首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
Climatic factors such as temperature and humidity vary seasonally in primate habitats; thus, behavioral adjustments and microhabitat selection by primate species have been interpreted as behavioral adaptations. François' langur (Trachypithecus francoisi), a native species to southwest China and northern Vietnam, inhabits a limestone habitat with extreme climatic conditions. To understand the potential effects of climatic seasonality on this species, we collected data on the individual behavioral budgets in a T. francoisi group between January and December 2010 in Fusui County, China. Monthly, we performed 5–11 days of observation during this period, using focal animal sampling and continuous recording methods. We also recorded ambient temperature (Ta) and relative humidity (Hr) data at our study site. Results indicated that Ta and Hr were significantly correlated with each other and fluctuated dramatically on a daily, monthly, and seasonal basis. The amount of time spent resting, grooming, basking, and huddling also varied on a daily, monthly, and seasonal basis. The proportion of resting time and total sedentary activity time significantly increased at high and low Tas, respectively. The total sedentary time, resting time, and plant branch use all showed positive significant correlations with Ta. Our results suggest that behavioral adjustment and support use of T. francoisi, at least partly, were related to thermoregulation. T. francoisi minimized thermal stress through behavioral adjustments and support use. It is an adaptive behavior associated with the climatic extremes of limestone habitat. This study can potentially advise conservation management strategies in this specific habitat. Conservation efforts should focus on vegetation restoration in langurs' habitat, including those in the foothills.  相似文献   

3.
Tropical intertidal organisms tolerate large fluctuations in temperature and high desiccation rates when exposed during low tide. In order to withstand the short‐term heat stress, intertidal organisms adopt behavioral responses to maximize their survival. Our previous research showed that tropical littorinids found at the upper and lower intertidal shores in Singapore exhibited different behavioral adaptations during low tide. Most of the upper‐shore Echinolittorina malaccana kept a flat orientation, with the aperture against the substrate and the long axis of the shell towards the sun, whereas a majority of the lower‐shore individuals of Echinolittorina vidua stood with the edge of the aperture perpendicular to the substrate on the rocky shore during low tide. This prompted analyses of the shells of these two species to determine whether the differences in the shell morphometry, microstructure, and thermal conductivity of shells of E. malaccana and E. vidua were associated with their respective behavioral responses to thermal stress. Analyses of shell morphometry and thermal conductivity showed that shells of E. malaccana were more likely to minimize heat gain, despite having a higher thermal conductivity on the outer surface, due to their light‐gray, elongated shell. By contrast, the dark‐colored, globose shells of E. vidua probably gain heat more readily through solar radiation. Scanning electron microscopy images of the shells of both littorinid species further revealed that they have cross‐lamellar structure; however, only individuals of E. vidua showed the presence of disjointed rod layers and a pigmented inner shell surface. Individuals of E. malaccana had a rough outer shell surface with holes that inter‐connect to form water‐trapping channels that probably aid cooling. Individuals of E. vidua, however, had a smooth outer surface with rows of kidney‐shaped depressions as microsculptures which probably help to stabilize shell shape. In both Echinolittorina species, behavioral responses were used to overcome thermal stress during low tide that was associated with shell morphometry and shell thermal conductivity. Such combined adaptations increase survivability of the littorinids at their respective tidal levels.  相似文献   

4.
The urban heat island effect, where urban areas exhibit higher temperatures than less‐developed suburban and natural habitats, occurs in cities across the globe and is well understood from a physical perspective and at broad spatial scales. However, very little is known about how thermal variation caused by urbanization influences the ability of organisms to live in cities. Ectotherms are sensitive to environmental changes that affect thermal conditions, and therefore, increased urban temperatures may pose significant challenges to thermoregulation and alter temperature‐dependent activity. To evaluate whether these changes to the thermal environment affect the persistence and dispersal of ectothermic species in urban areas, we studied two species of Anolis lizards (Anolis cristatellus and Anolis sagrei) introduced to Miami‐Dade County, FL, USA, where they occur in both urban and natural habitats. We calculated canopy openness and measured operative temperature (Te), which estimates the distribution of body temperatures in a non‐thermoregulating population, in four urban and four natural sites. We also captured lizards throughout the day and recorded their internal body temperature (Tb). We found that urban areas had more open canopies and higher Te compared to natural habitats. Laboratory trials showed that A. cristatellus preferred lower temperatures than A. sagrei. Urban sites currently occupied by each species appear to lower thermoregulatory costs for both species, but only A. sagreihad field Tb that were more often within their preferred temperature range in urban habitats compared to natural areas. Furthermore, based on available Te within each species' preferred temperature range, urban sites with only A. sagrei appear less suitable for A. cristatellus, whereas natural sites with only A. cristatellus are less suitable for A. sagrei. These results highlight how the thermal properties of urban areas contribute to patterns of persistence and dispersal, particularly relevant for studying species invasions worldwide.  相似文献   

5.
Space use including territoriality and spatial arrangement within a population can reveal important information on the nature, dynamics, and evolutionary maintenance of alternative strategies in color polymorphic species. Despite the prevalence of color polymorphic species as model systems in evolutionary biology, the interaction between space use and genetic structuring of morphs within populations has rarely been examined. Here, we assess the spatial and genetic structure of male throat color morphs within a population of the tawny dragon lizard, Ctenophorus decresii. Male color morphs do not differ in morphology but differ in aggressive and antipredator behaviors as well as androgen levels. Despite these behavioral and endocrine differences, we find that color morphs do not differ in territory size, with their spatial arrangement being essentially random with respect to each other. There were no differences in genetic diversity or relatedness between morphs; however, there was significant, albeit weak, genetic differentiation between morphs, which was unrelated to geographic distance between individuals. Our results indicate potential weak barriers to gene flow between some morphs, potentially due to nonrandom pre‐ or postcopulatory mate choice or postzygotic genetic incompatibilities. However, space use, spatial structure, and nonrandom mating do not appear to be primary mechanisms maintaining color polymorphism in this system, highlighting the complexity and variation in alternative strategies associated with color polymorphism.  相似文献   

6.
Temperature is one of the most influential forces of natural selection impacting all biological levels. In the face of increasing global temperatures, studies over small geographic scales allowing investigations on the effects of gene flow are of great value for understanding thermal adaptation. Here, we investigated genetic population structure in the freshwater gastropod Radix balthica originating from contrasting thermal habitats in three areas of geothermal activity in Iceland. Snails from 32 sites were genotyped at 208 AFLP loci. Five AFLPs were identified as putatively under divergent selection in Lake Mývatn, a geothermal lake with an almost 20 °C difference in mean temperature across a distance of a few kilometres. In four of these loci, variation across all study populations was correlated with temperature. We found significant population structure in neutral markers both within and between the areas. Cluster analysis using neutral markers classified the sites mainly by geography, whereas analyses using markers under selection differentiated the sites based on temperature. Isolation by distance was stronger in the neutral than in the outlier loci. Pairwise differences based on outlier FST were significantly correlated with temperature at different spatial scales, even after correcting for geographic distance or neutral pairwise FST differences. In general, genetic variation decreased with increasing environmental temperature, possibly suggesting that natural selection had reduced the genetic diversity in the warm origin sites. Our results emphasize the influence of environmental temperature on the genetic structure of populations and suggest local thermal adaptation in these geothermal habitats.  相似文献   

7.
Phenotypic plasticity may increase the performance and fitness and allow organisms to cope with variable environmental conditions. We studied within‐generation plasticity and transgenerational effects of thermal conditions on temperature tolerance and demographic parameters in Drosophila melanogaster. We employed a fully factorial design, in which both parental (P) and offspring generations (F1) were reared in a constant or a variable thermal environment. Thermal variability during ontogeny increased heat tolerance in P, but with demographic cost as this treatment resulted in substantially lower survival, fecundity, and net reproductive rate. The adverse effects of thermal variability (V) on demographic parameters were less drastic in flies from the F1, which exhibited higher net reproductive rates than their parents. These compensatory responses could not totally overcome the challenges of the thermally variable regime, contrasting with the offspring of flies raised in a constant temperature (C) that showed no reduction in fitness with thermal variation. Thus, the parental thermal environment had effects on thermal tolerance and demographic parameters in fruit fly. These results demonstrate how transgenerational effects of environmental conditions on heat tolerance, as well as their potential costs on other fitness components, can have a major impact on populations’ resilience to warming temperatures and more frequent thermal extremes.  相似文献   

8.
Light is considered a non‐limiting factor for vascular epiphytes. Nevertheless, an epiphyte's access to light may be limited by phorophyte shading and the spatio‐temporal environmental patchiness characteristic of epiphytic habitats. We assessed the extent to which potential light interception in Rodriguezia granadensis, an epiphytic orchid, is determined by individual factors (plant size traits and leaf traits), or environmental heterogeneity (light patchiness) within the crown of the phorophyte, or both. We studied 104 adult plants growing on Psidium guajava trees in two habitats with contrasting canopy cover: a dry tropical forest edge, and isolated trees in a pasture. We recorded the number of leaves and the leaf area, the leaf position angles, and the potential exposure of the leaf surface to direct irradiance (silhouette area of the leaf blade), and the potential irradiance incident on each plant. We found the epiphytes experience a highly heterogeneous light environment in the crowns of P. guajava. Nonetheless, R. granadensis plants displayed a common light interception strategy typical of low‐light environments, resembling terrestrial, forest understory plants. Potential exposure of the total leaf surface to direct irradiance correlated positively with plant size and within‐plant variation in leaf orientation. In many‐leaved individuals, within‐plant variation in leaf angles produced complementary leaf positions that enhanced potential light interception. This light interception strategy suggests that, in contrast to current wisdom, enhancing light capture is important for vascular epiphytes in canopies with high spatio‐temporal heterogeneity in light environments.  相似文献   

9.
The strong association observed between fire regimes and variation in plant adaptations to fire suggests a rapid response to fire as an agent of selection. It also suggests that fire‐related traits are heritable, a precondition for evolutionary change. One example is serotiny, the accumulation of seeds in unopened fruits or cones until the next fire, an important strategy for plant population persistence in fire‐prone ecosystems. Here, we evaluate the potential of this trait to respond to natural selection in its natural setting. For this, we use a SNP marker approach to estimate genetic variance and heritability of serotiny directly in the field for two Mediterranean pine species. Study populations were large and heterogeneous in climatic conditions and fire regime. We first estimated the realized relatedness among trees from genotypes, and then partitioned the phenotypic variance in serotiny using Bayesian animal models that incorporated environmental predictors. As expected, field heritability was smaller (around 0.10 for both species) than previous estimates under common garden conditions (0.20). An estimate on a subset of stands with more homogeneous environmental conditions was not different from that in the complete set of stands, suggesting that our models correctly captured the environmental variation at the spatial scale of the study. Our results highlight the importance of measuring quantitative genetic parameters in natural populations, where environmental heterogeneity is a critical aspect. The heritability of serotiny, although not high, combined with high phenotypic variance within populations, confirms the potential of this fire‐related trait for evolutionary change in the wild.  相似文献   

10.
11.
Fitness costs associated with resistance to insecticides have been well documented, usually at normal temperature conditions, in many insect species. In this study, using chlorpyrifos‐resistant homozygote (RR) and chlorpyrifos‐susceptible homozygote (SS) of resistance ace1 allele of Plutella xylostella (DBM), we confirmed firstly that high temperature experience in pupal stage influenced phenotype of wing venation in insecticide‐resistant and insecticide‐susceptible Plutella xylostella, and SS DBM showed significantly higher thermal tolerance and lower damages of wing veins under heat stress than RR DBM. As compared to SS DBM, RR DBM displayed significantly lower AChE sensitivity to chlorpyrifos, higher basal GSTs activity and P450 production at 25°C, but higher inhibitions on the enzyme activities and P450 production as well as reduced resistance to chlorpyrifos under heat stress. Furthermore, RR DBM displayed significantly higher basal expressions of hsp69s, hsp72s, hsp20, hsp90, Apaf‐1, and caspase‐7 at 25°C, but lower induced expressions of hsps and higher induced expressions of Apaf‐1, caspase‐9, and caspase‐7 under heat stress. These results suggest that fitness costs of chlorpyrifos resistance in DBM may partly attribute to excess consumption of energy caused by over production of detoxification enzymes and hsps when the proteins are less demanded at conducive environments but reduced expressions when they are highly demanded by the insects to combat environmental stresses, or to excess expressions of apoptotic genes under heat stress, which results in higher apoptosis. The evolutionary and ecological implications of these findings at global warming are discussed.  相似文献   

12.
Even for parasitoids with a wide host range, not all host species are equally suitable, and host quality often depends on the plant the host feeds on. We compared oviposition choice and offspring performance of a generalist pupal parasitoid, Pteromalus apum (Retzius) (Hymenoptera: Pteromalidae), on two congeneric hosts reared on two plant species under field and laboratory conditions. The plants contain defensive iridoid glycosides that are sequestered by the hosts. Sequestration at the pupal stage differed little between host species and, although the concentrations of iridoid glycosides in the two plant species differ, there was no effect of diet on the sequestration by host pupae. The rate of successful parasitism differed between host species, depending on the conditions they were presented in. In the field, where plant‐associated cues are present, the parasitoid used Melitaea cinxia (L.) over Melitaea athalia (Rottemburg) (Lepidoptera: Nymphalidae), whereas more M. athalia were parasitised in simplified laboratory conditions. In the field, brood size, which is partially determined by rate of superparasitism, depended on both host and plant species. There was little variation in other aspects of offspring performance related to host or plant species, indicating that the two host plants are of equal quality for the hosts, and the hosts are of equal quality for the parasitoids. Corresponding to this, we found no evidence for associative learning by the parasitoid based on their natal host, so with respect to these host species they are truly generalist in their foraging behaviour.  相似文献   

13.
Mit mutations that disrupt function of the mitochondrial electron transport chain can, inexplicably, prolong Caenorhabditis elegans lifespan. In this study we use a metabolomics approach to identify an ensemble of mitochondrial‐derived α‐ketoacids and α‐hydroxyacids that are produced by long‐lived Mit mutants but not by other long‐lived mutants or by short‐lived mitochondrial mutants. We show that accumulation of these compounds is dependent on concerted inhibition of three α‐ketoacid dehydrogenases that share dihydrolipoamide dehydrogenase (DLD) as a common subunit, a protein previously linked in humans with increased risk of Alzheimer's disease. When the expression of DLD in wild‐type animals was reduced using RNA interference we observed an unprecedented effect on lifespan – as RNAi dosage was increased lifespan was significantly shortened, but, at higher doses, it was significantly lengthened, suggesting that DLD plays a unique role in modulating length of life. Our findings provide novel insight into the origin of the Mit phenotype.  相似文献   

14.
We analyzed the effect of hydroperiod and water temperature on the life cycle of the giant water bug Belostoma bifoveolatum in two wetlands of northwestern Patagonia, Argentina. In each wetland, we estimated adult and nymph abundance and monitored water depth and temperature throughout the study period. We determined the age structure of the giant water bug population in each wetland, and estimated the cumulative degree‐days (DD) needed for eggs to hatch and for nymphs to complete their development. Individuals of B. bifoveolatum colonized temporary wetlands at the beginning of spring when daylight lasts 12 h. The breeding period varied with hydroperiod length and showed both univoltine and bivoltine strategies, with a relatively constant breeding season. Egg‐bearing males appeared in October, carrying between 35 and 144 eggs per individual. Hatching success was high (~80% of eggs) and cumulative temperature for the hatching event was between 250 and 300 DD (which represents 3–4 weeks in nature), while complete development occurred between 800 and 1220 DD (~7–8 weeks). Individuals were more abundant in shallow and sunny patches of the wetlands, where the temperature was comparatively high, than in deeper or shaded sites. These results showed that hydroperiod duration and temperature could be good regulators of voltinism and development in B. bifoveolatum, driving the population structure of this giant water bug at the southern end of its distribution range.  相似文献   

15.
We investigated aspects of the foraging behaviour and activity patterns of free‐ranging common duikers (Sylvicapra grimmia) within the Soutpansberg, South Africa. We used giving‐up densities (GUD) and camera traps to test for habitat selection and patch‐use behaviour by common duikers inhabiting a grassland containing distinct ‘islands' of woody vegetation. Foraging in or around a wooded island was affected by its surrounding vegetation. GUDs were significantly lower in portions dominated by tall grass and scattered ferns and highest in areas with open short grass and thick fern. Using grids of 5 × 5 stations, we mapped the duikers' foraging on a larger scale that incorporated neighbouring rocky hillsides. The duikers preferred feeding in areas with tall grass and scattered fern (sufficient cover and escape routes), followed by the wooded islands and thick fern (lack of sightlines/escape routes and presence of predator‐ambush sites), whereas little foraging occurred at the edges and rocky areas (hard substrate that impede escape potential). Photos (total 873) revealed solitary activity, highest in the late afternoon. Photos of vigilant individuals were mostly from rocky and fern habitats. Our results suggest that the duikers allocated their feeding efforts, activity and vigilance patterns to attune to their perceived risk of predation within their heterogeneous environment.  相似文献   

16.
Organismal performance in a changing environment is dependent on temporal patterns and duration of exposure to thermal variability. We experimentally assessed the time‐dependent effects of thermal variability (i.e., patterns of thermal exposure) on the hatching performance of Drosophila melanogaster. Flies were collected in central Chile and maintained for four generations in laboratory conditions. Fourth generation eggs were acclimated to different thermal fluctuation cycles until hatching occurred. Our results show that the frequency of extreme thermal events has a significant effect on hatching success. Eggs exposed to 24 hr cycles of thermal fluctuation had a higher proportion of eggs that hatched than those acclimated to shorter (6 and 12 hr) and longer cycles (48 hr). Furthermore, eggs subjected to frequent thermal fluctuations hatched earlier than those acclimated to less frequent thermal fluctuations. Overall, we show that, egg‐to‐adult viability is dependent on the pattern of thermal fluctuations experienced during ontogeny; thus, the pattern of thermal fluctuation experienced by flies has a significant and until now unappreciated impact on fitness.  相似文献   

17.
Climate warming is occurring at a rate not experienced by life on Earth for 10 s of millions of years, and it is unknown whether the coral‐dinoflagellate (Symbiodinium spp.) symbiosis can evolve fast enough to ensure coral reef persistence. Coral thermal tolerance is partly dependent on the Symbiodinium hosted. Therefore, directed laboratory evolution in Symbiodinium has been proposed as a strategy to enhance coral holobiont thermal tolerance. Using a reciprocal transplant design, we show that the upper temperature tolerance and temperature tolerance range of Symbiodinium C1 increased after ~80 asexual generations (2.5 years) of laboratory thermal selection. Relative to wild‐type cells, selected cells showed superior photophysiological performance and growth rate at 31°C in vitro, and performed no worse at 27°C; they also had lower levels of extracellular reactive oxygen species (exROS). In contrast, wild‐type cells were unable to photosynthesise or grow at 31°C and produced up to 17 times more exROS. In symbiosis, the increased thermal tolerance acquired ex hospite was less apparent. In recruits of two of three species tested, those harbouring selected cells showed no difference in growth between the 27 and 31°C treatments, and a trend of positive growth at both temperatures. Recruits that were inoculated with wild‐type cells, however, showed a significant difference in growth rates between the 27 and 31°C treatments, with a negative growth trend at 31°C. There were no significant differences in the rate and severity of bleaching in coral recruits harbouring wild‐type or selected cells. Our findings highlight the need for additional Symbiodinium genotypes to be tested with this assisted evolution approach. Deciphering the genetic basis of enhanced thermal tolerance in Symbiodinium and the cause behind its limited transference to the coral holobiont in this genotype of Symbiodinium C1 are important next steps for developing methods that aim to increase coral bleaching tolerance.  相似文献   

18.
Gene duplications occur at a high rate. Although most appear detrimental, some homogeneous duplications (identical gene copies) can be selected for beneficial increase in produced proteins. Heterogeneous duplications, which combine divergent alleles of a single locus, are seldom studied due to the paucity of empirical data. We investigated their role in an ongoing adaptive process at the ace‐1 locus in Culex pipiens mosquitoes. We assessed the worldwide diversity of the ace‐1 alleles (single‐copy, susceptible S and insecticide‐resistant R, and duplicated D that pair one S and one R copy), analysed their phylogeography and measured their fitness to understand their early dynamics using population genetics models. It provides a coherent and comprehensive evolutionary scenario. We show that D alleles are present in most resistant populations and display a higher diversity than R alleles (27 vs. 4). Most appear to result from independent unequal crossing‐overs between local single‐copy alleles, suggesting a recurrent process. Most duplicated alleles have a limited geographic distribution, probably resulting from their homozygous sublethality (HS phenotype). In addition, heterozygotes carrying different HS D alleles showed complementation, indicating different recessive lethal mutations. Due to mosaic insecticide control practices, balancing selection (overdominance) plays a key role in the early dynamics of heterogeneous duplicated alleles; it also favours a high local polymorphism of HS D alleles in natural populations (overdominance reinforced by complementation). Overall, our study shows that the evolutionary fate of heterogeneous duplications (and their long‐term role) depends on finely balanced selective pressures due to the environment and to their genomic structure.  相似文献   

19.
Theoretical models on the evolution of phenotypic plasticity predict a zone of canalization where reaction norms cross, and genetic variation is minimized in the environment a population most frequently encounter. Empirical tests of this prediction are largely missing, in particular for life‐history traits. We addressed this prediction by quantifying thermal reaction norms of three life‐history traits (somatic growth rate, age and size at maturation) of a Norwegian population of Daphnia magna and testing for the occurrence of an intermediate temperature (Tm) at which genetic variance in the traits is minimized. Size at maturation changed relatively little with temperature compared to the other traits, and there was no genetic variance in the shape of the reaction norm. Consequently, age at maturation and somatic growth rate were strongly negatively correlated. Both traits showed a strong genotype–environment interaction, and the estimated Tm was 14 °C for both age at maturation and growth rate. This value of Tm corresponds well with mean summer temperatures experienced by the population and suggests that the population has evolved under stabilizing selection in temperatures that fluctuate around this mean temperature. These results suggest local adaptation to temperature in the studied population and allow predicting evolutionary trajectories of thermal reaction norms under changing thermal regimes.  相似文献   

20.
Alpine lizards living in restricted areas might be particularly sensitive to climate change. We studied thermal biology of Iberolacerta cyreni in high mountains of central Spain. Our results suggest that I. cyreni is a cold‐adapted thermal specialist and an effective thermoregulator. Among ectotherms, thermal specialists are more threatened by global warming than generalists. Alpine lizards have no chance to disperse to new suitable habitats. In addition, physiological plasticity is unlikely to keep pace with the expected rates of environmental warming. Thus, lizards might rely on their behavior in order to deal with ongoing climate warming. Plasticity of thermoregulatory behavior has been proposed to buffer the rise of environmental temperatures. Therefore, we studied the change in body and environmental temperatures, as well as their relationships, for I. cyreni between the 1980s and 2012. Air temperatures have increased more than 3.5°C and substrate temperatures have increased by 6°C in the habitat of I. cyreni over the last 25 years. However, body temperatures of lizards have increased less than 2°C in the same period, and the linear relationship between body and environmental temperatures remains similar. These results show that alpine lizards are buffering the potential impact of the increase in their environmental temperatures, most probably by means of their behavior. Body temperatures of I. cyreni are still cold enough to avoid any drop in fitness. Nonetheless, if warming continues, behavioral buffering might eventually become useless, as it would imply spending too much time in shelter, losing feeding, and mating opportunities. Eventually, if body temperature exceeds the thermal optimum in the near future, fitness would decrease abruptly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号