveground biomass. Management led to a decrease in nitrogen in the biomass and enhanced species richness, particularly in the tall forb meadow. The strongest determinant of species richness was the amount of litter, exhibiting a hump-shaped relationship with richness. The effect of nitrogen supply was significant, but explained less variation. Management increased the proportion of sedges in the sedge meadow and of small herbs in the tall forb meadow. We conclude that litter removal is the most important management means to support biodiversity. On highly productive sites, reducing nutrients via hay removal is of secondary importance within a timeframe of 10 years.  相似文献   

3.
Agricultural intensification and loss of semi-natural grassland have contributed to biodiversity decline, including pollinator species, in pastures around the world. To reverse the decline, agri-environmental schemes have been implemented, varying widely in effectiveness. In addition, many countries, including the Netherlands, have established nature reserves in which semi-natural grasslands are restored and are often managed for specific groups of species, e.g. meadow birds or plants. The effects of such measures on insect biodiversity are not well known but recent reports on the dramatic decline of insect biomass in nature reserves have put even more attention to the impact of land use and management on biodiversity. This study compares pollinator abundance and species richness in three common semi-natural grassland management types in the Netherlands: (1) hay meadows, (2) herb-rich grasslands and (3) meadow bird grasslands. Pollinator abundance and species richness were assessed in eleven study areas, each with all three management types present. Standardized transects, insect sampling within a standard 20 min time frame and plot-based flower surveys were used in spring and summer to assess the relationships between management regime, floral abundance and diversity and pollinator communities. The results show that meadow bird grasslands have lower pollinator abundance and diversity and a less unique pollinator assemblage than both other types. Moreover, flower abundance has a positive effect on pollinator abundance and flower diversity has a positive effect on pollinator species richness. These results indicate that meadow-bird grasslands are a comparatively unfavourable habitat for bees, hoverflies and butterflies, which may be explained by a lack of flowers as well as unsuitable mowing practices. Measures benefitting both insectivorous birds and flower-visiting insects, such as rotational mowing, could remediate this imbalance.  相似文献   

4.
The changes in agricultural practices during the last century have led to a drastic decrease in the number of traditionally managed hay meadows. Also, traditional management practices are often applied more cursorily in the remaining meadows. In combination with an increase in aerial anthropogenic nitrogen deposition, this has led to a loss of biodiversity. To investigate whether the current management is sufficient for maintaining viable populations of a typical meadow plant, Succisa pratensis, we experimentally reinforced the raking and mowing parts of the traditional management over four years in a two-by-two factorial experiment in three traditionally managed wooded hay meadows on the Baltic island of Gotland, Sweden. We found decreased litter and hay production in two of the three studied meadows as a result of our treatments. Plant sizes and asymptotic population growth rates (??) of S. pratensis increased, particularly in plots receiving the combined raking and mowing treatment. Stochastic long-term population growth rates (?? s ) increased under the reinforced management: projected population sizes 50?years into the future showed a three-fold increase in raked plots and a 17-fold increase in plots that were both raked and mown. Because we found positive responses even in these seemingly well-managed meadows we conclude that it is essential that management is carried out more thoroughly to ensure viable population sizes. Our conclusion applies to most semi-natural grasslands receiving anthropogenic nitrogen, or where traditional management practices are less rigorously applied. We also suggest using biomass estimation instead of vegetation height as a measure of management strength.  相似文献   

5.
Seminatural grasslands provide habitats for various species and are important for biodiversity conservation. The understanding of the diverse responses of species and traits to different grassland managenient methods is therefore urgently needed. We disentangled the role of grassland management (fertilization and irrigation), vegetation structure (biomass, sward height) and plant quality (protein and fiber content) for Orthoptera communities in lowland hay meadows in Germany. We found vegetation structure to be the most important environmental category in explaining community structure of Orthoptera (species richness, total individuals, fiinctional diversity and species composition). Intensively used meadows (fertilized, irrigated, high plant biomass) were characterized by assemblages with few species, low functional diversity, and low conservation value. Thereby, the relatively moderate fertilizer inputs in our study system of up to -75 kg N/ha/year reduced functional diversity of Orthoptera, while this negative effect of fertilization was not detectable when solely considering taxonomic aspects. We found strong support for a prominent role of plant quality in shaping Orthoptera communities and especially the trait composition. Our findings demonstrate the usefulness of considering both taxonomic and functional comp on ents (functio nal diversity) in biodiversity research and we suggest a stronger involvement of plant quality measures in Orthoptera studies.  相似文献   

6.
Extensive grasslands are considered to be of high biodiversity value, but are under threat from intensification and abandonment. We studied butterfly species richness and abundance in 47 hay and grazing meadows in the Picos de Europa, northern Spain in 2004. Nine transects were walked around the perimeter of the meadows from the 1 June to 28 July with butterflies recorded to species or species-group. Land-use, abiotic, and sward variables were also recorded. Change in meadow extent was estimated by comparing a digital map of open meadows with a cadastral map with 1950s provenance. We found: A decrease in open area, mostly attributable to reduction in grazing meadows. 75 or more butterfly species with species richness principally, and positively, influenced by altitude and presence of scrub in the body of the meadow. Hay meadow management was a positive influence on richness of satyrids. When all butterflies were considered together, the only significant factor influencing abundance was Plantago lanceolata (−ve). For sub-groups of the butterfly community there was no consistent pattern, although P. lanceolata was identified as a (−ve) factor in relation to hesperiid, nymphalid, satyrid, and Viola-feeding fritillary groups. Several regression models included components that could be linked to abiotic influences (water, aspect, altitude) but many were indicative of abandonment or relaxation of management intensity (scrub, Pteridium aquilinum, Asphodelus albus), sward components, fragmentation (distance to nearest meadow, number of meadows within 100 m), and land use (hay management, summer grazing). The results are discussed in relation to changing socio-economics, including the potential impact of tourism, and the need for financial instruments to support extensive farming.  相似文献   

7.
In recent decades, alpine grasslands have been seriously degraded on the Tibetan Plateau and grazing exclusion by fencing has been widely adopted to restore degraded grasslands since 2004. To elucidate how alpine grasslands carbon (C), nitrogen (N), and phosphorus (P) storage responds to this management strategy, three types of alpine grassland in nine counties in Tibet were selected to investigate C, N, and P storage in the environment by comparing free grazing (FG) and grazing exclusion (GE) treatments, which had run for 6–8 years. The results revealed that there were no significant differences in total ecosystem C, N, and P storage, as well as the C, N, and P stored in both total biomass and soil (0–30 cm) fractions between FG and GE grasslands. However, precipitation played a key role in controlling C, N, and P storage and distribution. With grazing exclusion, C and N stored in aboveground biomass significantly increased by 5.7 g m−2 and 0.1 g m−2, respectively, whereas the C and P stored in the soil surface layer (0–15 cm) significantly decreased by 862.9 g m−2 and 13.6 g m−2, respectively. Furthermore, the storage of the aboveground biomass C, N, and P was positively correlated with vegetation cover and negatively correlated with the biodiversity index, including Pielou evenness index, Shannon–Wiener diversity index, and Simpson dominance index. The storage of soil surface layer C, N, and P was positively correlated with soil silt content and negatively correlated with soil sand content. Our results demonstrated that grazing exclusion had no impact on total C, N, and P storage, as well as C, N, and P in both total biomass and soil (0–30 cm) fractions in the alpine grassland ecosystem. However, grazing exclusion could result in increased aboveground biomass C and N pools and decreased soil surface layer (0–15 cm) C and P pools.  相似文献   

8.
Questions: 1. Do different management types (i.e. hay meadow, silage meadow, meadow‐pasture, pasture) have different impact on the size and composition of the seed bank of mesic grassland (Arrhenatheretalia)? 2. How strong is the effect of management on the seed bank in relation to above‐ground vegetation, edaphic factors and land‐use history? 3. Are there differences in C‐S‐R plant strategy types and seed longevity under different management regimes? Location: Lahn‐Dill Highlands in central‐western Germany. Methods: Above‐ground vegetation and the soil seed bank of 63 plots (at 21 sites) in mesic grasslands were studied. Differences between management types in quantitative seed bank traits and functional characteristics were tested by ANOVA. The impact of management, above‐ground vegetation, site conditions and land‐use history on seed bank composition were analysed by partial CCA. Results: Management had no significant impact on species richness and density of the seed bank but significantly influenced their floristic composition and functional characteristics. CCA revealed that even after adjustment for soil chemical parameters and above‐ground vegetation management still had significant impact on seed bank composition. ANOVA revealed that silage meadows contained higher proportions of R‐strategy compared to hay meadows. In contrast, in hay meadows and meadow‐pastures proportions of S‐strategy were higher than in silage meadows. Conclusions: The type of grassland management has little impact on quantitative seed bank traits. Management types with a high degree of disturbance lead to an increase of species following a ruderal strategy in the seed bank. Irrespective of management type only a limited proportion of characteristic grassland species is likely to re‐establish from the seed bank after disappearance from above‐ground vegetation.  相似文献   

9.

Background and Aims

Despite their importance for plant production, estimations of below-ground biomass and its distribution in the soil are still difficult and time consuming, and no single reliable methodology is available for different root types. To identify the best method for root biomass estimations, four different methods, with labour requirements, were tested at the same location.

Methods

The four methods, applied in a 6-year-old Eucalyptus plantation in Congo, were based on different soil sampling volumes: auger (8 cm in diameter), monolith (25 × 25 cm quadrate), half Voronoi trench (1·5 m3) and a full Voronoi trench (3 m3), chosen as the reference method.

Key Results

With the reference method (0–1m deep), fine-root biomass (FRB, diameter <2 mm) was estimated at 1·8 t ha−1, medium-root biomass (MRB diameter 2–10 mm) at 2·0 t ha−1, coarse-root biomass (CRB, diameter >10 mm) at 5·6 t ha−1 and stump biomass at 6·8 t ha−1. Total below-ground biomass was estimated at 16·2 t ha−1 (root : shoot ratio equal to 0·23) for this 800 tree ha−1 eucalypt plantation density. The density of FRB was very high (0·56 t ha−1) in the top soil horizon (0–3 cm layer) and decreased greatly (0·3 t ha−1) with depth (50–100 cm). Without labour requirement considerations, no significant differences were found between the four methods for FRB and MRB; however, CRB was better estimated by the half and full Voronoi trenches. When labour requirements were considered, the most effective method was auger coring for FRB, whereas the half and full Voronoi trenches were the most appropriate methods for MRB and CRB, respectively.

Conclusions

As CRB combined with stumps amounted to 78 % of total below-ground biomass, a full Voronoi trench is strongly recommended when estimating total standing root biomass. Conversely, for FRB estimation, auger coring is recommended with a design pattern accounting for the spatial variability of fine-root distribution.  相似文献   

10.
Agricultural intensification reduces the biodiversity of European farmlands. Hay meadows represent an important farmland habitat, traditionally used to produce hay. With decreased demand for hay, the continuation of hay harvest is supported by Agri-environmental schemes across European Union. Modern hay harvest techniques differ from traditional manual harvest by removing the grass instantaneously over large land areas. To minimize adverse effects on meadow invertebrates, diversifying harvest operations is time and space is often recommended, but effects of such diversification are little studied. We compared the impact of uniform hay harvests with harvests executed in patchy manners, using four arthropod groups (butterflies, ground beetles, orthopterans and spiders) at productive, species-poor meadows in the Czech Republic. Butterflies, observed along transects, avoided uniformly cut units, preferring those cut as strips or blocks. In the three remaining groups, recorded using pitfall traps, a majority of species prevailed in traps located in uncut conditions. Synchronous mowing of large areas suppresses population sizes and diminishes the diversity of common arthropods. Besides of direct mortality and depletion of such resources as nectar or shelter, it synchronises sward regrowth, threatening also species requiring short-sward patches. Uniformly executed mowing contradicts the biodiversity conservation goal of Agri-environmental schemes. Diversifying the mowing operations via temporary fallows, or sequential mowing of land units, will improve the situation for common cultural meadows.  相似文献   

11.
Alpine Kobresia meadows are major vegetation types on the Qinghai-Tibetan Plateau. There is growing concern over their relationships among biodiversity, productivity and environments. Despite the importance of species composition, species richness, the type of different growth forms, and plant biomass structure for Kobresia meadow ecosystems, few studies have been focused on the relationship between biomass and environmental gradient in the Kobresia meadow plant communities, particularly in relation to soil moisture and edaphic gradients. We measured the plant species composition, herbaceous litter, aboveground and belowground biomass in three Kobresia meadow plant communities in Haibei Alpine Meadow Ecosystem Research Station from 2001 to 2004. Community differences in plant species composition were reflected in biomass distribution. The total biomass showed a decrease from 13196.96±719.69 g/m2 in the sedge-dominated K. tibetica swamp to 2869.58±147.52 g/m2 in the forb and sedge dominated K. pygmaea meadow, and to 2153.08±141.95 g/m2 in the forbs and grasses dominated K. humilis along with the increase of altitude. The vertical distribution of belowground biomass is distinct in the three meadow communities, and the belowground biomass at the depth of 0-10 cm in K. tibetica swamp meadow was significantly higher than that in K. humilis and K. pygmaea meadows (P<0.01). The herbaceous litter in K. tibetica swamp was significantly higher than those in K. pygnaeca and K. humilis meadows. The effects of plant litter are enhanced when ground water and soil moisture levels are raised. The relative importance of litter and vegetation may vary with soil water availability. In the K. tibetica swamp, total biomass was negatively correlated to species richness (P<0.05); aboveground biomass was positively correlated to soil organic matter, soil moisture, and plant cover (P<0.05); belowground biomass was positively correlated with soil moisture (P<0.05). However, in the K. pygnaeca and K. humilis meadow communities, aboveground biomass was positively correlated to soil organic matter and soil total nitrogen (P<0.05). This suggests that the distribution of biomass coincided with soil moisture and edaphic gradient in alpine meadows.  相似文献   

12.
Species-rich grasslands are rare in the Netherlands and need consistent vegetation management to retain their characteristic biodiversity. Roadside verges are important refuges for grassland plants since the mowing management no longer aims at traffic safety only but also strives for botanical diversity. Although arthropods are highly abundant in roadside verges, the effect of different mowing practices on this group is largely unknown. During 4 years, we studied ground beetles, weevils, ants and ground-dwelling spiders with pitfall traps in experimental plots in roadside verges with five different mowing treatments: (i) no management, (ii) and (iii) mowing once a year with and without hay removal, (iv) and (v) mowing twice a year with and without hay removal. This was done in a plant productivity gradient; the experiment was repeated in low-, medium- and high-productive verges. In the low-productive site, the effect of management on the arthropods only existed in a higher abundance in plots mown twice per year with hay removal. In the medium- and high-productive sites, mowing twice a year with hay removal resulted not only in highest abundances but also in highest arthropod species richness. Mowing twice without hay removal and mowing once with removal showed intermediate values, while mowing once per year without removal and particularly the absence of management resulted in low diversity and low abundance. To promote ground-dwelling arthropods in medium-to-high-productive grassland verges, we recommend a management of mowing twice a year with the removal of hay. It is reasoned that some form of rotational management, aiming at leaving some vegetation refuges intact after mowing events, may further promote arthropod survival. However, caution should be taken that these refuges are not too large, as overall suitability for ground-dwelling arthropod decreases rapidly in such patches. Out of several studied vegetation characteristics, the number of flowering plant species (medium-productive verge) and total flower abundance (high-productive verge) appeared to represent suitable, and easily monitored, proxies that significantly mirror arthropod diversity.  相似文献   

13.
We applied a 15N dilution technique called “Integrated Total Nitrogen Input” (ITNI) to quantify annual atmospheric N input into a peatland surrounded by intensive agricultural practices over a 2-year period. Grass species and grass growth effects on atmospheric N deposition were investigated using Lolium multiflorum and Eriophorum vaginatum and different levels of added N resulting in increased biomass production. Plant biomass production was positively correlated with atmospheric N uptake (up to 102.7 mg N pot−1) when using Lolium multiflorum. In contrast, atmospheric N deposition to Eriophorum vaginatum did not show a clear dependency to produced biomass and ranged from 81.9 to 138.2 mg N pot−1. Both species revealed a relationship between atmospheric N input and total biomass N contents. Airborne N deposition varied from about 24 to 55 kg N ha−1 yr−1. Partitioning of airborne N within the monitor system differed such that most of the deposited N was found in roots of Eriophorum vaginatum while the highest share was allocated in aboveground biomass of Lolium multiflorum. Compared to other approaches determining atmospheric N deposition, ITNI showed highest airborne N input and an up to fivefold exceedance of the ecosystem-specific critical load of 5–10 kg N ha−1 yr−1.  相似文献   

14.
Alpine Kobresia meadows are major vegetation types on the Qinghai-Tibetan Plateau. There is growing concern over their relationships among biodiversity, productivity and environments. Despite the im-portance of species composition, species richness, the type of different growth forms, and plant bio-mass structure for Kobresia meadow ecosystems, few studies have been focused on the relationship between biomass and environmental gradient in the Kobresia meadow plant communities, particularly in relation to soil moisture and edaphic gradients. We measured the plant species composition, her-baceous litter, aboveground and belowground biomass in three Kobresia meadow plant communities in Haibei Alpine Meadow Ecosystem Research Station from 2001 to 2004. Community differences in plant species composition were reflected in biomass distribution. The total biomass showed a de-crease from 13196.96±719.69 g/m2 in the sedge-dominated K. tibetica swamp to 2869.58±147.52 g/m2 in the forb and sedge dominated K. pygmaea meadow, and to 2153.08±141.95 g/m2 in the forbs and grasses dominated K. humilis along with the increase of altitude. The vertical distribution of below-ground biomass is distinct in the three meadow communities, and the belowground biomass at the depth of 0-10 cm in K. tibetica swamp meadow was significantly higher than that in K. humilis and K. pygmaea meadows (P<0.01). The herbaceous litter in K. tibetica swamp was significantly higher than those in K. pygnaeca and K. humilis meadows. The effects of plant litter are enhanced when ground water and soil moisture levels are raised. The relative importance of litter and vegetation may vary with soil water availability. In the K. tibetica swamp, total biomass was negatively correlated to species richness (P<0.05); aboveground biomass was positively correlated to soil organic matter, soil moisture, and plant cover (P<0.05); belowground biomass was positively correlated with soil moisture (P<0.05). However, in the K. pygnaeca and K. humilis meadow communities, aboveground biomass was posi-tively correlated to soil organic matter and soil total nitrogen (P<0.05). This suggests that the distribu-tion of biomass coincided with soil moisture and edaphic gradient in alpine meadows.  相似文献   

15.
We estimated carbon and nitrogen stocks in aboveground biomass (AGB) and belowground biomass (BGB) along an elevation range in forest sites located on the steep slopes of the Serra do Mar on the north coast of the State of São Paulo, southeast Brazil. In elevations of 100 m (lowland), 400 m (submontane), and 1000 m (montane) four 1-ha plots were established, and above- (live and dead) and belowground (live and dead) biomass were determined. Carbon and nitrogen concentrations in each compartment were determined and used to convert biomass into carbon and nitrogen stocks. The carbon aboveground stock (CAGB) varied along the elevation range from approximately 110 to 150 Mg·ha−1, and nitrogen aboveground stock (NAGB), varied from approximately 1.0 to 1.9 Mg·ha−1. The carbon belowground stock (CBGB) and the nitrogen belowground stock (NBGB) were significantly higher than the AGB and varied along the elevation range from approximately 200–300 Mg·ha−1, and from 14 to 20 Mg·ha−1, respectively. Finally, the total carbon stock (CTOTAL) varied from approximately 320 to 460 Mg·ha−1, and the nitrogen total stock (NTOTAL) from approximately 15 to 22 Mg·ha−1. Most of the carbon and nitrogen stocks were found belowground and not aboveground as normally found in lowland tropical forests. The above- and belowground stocks, and consequently, the total stocks of carbon and nitrogen increased significantly with elevation. As the soil and air temperature also decreased significantly with elevation, we found a significantly inverse relationship between carbon and nitrogen stocks and temperature. Using this inverse relationship, we made a first approach estimate that an increase of 1°C in soil temperature would decrease the carbon and nitrogen stocks in approximately 17 Mg·ha−1 and 1 Mg·ha−1 of carbon and nitrogen, respectively.  相似文献   

16.

Aims

Once widely used across Europe, grazing of hay meadows is now a rare agricultural practice that is mainly applied in rural regions with maintained traditional agriculture. In this review, we examine the knowledge on grazing hay meadows in the Carpathian Mountains, including its historical distribution, implementation and timing, potential impacts on grassland productivity and biodiversity, and implications for grassland conservation and restoration.

Location

The Carpathian Mountains (43.8–50.1°N, 16.9–27.1°E).

Methods

We conducted a literature review including biological, ecological, agricultural, ethnological, and historical sources.

Results and Conclusions

In each of the seven farming systems that existed in parallel in the Carpathian Mountains before agricultural intensification, grazing of hay meadows was applied regularly. Spring, autumn, and occasionally summer grazing, along with corralling and manuring of hay meadows, were integral parts of these systems, adapted to the seasonal movement of dairy farms across various agroecosystems. The data reviewed provide insight into the role of animals in hay meadow management, as well as how the breakdown of these historical farming systems is impacting local biodiversity, the economy, and the community. According to the literature sources, grazing hay meadows has numerous positive impacts on grassland biodiversity, including suppressing fast-growing competitors, reducing the accumulation of litter, increasing the availability of germination gaps, dispersing seeds through zoochory, supporting ground-nesting birds through later mowing, and promoting the regeneration of plants from seeds. From this perspective, the combination of mowing and grazing can be considered a promising tool in current grassland conservation and restoration efforts.  相似文献   

17.
In riparian meadows, narrow zonation of the dominant vegetation frequently occurs along the elevational gradient from the stream edge to the floodplain terrace. We measured plant species composition and above- and belowground biomass in three riparian plant communities—a priori defined as wet, moist, and dry meadow—along short streamside topographic gradients in two montane meadows in northeast Oregon. The objectives were to: (1) compare above- and belowground biomass in the three meadow communities; (2) examine relations among plant species richness, biomass distribution, water table depth, and soil redox potential along the streamside elevational gradients. We installed wells and platinum electrodes along transects (perpendicular to the stream; n=5 per site) through the three plant communities, and monitored water table depth and soil redox potential (10 and 25 cm depth) from July 1997 to August 1999. Mean water table depth and soil redox potential differed significantly along the transects, and characterized a strong environmental gradient. Community differences in plant species composition were reflected in biomass distribution. Highest total biomass (live+dead) occurred in the sedge-dominated wet meadows (4,311±289 g/m2), intermediate biomass (2,236±221 g/m2) was seen in the moist meadow communities, dominated by grasses and sedges, and lowest biomass (1,403±113 g/m2) was observed in the more diverse dry meadows, dominated by grasses and forbs. In the wet and moist communities, belowground biomass (live+dead) comprised 68–81% of the totals. Rhizome-to-root ratios and distinctive vertical profiles of belowground biomass reflected characteristics of the dominant graminoid species within each community. Total biomass was positively correlated with mean water table depth, and negatively correlated with mean redox potential (10 cm and 25 cm depths; P <0.01) and species richness (P <0.05), indicating that the distribution of biomass coincided with the streamside edaphic gradient in these riparian meadows.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

18.
Domestic livestock grazing has caused dramatic changes in plant community composition across the globe. However, the response of plant species abundance in communities subject to grazing has not often been investigated through a functional lens, especially for belowground traits. Grazing directly impacts aboveground plant tissues, but the relationships between above‐ and belowground traits, and their influence on species abundance are also not well known. We collected plant trait and species relative abundance data in the grazed and nongrazed meadow plant communities in a species‐rich subalpine ecosystem of the Qinghai–Tibet Plateau. We measured three aboveground traits (leaf photosynthesis rate, specific leaf area, and maximum height) and five belowground traits (root average diameter, root biomass, specific root length, root tissue density, and specific root area). We tested for shifts in the relationship between species relative abundance and among all measured traits under grazing compared with the nongrazed meadow. We also compared the power of above‐ and belowground traits to predict species relative abundance. We observed a significant shift from a resource conservation strategy to a resource acquisition strategy. Moreover, this resource conservation versus resource acquisition trade‐off can also determine species relative abundance in the grazed and nongrazed plant communities. Specifically, abundant species in the nongrazed meadow had aboveground and belowground traits that are associated with high resource conservation, whereas aboveground and belowground traits that are correlated with high resource acquisition determined species relative abundance in the grazed meadow. However, belowground traits were found to explain more variances in species relative abundance than aboveground traits in the nongrazed meadow, while aboveground and belowground traits had comparable predictive power in the grazed meadow. We show that species relative abundance in both the grazed and the nongrazed meadows can be predicted by both aboveground traits and belowground traits associated with a resource acquisition versus conservation trade‐off. More importantly, we show that belowground traits have higher predictive power of species relative abundance than aboveground traits in the nongrazed meadow, whereas in the grazed meadows, above‐ and belowground traits had comparable high predictive power.  相似文献   

19.
Nitrogen (N) affects all levels of plant function from metabolism to resource allocation, growth, and development and Magnesium (Mg) is a macronutrient that is necessary to both plant growth and health. Radish (Raphanus sativus L.) occupies an important position in the production and consumption of vegetables globally, but there are still many problems and challenges in its nutrient management. A pot trial was conducted to investigate the effects of nitrogen and magnesium fertilizers on radish during the year 2018–2019. Nitrogen and magnesium was applied at three rates (0, 0.200, and 0.300 g N kg−1 soil) and (0, 0.050, and 0.100 g Mg kg−1 soil) respectively. The experiment was laid out in a completely randomized design (CRD) and each treatment was replicated three times. Growth, yield and quality indicators of radish (plant height, root length, shoot length, plant weight, total soluble sugar, ascorbic acid, total soluble protein, crude fiber, etc.) were studied. The results indicated that different rates of nitrogen and magnesium fertilizer not only influence the growth dynamics and yields but also enhances radish quality. The results revealed that the growth, yield and nutrient contents of radish were increased at a range of 0.00 g N. kg−1 soil to 0.300 g N. kg−1 soil and 0.00 g Mg. kg−1 soil to 0.050 g Mg. kg−1 soil and then decreased gradually at a level of 0.100 g Mg. kg−1 soil. In contrast, the crude fiber contents in radish decreased significantly with increasing nitrogen and magnesium level but increased significantly at Mg2 level (0.050 g Mg. kg−1 soil). The current study produced helpful results for increasing radish quality, decreasing production costs, and diminishing underground water contamination.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号