首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Physiological studies indicate that the piriform or primary olfactory cortex of adult mammals exhibits a high degree of synaptic plasticity. Interestingly, a subpopulation of cells in the layer II of the adult piriform cortex expresses neurodevelopmental markers, such as the polysialylated form of neural cell adhesion molecule (PSA‐NCAM) or doublecortin (DCX). This study analyzes the nature, origin, and potential function of these poorly understood cells in mice. As previously described in rats, most of the PSA‐NCAM expressing cells in layer II could be morphologically classified as tangled cells and only a small proportion of larger cells could be considered semilunar‐pyramidal transitional neurons. Most were also immunoreactive for DCX, confirming their immature nature. In agreement with this, detection of PSA‐NCAM combined with that of different cell lineage‐specific antigens revealed that most PSA‐NCAM positive cells did not co‐express markers of glial cells or mature neurons. Their time of origin was evaluated by birthdating experiments with halogenated nucleosides performed at different developmental stages and in adulthood. We found that virtually all cells in this paleocortical region, including PSA‐NCAM‐positive cells, are born during fetal development. In addition, proliferation analyses in adult mice revealed that very few cells were cycling in layer II of the piriform cortex and that none of them was PSA‐NCAM‐positive. Moreover, we have established conditions to isolate and culture these immature neurons in the adult piriform cortex layer II. We find that although they can survive under certain conditions, they do not proliferate in vitro either. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 748–763, 2016  相似文献   

2.
Past research suggested that androgens may play a role in the regulation of adult neurogenesis within the dentate gyrus. We tested this hypothesis by manipulating androgen levels in male rats. Castrated or sham castrated male rats were injected with 5-Bromo-2'deoxyuridine (BrdU). BrdU-labeled cells in the dentate gryus were visualized and phenotyped (neural or glial) using immunohistochemistry. Castrated males showed a significant decrease in 30-day cell survival within the dentate gyrus but there was no significant change in cell proliferation relative to control males, indicating that androgens positively affect cell survival, but not cell proliferation. To examine the role of testosterone on hippocampal cell survival, males were injected with testosterone s.c. for 30 days starting the day after BrdU injection. Higher doses (0.5 and 1.0 mg/kg) but not a lower dose (0.25 mg/kg) of testosterone resulted in a significant increase in neurogenesis relative to controls. We next tested the role of testosterone's two major metabolites, dihydrotestosterone (DHT), and estradiol, upon neurogenesis. Thirty days of injections of DHT (0.25 and 0.50 mg/kg) but not estradiol (0.010 and 0.020 mg/kg) resulted in a significant increase in hippocampal neurogenesis. These results suggest that testosterone enhances hippocampal neurogenesis via increased cell survival in the dentate gyrus through an androgen-dependent mechanism.  相似文献   

3.
Aneuploidy, caused by segregation defects during mitosis, has previously been identified in adult-born cells of mammals and teleosts. In the present study, we have examined the fate of these cells in the brain of the teleost fish Apteronotus leptorhynchus. By immunostaining against active caspase-3, we have shown that both cells with normal nuclear morphology and cells with mitotic segregation defects undergo apoptosis, but the relative number of apoptotic cells is higher among cells of the latter category. Long-term survival of cells with mitotic segregation defects could be demonstrated by incorporation of 5-bromo-2'-deoxyuridine into newly synthesized DNA during the S-phase of mitosis, and by employment of postadministration survival times of up to 860 days. Moreover, by combining 5-bromo-2'-deoxyuridine immunolabeling with immunostaining against the neuron-specific marker protein Hu, we have shown that among the long-term persistent cells with mitotic segregation defects a similar portion develops into neurons as does among the long-term persistent cells without such defects. It is possible that aneuploid cells play a role in the regulation of gene expression by somatic genomic alterations during postnatal development.  相似文献   

4.
5.
Notch receptors are key regulators of nervous system development and promoters of neural stem cells renewal and proliferation. Defects in the expression of Notch genes result in severe, often lethal developmental abnormalities. Notch3 is generally thought to have a similar proliferative, anti‐differentiation and gliogenic role to Notch1. However, in some cases, Notch3 has an opposite, pro‐differentiation effect. Here, we show that Notch3 segregates from Notch1 and is transiently expressed in adult rat and mouse spinal cord neuron precursors and immature neurons. This suggests that during the differentiation of adult neural progenitor cells, Notch signalling may follow a modified version of the classical lateral inhibition model, involving the segregation of individual Notch receptors. Notch3 knockout mice, otherwise neurologically normal, are characterized by a reduced number of mature inhibitory interneurons and an increased number of highly excitable immature neurons in spinal cord laminae I–II. As a result, these mice have permanently lower nociceptive thresholds, similar to chronic pain. These results suggest that defective neuronal differentiation, for example as a result of reduced Notch3 expression or activation, may underlie human cases of intractable chronic pain, such as fibromyalgia and neuropathic pain.  相似文献   

6.
The fate of continuously generated cells in the soma clusters of the olfactory midbrain of adult spiny lobsters, Panulirus argus, was investigated by in vivo pulse‐chase experiments with the proliferation marker 5‐bromo‐2′‐deoxyuridine (BrdU) combined with immunostainings for neuropeptides of mature neurons. A BrdU injection after a survival time (ST) of 14 h labeled about 100 nuclei in the lateral soma clusters (LC), comprised of projection neurons, and about 30 nuclei in the medial soma clusters (MC), comprised of local interneurons. The BrdU‐positive nuclei were confined to small regions at the inside of these clusters, which also contain nuclei in different phases of mitosis and thus represent proliferative zones. After STs of 2 weeks or 3 months, the number of BrdU‐positive nuclei was doubled, indicating a mitosis of all originally labeled cells. Dependent on ST, the BrdU‐positive nuclei were translocated from the proliferative zones towards the outside of the clusters, where somata of mature neurons reside. Immunostainings with antibodies to the neuropeptides FMRFamide and substance P, both of which label a large portion of somata in the MC and a pair of giant neurons projecting into the LC, revealed that in both clusters the proliferative zones are surrounded by, but are themselves devoid of, labeling. In the MC, some BrdU‐positive somata were double‐labeled by the FMRFamide antibody after an ST of 3 months, and by the substance P antibody after STs of 6 and 11/14 months, but not after 3 months. In the LC, BrdU‐positive somata after an ST of 3 months partially and after 6 and 11/14 months widely overlapped with the arborizations of the giant neurons, indicating the establishment of synaptic input. The experiments show that cells generated in proliferative zones in the LC and MC of adult spiny lobsters after a final mitosis differentiate into neurons within months, survive for at least 1 year, and are integrated into the circuitry of the olfactory midbrain. A new hypothesis about the mechanism of adult neurogenesis in the central olfactory pathway of decapod crustaceans is developed, linking it to neurogenesis during embryonic and larval development. © 2001 John Wiley & Sons, Inc. J Neurobiol 48: 181–203, 2001  相似文献   

7.
We analyzed the development of several sets of postembryonic sex-specific motoneurons in Manduca sexta which belong to a group of homologous lineage of neurons called the imaginal midline neurons (IMNs). Adult female oviduct motoneurons and male sperm duct motoneurons are IMNs that show similar anatomical features and differentiate during metamorphosis, despite appearing in different segments: A7 for oviduct neurons, A9 for sperm duct neurons. These cells are born at the same time and, initially, similar sets are found in A7 and A9 ganglia of larvae of both sexes. The dimorphic adult pattern is generated by sex-specific production and cell death. A7 IMNs differentiate in both sexes through early pupal stages, whereupon they disappear in the male and become the oviduct motoneurons in the female. A9 IMNs are overproduced in the male, and subsequent cell death reduces male cell number and eliminates the small complement of female cells; the surviving male cells develop into the sperm duct motoneurons. Similar IMN arrays are generated in nongenital ganglia, but show non-sex-specific fates. This suggests that both the sex of these cells and their segment of residence play major roles in their subsequent differentiation. 1994 John Wiley & Sons, Inc.  相似文献   

8.
For many animals, enriched environments and social interaction promote adult neurogenesis. However, in some cases, the effect is transient, and long‐term environmental stimuli have little benefit for neurogenesis. In electric fish, Apteronotus leptorhynchus, fish housed in pairs for 7 days show higher density of newborn brain cells (cell addition) than isolated fish, but fish paired for 14 days have rates of cell addition similar to isolated controls. We examined whether introduction of social novelty can sustain elevated levels of cell addition and prevent long‐term habituation to social interaction. We also monitored electrocommunication signals (“chirps”) as a measure of the behavioral response to social novelty. We paired fish for 14 days with one continuous partner (no social novelty), two sequential partners changed after 7 days (low novelty) or seven sequential partners changed every 2 days (high novelty). On Day 11, we injected fish with BrdU, sacrificed fish 3 days later and quantified BrdU labeling in the diencephalic periventricular zone. Fish exposed to no novelty had BrdU labeling similar to isolated fish. Fish with low novelty showed small increases in BrdU labeling and those with high novelty had much greater BrdU labeling. Similarly, chirp rates were greater in fish with low novelty than with no novelty and greatest yet in fish with high novelty. By varying the timing of novelty relative to BrdU injection, we showed that social novelty promoted both proliferation and survival of newborn cells. These results indicated that brain cell proliferation and survival is influenced more by social change than simply the presence of social stimuli. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

9.
10.
The avian forebrain exhibits neurogenesis in adulthood, with neuronal production from ependymal/subependymal zone (SZ) precursor cells. To follow the commitment of newborn cells to neuronal lineage, we used their expression of the Hu family of neuronal RNA-binding proteins to identify them before their migration from the SZ. Adult canaries were injected with [3H]thymidine as a marker of DNA replication, sacrificed after varying intervals, stained for Hu, and autoradiographed. We found that Hu was not expressed by premitotic precursor cells, but rather appeared within hours in their neuronal progeny, which did not embark on parenchymal migration until 4 to 7 days later. Hu was expressed by all neurons, but not glia, both in vivo and in vitro, as determined by ultrastructural analysis as well as co-localization of Hu and cell-type selective antigens. In addition, co-staining for Hu and N-cadherin, whose expression is down-regulated on neuronal emigration from the SZ, revealed their initial co-expression by neuronal daughter cells still within the SZ. These results suggest that Hu expression may be used as a very early indicator of neuronal differentiation by SZ cells. Furthermore, the data indicate that in the adult avian brain, neuronal phenotype is established within hours of precursor mitosis, even though the neuronal daughter cells do not initiate parenchymal migration for at least 4 days thereafter, following their down-regulation of N-cadherin. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
《Developmental neurobiology》2017,77(10):1206-1220
Adult neurogenesis occurs more commonly in teleosts, represented by zebrafish, than in mammals. Zebrafish is therefore considered a suitable model to study adult neurogenesis, for which the regulatory molecular mechanisms remain little known. Our previous study revealed that neuroepithelial‐like neural stem cells (NSCs) are located at the edge of the dorsomedial region. We also showed that Notch signaling inhibits NSC proliferation in this region. In the present study, we reported the expression of Wnt and Shh signaling components in this region of the optic tectum. Moreover, inhibitors of Wnt and Shh signaling suppressed NSC proliferation, suggesting that these pathways promote NSC proliferation. Shh is particularly required for maintaining Sox2‐positive NSCs. Our experimental data also indicate the involvement of these signaling pathways in neural differentiation from NSCs. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1206–1220, 2017  相似文献   

12.
13.
《Developmental neurobiology》2017,77(10):1188-1205
Adult neurogenesis is a complex, presumably conserved phenomenon in vertebrates with a broad range of variations regarding neural progenitor/stem cell niches, cellular composition of these niches, migratory patterns of progenitors and so forth among different species. Current understanding of the reasons underlying the inter‐species differences in adult neurogenic potential, the identification and characterization of various neural progenitors, characterization of the permissive environment of neural stem cell niches and other important aspects of adult neurogenesis is insufficient. In the last decade, zebrafish has emerged as a very useful model for addressing these questions. In this review, we have discussed the present knowledge regarding the neural stem cell niches in adult zebrafish brain as well as their cellular and molecular attributes. We have also highlighted their similarities and differences with other vertebrate species. In the end, we shed light on some of the known intrinsic and extrinsic factors that are assumed to regulate the neurogenic process in adult zebrafish brain. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1188–1205, 2017  相似文献   

14.
Cheng X  Li Y  Huang Y  Feng X  Feng G  Xiong ZQ 《Cell research》2011,21(2):338-349
Research over the past decades has demonstrated that adult brain produces neural progenitor cells which proliferate and differentiate to newborn neurons that integrate into the existing circuit. However, detailed differentiation processes and underlying mechanisms of newly generated neurons are largely unknown due to the limitation of available methods for labeling and manipulating neural progenitor cells and newborn neurons. In this study, we designed a tightly controlled, noninvasive system based on Cre/loxP recombination to achieve long-term tracing and genetic manipulation of adult neurons in vivo. In this system, tamoxifen-inducible recombinase, CreER(T2), was driven by BAC-based promoter of doublecortin (DCX, a marker of newborn neurons). By crossing this Cre line with reporter mouse, we found that newborn neurons in the dentate gyrus (DG) could be selectively pulse-labeled by tamoxifen-induced expression of yellow fluorescent protein (YFP). YFP-positive neurons were identified by coimmunostaining with cell type-specific markers and characterized by electrophysiological recording. Furthermore, analysis of the migration of these neurons showed that the majority of these labeled neurons migrated to the inner part of granule cell layer. Moreover, spine growth of inner molecular layer of newborn granule neurons takes a dynamic pattern of invert U-shape, in contrast to the wedge-shaped change in the outer molecular layer. Our transgenic tool provides an efficient way to selectively label and manipulate newborn neuron in adult mouse DG.  相似文献   

15.
Newborn cells of the adult dentate gyrus in the hippocampus are characterized by their abundant expression of polysialic acid (PSA), a carbohydrate attached to the neural cell adhesion molecule (NCAM). PSA+ newborn cells of the dentate gyrus form clusters with proliferating neural progenitor cells, migrate away from these clusters, and terminally differentiate. To identify the roles of PSA in the development of adult progenitors of the dentate gyrus, we injected endoneuraminidase N (endoN) into the hippocampus of adult rats to specifically cleave PSA from NCAM. Two days later, we administered the mitotic marker, 5-bromo-2'-deoxyuridine (BrdU). Three days after BrdU injection, BrdU+ cells were found inside and outside the clusters of newborn cells. In endoN-treated animals, the total number of BrdU+ cells was not changed but significantly more BrdU+ cells were present within clusters, suggesting that PSA normally facilitates the migration of progenitors away from the clusters. Seven days post-BrdU injection, endoN-treated animals had significantly more BrdU+ cells which were also positive for the mature neuronal nuclear marker NeuN compared with controls, indicating that the loss of PSA from progenitor cells increases neuronal differentiation. This report is the first demonstration that PSA is involved in controlling the spatio-temporal neuronal maturation of adult hippocampal progenitors in the normal brain. In vitro, the removal of PSA from adult-derived neural progenitors significantly enhanced neuronal differentiation, strengthening our in vivo findings and indicating that PSA removal on isolated progenitor cells, apart from a complex in vivo environment, induces neuronal maturation.  相似文献   

16.
The avian brain undergoes naturally occurring cell death and neuronal replacement in adulthood. Little is known about how neuron survival in adult birds is regulated. However, previous work suggests that this process is open to environmental control. We now report that a reduction in day length from springlike to fall-like conditions can dramatically increase cell death in adult male canaries. Many of the dying cells are projection neurons in the motor pathway controlling song learning and production. Circulating levels of gonadal steroids were not correlated with photoperiod-induced changes in the magnitude of cell death. Our results suggest that neuronal death in adult male canaries is regulated by seasonal changes in photoperiod, and that this occurs independent of chronic changes in gonadal steroid hormone levels. Day length may serve as a predictive environmental cue to time cell death in accordance with seasonal reproduction. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 223–231, 1997
  • 1 This is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    17.
    Teleost fish are distinguished by their enormous potential for the generation of new cells in both the intact and the injured adult brain. Here, we present evidence that these cells are a genetic mosaic caused by somatic genomic alteration. Metaphase chromosome spreads from whole brains of the teleost Apteronotus leptorhynchus revealed an euploid complement of 22 chromosomes in only 22% of the cells examined. The rate of aneuploidy is substantially higher in brain cells than in liver cells, as shown by both metaphase chromosome spreads and flow cytometric analysis. Among the aneuploid cells in the brain, approximately 84% had fewer, and the remaining 16% more, than 22 chromosomes. Typically, multiple chromosomes were lost or gained. The aneuploidy is putatively caused by segregation defects during mitotic division. Labeling of condensed chromosomes of M-phase cells by phosphorylated histone-H3 revealed laggards, anaphase bridges, and micronuclei, all three of which indicate displaced mitotic chromosomes. Quantitative analysis has shown that in the entire brain on average 14% of all phosphorylated histone-H3-labeled cells exhibit such signs of segregation defects. Together with the recent discovery of aneuploidy in the adult mammalian brain, the results of the present investigation suggest that the loss or gain of chromosomes might provide a mechanism to regulate gene expression during development of new cells in the adult vertebrate brain.  相似文献   

    18.
    New neurons are born and integrated into functional circuits in the brains of many adult organisms. In virtually all of these systems, serotonin is a potent regulator of neuronal proliferation. Specific neural pathways underlying these serotonergic influences have not, however, been identified and manipulated. The goal of this study was to test whether adult neurogenesis in the crustacean brain is influenced by electrical activity in the serotonergic dorsal giant neurons (DGNs) innervating the primary olfactory processing areas, the olfactory lobes, and higher order centers, the accessory lobes. Adult‐born neurons occur in two interneuronal cell clusters that are part of the olfactory pathway. This study demonstrates that neurogenesis also continues in these areas in a dissected, perfused brain preparation, although the rate of neuronal production is lower than in brains from intact same‐sized animals. Inclusion of 10?9 M serotonin in the perfusate delivered to the dissected brain preparation restores the rate of neurogenesis to in vivo levels. Although subthreshold stimulation of the DGN does not significantly alter the rate of neurogenesis, electrical activation of a single DGN results in significant increases in neurogenesis in Cluster 10 on the same side of the brain, when compared with levels on the contralateral, unstimulated side. Measurements of serotonin levels in the perfusate using high‐performance liquid chromatography established that serotonin levels are elevated about 10‐fold during DGN stimulation, confirming that serotonin is released during DGN activity. This is the first identified neural pathway through which adult neurogenesis has been directly manipulated. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   

    19.
    Chronic pain is a debilitating condition with unknown mechanism. Nociceptive sensitivity may be regulated by genetic factors, some of which have been separately linked to neuronal progenitor cells and neuronal differentiation. This suggests that genetic factors that interfere with neuronal differentiation may contribute to a chronic increase in nociceptive sensitivity, by extending the immature, hyperexcitable stage of spinal cord neurons. Although adult rodent spinal cord neurogenesis was previously demonstrated, the fate of these progenitor cells is unknown. Here, we show that peripheral nerve injury in adult rats induces extensive spinal cord neurogenesis and a long‐term increase in the number of spinal cord laminae I–II neurons ipsilateral to injury. The production and maturation of these new neurons correlates with the time course and modulation of nociceptive behaviour, and transiently mimics the cellular and behavioural conditions present in genetically modified animal models of chronic pain. This suggests that the number of immature neurons present at any time in the spinal cord dorsal horns contributes to the regulation of nociceptive sensitivity. The continuous turnover of these neurons, which can fluctuate between normal and injured states, is a dynamic regulator of nociceptive sensitivity. In support of this hypothesis, we find that promoters of neuronal differentiation inhibit, while promoters of neurogenesis increase long‐term nociception. TrkB agonists, well‐known promoters of nociception in the short‐term, significantly inhibit long‐term nociception by promoting the differentiation of newly produced immature neurons. These findings suggest that promoters of neuronal differentiation may be used to alleviate chronic pain.  相似文献   

    20.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号