首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We assessed the level of geographic differentiation of Tilia cordata in Denmark based on tests of 91 trees selected from 12 isolated populations. We used quantitative analysis of spring phenology and population genetic analysis based on SSR markers to infer the likely historical genetic processes within and among populations. High genetic variation within and among populations was observed in spring phenology, which correlated with spring temperatures at the origin of the tested T. cordata trees. The population genetic analysis revealed significant differentiation among the populations, but with no clear sign of isolation by distance. We infer the findings as indications of ongoing fine scale selection in favor of local growth conditions made possible by limited gene flow among the small and fragmented populations. This hypothesis fits well with reports of limited fruiting in the investigated Danish T. cordata populations, while the species is known for its ability to propagate vegetatively by root suckers. Our results suggest that both divergent selection and genetic drift may have played important roles in forming the genetic patterns of T. cordata at its northern distribution limit. However, we also speculate that epigenetic mechanism arising from the original population environment could have created similar patterns in regulating the spring phenology.  相似文献   

2.
Parrotia subaequalis (Hamamelidaceae) is a Tertiary relic species endemic in eastern China. We used inter‐simple sequence repeat (ISSR) markers to access genetic diversity and population genetic structure in natural five populations of P. subaequalis. The levels of genetic diversity were higher at species level (= 0.2031) but lower at population level (= 0.1096). The higher genetic diversity at species levels might be attributed to the accumulation of distinctive genotypes which adapted to the different habitats after Quaternary glaciations. Meanwhile, founder effects on the early stage, and subsequent bottleneck of population regeneration due to its biological characteristics, environmental features, and human activities, seemed to explain the low population levels of genetic diversity. The hierarchical AMOVA revealed high levels (42.60%) of among‐population genetic differentiation, which was in congruence with the high levels of Nei's genetic differentiation index (GST = 0.4629) and limited gene flow (Nm = 0.5801) among the studied populations. Mantel test showed a significant isolation‐by‐distance, indicating that geographic isolation has a significant effect on genetic structure in this species. Unweighted pair‐group method with arithmetic average clustering, PCoA, and Bayesian analyses uniformly recovered groups that matched the geographical distribution of this species. In particular, our results suggest that Yangtze River has served as a natural barrier to gene flow between populations occurred on both riversides. Concerning the management of P. subaequalis, the high genetic differentiation among populations indicates that preserving all five natural populations in situ and collecting enough individuals from these populations for ex situ conservation are necessary.  相似文献   

3.
Forest fragmentation may negatively affect plants through reduced genetic diversity and increased population structure due to habitat isolation, decreased population size, and disturbance of pollen‐seed dispersal mechanisms. However, in the case of tree species, effective pollen‐seed dispersal, mating system, and ecological dynamics may help the species overcome the negative effect of forest fragmentation. A fine‐scale population genetics study can shed light on the postfragmentation genetic diversity and structure of a species. Here, we present the genetic diversity and population structure of Cercis canadensis L. (eastern redbud) wild populations on a fine scale within fragmented areas centered around the borders of Georgia–Tennessee, USA. We hypothesized high genetic diversity among the collections of C. canadensis distributed across smaller geographical ranges. Fifteen microsatellite loci were used to genotype 172 individuals from 18 unmanaged and naturally occurring collection sites. Our results indicated presence of population structure, overall high genetic diversity (HE = 0.63, HO = 0.34), and moderate genetic differentiation (FST = 0.14) among the collection sites. Two major genetic clusters within the smaller geographical distribution were revealed by STRUCTURE. Our data suggest that native C. canadensis populations in the fragmented area around the Georgia–Tennessee border were able to maintain high levels of genetic diversity, despite the presence of considerable spatial genetic structure. As habitat isolation may negatively affect gene flow of outcrossing species across time, consequences of habitat fragmentation should be regularly monitored for this and other forest species. This study also has important implications for habitat management efforts and future breeding programs.  相似文献   

4.
Gynostemma pentaphyllum, a member of family Cucurbitaceae, is a perennial creeping herb used as a traditional medicinal plant in China. In this study, six polymorphic nSSR and four EST‐SSR primers were used to genotype 1,020 individuals in 72 wild populations of G. pentaphyllum. The genetic diversity and population structure were investigated, and ecological niche modeling was performed to reveal the evolution and demographic history of its natural populations. The results show that G. pentaphyllum has a low level of genetic diversity and high level of variation among populations because of pervasive asexual propagation, genetic drift, and long‐term habitat isolation. Results of the Mantel test demonstrate that the genetic distance and geographic distance are significantly correlated among G. pentaphyllum natural populations. The populations can be divided into two clusters on the basis of genetic structure. Asymmetrical patterns of historical gene flow were observed among the clusters. For the contemporary, almost all the bidirectional gene flow of the related pairs was symmetrical with slight differences. Recent bottlenecks were experienced by 34.72% of the studied populations. The geographic range of G. pentaphyllum continues to expand northward and eastward from Hengduan Mountains. The present distribution of G. pentaphyllum is a consequence of its complex evolution. Polyploidy in G. pentaphyllum is inferred to be polygenetic. Finally, G. pentaphyllum is a species in need of protection, so in situ and ex situ measures should be considered in the future.  相似文献   

5.
Gene flow, maintained through natal dispersal and subsequent mating events, is one of the most important processes in both ecology and population genetics. Among mammalian populations, gene flow is strongly affected by a variety of factors, including the species’ ability to disperse, and the composition of the environment which can limit dispersal. Information on dispersal patterns is thus crucial both for conservation management and for understanding the social system of a species. We used 16 polymorphic nuclear microsatellite loci in addition to mitochondrial DNA sequences (1.61 kbp) to analyse the population structure and the sex‐specific pattern of natal dispersal in the frog‐eating fringe‐lipped bat, Trachops cirrhosus, in Central Panama. Our study revealed that—unlike most of the few other investigated Neotropical bats—gene flow in this species is mostly male‐mediated. Nevertheless, distinct genetic clusters occur in both sexes. In particular, the presence of genetic differentiation in the dataset only consisting of the dispersing sex (males) indicates that gene flow is impeded within our study area. Our data are in line with the Panama Canal in connection with the widening of the Río Chagres during the canal construction acting as a recent barrier to gene flow. The sensitivity of T. cirrhosus to human‐induced habitat modifications is further indicated by an extremely low capture success in highly fragmented areas. Taken together, our genetic and capture data provide evidence for this species to be classified as less mobile and thus vulnerable to habitat change, information that is important for conservation management.  相似文献   

6.
Commiphora wightii is a medicinally important endangered species endemic to the Thar Desert of Rajasthan, India and adjoining areas of Pakistan. The populations of this species are declining sharply because of its extensive use as a natural herb. Random amplified polymorphic DNA analysis was conducted to find the genetic variation among 7 populations of C. wightii. Of the 100 random primers screened, 44 primers yielded 220 loci. Statistical analysis indicated low genetic diversity (H pop = 0.0958; I = 0.1498; mean polymorphic loci = 14.28%), and high genetic differentiation among the populations (G ST = 0.3990; AMOVA Φ ST of 0.3390; Bayesian θ (II) = 0.3002). The low genetic diversity may be due to geographic isolation and restricted gene flow (N m = 0.7533) between the fragmented populations. Unsustainable utilization of the plant has fragmented the population continuum which served the purpose of genetic exchange between populations. Mantel’s test was performed which revealed a highly significant positive correlation between genetic and geographic distance (r 2 = 0.614, P = 0.023) among the populations studied. Low variation can also be attributed to poor seed setting and the slow growth pattern of the species, which is also an apomict. In UPGMA dendrogram the Commiphora wightii samples were divided into two major and one minor cluster. These findings can serve as a guide to preserving the genetic resources of this medicinal plant species.  相似文献   

7.
Land‐use changes have threatened populations of many insect pollinators, including bumble bees. Patterns of dispersal and gene flow are key determinants of species' ability to respond to land‐use change, but have been little investigated at a fine scale (<10 km) in bumble bees. Using microsatellite markers, we determined the fine‐scale spatial genetic structure of populations of four common Bombus species (B. terrestris, B. lapidarius, B. pascuorum and B. hortorum) and one declining species (B. ruderatus) in an agricultural landscape in Southern England, UK. The study landscape contained sown flower patches representing agri‐environment options for pollinators. We found that, as expected, the B. ruderatus population was characterized by relatively low heterozygosity, number of alleles and colony density. Across all species, inbreeding was absent or present but weak (FIS = 0.01–0.02). Using queen genotypes reconstructed from worker sibships and colony locations estimated from the positions of workers within these sibships, we found that significant isolation by distance was absent in B. lapidarius, B. hortorum and B. ruderatus. In B. terrestris and B. pascuorum, it was present but weak; for example, in these two species, expected relatedness of queens founding colonies 1 m apart was 0.02. These results show that bumble bee populations exhibit low levels of spatial genetic structure at fine spatial scales, most likely because of ongoing gene flow via widespread queen dispersal. In addition, the results demonstrate the potential for agri‐environment scheme conservation measures to facilitate fine‐scale gene flow by creating a more even distribution of suitable habitats across landscapes.  相似文献   

8.
Southwest China is an important biodiversity hotspot. The interactions among the complex topography, climate change, and ecological factors in the dry‐hot valley areas in southwest China may have profoundly affected the genetic structure of plant species in this region. In this study, we determined the effects of the Tanaka Line on genetic variation in the wild Bombax ceiba tree in southwest China. We sampled 224 individuals from 17 populations throughout the dry‐hot valley regions. Six polymorphic expressed sequence tag–simple sequence repeat primers were employed to sequence the PCR products using the first‐generation Sanger technique. The analysis based on population genetics suggested that B. ceiba exhibited a high level of gene diversity (HE: 0.2377–0.4775; I: 0.3997–0.7848). The 17 populations were divided into two groups by cluster analysis, which corresponded to geographic characters on each side of the Tanaka Line. In addition, a Mantel test indicated that the phylogeographic structure among the populations could be fitted to the isolation‐by‐distance model (r2 = .2553, < .001). A barrier test indicated that there were obstacles among populations and between the two groups due to complex terrain isolation and geographic heterogeneity. We inferred that the Tanaka Line might have promoted the intraspecific phylogeographic subdivision and divergence of B. ceiba. These results provide new insights into the effects of the Tanaka Line on genetic isolation and population differentiation of plant species in southwest China.  相似文献   

9.
Ten tetranucleotide microsatellite loci were isolated from an enriched library for the gecko Oedura reticulata. The species is endemic to the southwest of Western Australia, known to be a habitat specialist, and exposed to severe habitat fragmentation in the Western Australian wheatbelt. These highly polymorphic markers (two to 25 alleles) will facilitate the population genetic analyses of this species. In particular, they will enable estimates of gene flow between remnant populations — a critical element in assessing extinction dynamics in fragmented populations.  相似文献   

10.
The effect of glaciation on the levels and patterns of genetic variation has been well studied in the Northern Hemisphere. However, although glaciation has undoubtedly shaped the genetic structure of plants in the Southern Hemisphere, fewer studies have characterized the effect, and almost none of them using microsatellites. Particularly, complex patterns of genetic structure might be expected in areas such as the Andes, where both latitudinal and altitudinal glacial advance and retreat have molded modern plant communities. We therefore studied the population genetics of three closely related, hybridizing species of Nothofagus (Nobliqua, N. alpina, and N. glauca, all of subgenus Lophozonia; Nothofagaceae) from Chile. To estimate population genetic parameters and infer the influence of the last ice age on the spatial and genetic distribution of these species, we examined and analyzed genetic variability at seven polymorphic microsatellite DNA loci in 640 individuals from 40 populations covering most of the ranges of these species in Chile. Populations showed no significant inbreeding and exhibited relatively high levels of genetic diversity (HE = 0.502–0.662) and slight, but significant, genetic structure (RST = 8.7–16.0%). However, in N. obliqua, the small amount of genetic structure was spatially organized into three well‐defined latitudinal groups. Our data may also suggest some introgression of N. alpina genes into N. obliqua in the northern populations. These results allowed us to reconstruct the influence of the last ice age on the genetic structure of these species, suggesting several centers of genetic diversity for N. obliqua and N. alpina, in agreement with the multiple refugia hypothesis.  相似文献   

11.
It is challenging to unravel the history of organisms with highly scattered populations. Such species may have fragmented distributions because extant populations are remnants of a previously more continuous range, or because the species has narrow habitat requirements in combination with good dispersal capacity (naturally or vector borne). The northern pine processionary moth Thaumetopoea pinivora has a scattered distribution with fragmented populations in two separate regions, northern and south-western Europe. The aims of this study were to explore the glacial and postglacial history of T. pinivora, and add to the understanding of its current distribution and level of contemporary gene flow. We surveyed published records of its occurrence and analysed individuals from a representative subset of populations across the range. A 633 bp long fragment of the mtDNA COI gene was sequenced and nine polymorphic microsatellite loci were genotyped. Only nine nucleotide sites were polymorphic in the COI gene and 90% of the individuals from across its whole range shared the same haplotype. The microsatellite diversity gradually declined towards the north, and unique alleles were found in only three of the northern and three of southern sites. Genetic structuring did not indicate complete isolation among regions, but an increase of genetic isolation by geographic distance. Approximate Bayesian model choice suggested recent divergence during the postglacial period, but glacial refugia remain unidentified. The progressive reduction of suitable habitats is suggested to explain the genetic structure of the populations and we suggest that T. pinivora is a cold-tolerant relict species, with situation-dependent dispersal.  相似文献   

12.
Population fragmentation is often correlated with loss of genetic diversity and reduced fitness. Obligate out-crossing (dioecy) is expected to enhance genetic diversity, reduce genetic differentiation, and avoid inbreeding depression through frequent gene flow. However, in highly fragmented populations dioecy has only diminishing effects upon genetic structure as pollination limitations (e.g. flight distance of pollinators) most often restrict inter-population gene flow in insect pollinated species. In fragmented dry grasslands in northeastern Germany, we analysed genetic structure, fitness, and habitat quality of the endangered dioecious Silene otites (Caryophyllaceae). Using AFLP markers, a high level of differentiation among ten populations was found (F st = 0.36), while the intra-population genetic diversities (H E = 0.165–0.240) were similar as compared to hermaphroditic species. There was neither a correlation between geographic and genetic distance nor between genetic diversity and population size, which indicates reduced gene flow among populations and random genetic drift. Plant size was positively correlated with genetic diversity. Seed set and number of juveniles were positively related to population size. Higher total coverage resulted in reduced plant fitness, and the number of juveniles was negatively correlated to cryptogam cover. Additionally, we found a sex ratio bias towards more male plants in larger populations. Overall, our results indicate that on a regional geographic scale dioecy does not necessarily prevent genetic erosion in the case of habitat fragmentation, especially in the absence of long distance seed and pollen dispersal capacity.  相似文献   

13.
In heterogeneous environments, landscape features directly affect the structure of genetic variation among populations by functioning as barriers to gene flow. Resource‐associated population genetic structure, in which populations that use different resources (e.g., host plants) are genetically distinct, is a well‐studied example of how environmental heterogeneity structures populations. However, the pattern that emerges in a given landscape should depend on its particular combination of resources. If resources constitute barriers to gene flow, population differentiation should be lowest in homogeneous landscapes, and highest where resources exist in equal proportions. In this study, we tested whether host community diversity affects population genetic structure in a beetle (Bolitotherus cornutus) that exploits three sympatric host fungi. We collected B. cornutus from plots containing the three host fungi in different proportions and quantified population genetic structure in each plot using a panel of microsatellite loci. We found no relationship between host community diversity and population differentiation in this species; however, we also found no evidence of resource‐associated differentiation, suggesting that host fungi are not substantial barriers to gene flow. Moreover, we detected no genetic differentiation among B. cornutus populations separated by several kilometers, even though a previous study demonstrated moderate genetic structure on the scale of a few hundred meters. Although we found no effect of community diversity on population genetic structure in this study, the role of host communities in the structuring of genetic variation in heterogeneous landscapes should be further explored in a species that exhibits resource‐associated population genetic structure.  相似文献   

14.
Seed-mediated gene flow can considerably affect population genetic structure of strictly self-pollinating species, but little is known on the extent and nature of such gene flow among pastoral plant populations. Molecular fingerprints provide a powerful tool to address the relevant issues. Genetic structure of 22 populations of two self-pollinating pasture species, Elymus nutans and E. burchan-buddae, collected from various altitudes of the Qinghai–Tibetan Plateau was studied using fluorescence-based amplified fragment length polymorphism technique. Analysis of molecular variance revealed 42.97% and 37.63% among-population variation for the two Elymus species, respectively, indicating that the majority of the total variation presented within populations. This result contradicts the common genetic variation pattern for a selfing plant species: lower genetic variation within populations. Further analysis suggested higher level of gene flow among populations within the same region than among different regions across the sampled area for the two Elymus species. STRUCTURE analyses of the Elymus populations indicated an evident admixture genetic structure, particularly among neighboring populations from the same region, supporting the hypothesis of considerable seed dispersal among populations. The excess within-region gene flow of E. nutans and E. burchan-buddae might be caused by grazing animals that promote seed dispersal when moved around the pastoral lands during foraging. The among-population gene flow promulgated by grazing animals may promote the maintenance of genetic diversity in the pasture species, particularly in small and fragmented populations within a given region.  相似文献   

15.
Historically fragmented and specialized habitats such as granite outcrops are understudied globally unique hot spots of plant evolution. In contrast to predictions based on mainstream population genetic theory, some granite outcrop plants appear to have persisted as very small populations despite prolonged geographic and genetic isolation. Eucalyptus caesia Benth. is a long‐lived lignotuberous tree endemic with a naturally fragmented distribution on granite outcrops in south‐western Australia. To quantify population to landscape‐level genetic structure, we employed microsatellite genotyping at 14 loci of all plants in 18 stands of E. caesia. Sampled stands were characterized by low levels of genetic diversity, small absolute population sizes, localized clonality and strong fine‐scale genetic subdivision. There was no significant relationship between population size and levels of heterozygosity. At the landscape scale, high levels of population genetic differentiation were most pronounced among representatives of the two subspecies in E. caesia as originally circumscribed. Past genetic interconnection was evident between some geographic neighbours separated by up to 20 km. Paradoxically, other pairs of neighbouring stands as little as 7 km apart were genetically distinct. There was no consistent pattern of isolation by distance across the 280 km range of E. caesia. Low levels of gene flow, together with strong drift within stands, provide some explanation of the patterns of genetic differentiation we observed. Individual genet longevity via the ability to repeatedly resprout and expand from a lignotuber may enhance the persistence of some woody perennial endemic plants despite small population size, minimal genetic interconnection and low heterozygosity.  相似文献   

16.
Genetic founder effects are often expected when animals colonize restored habitat in fragmented landscapes, but empirical data on genetic responses to restoration are limited. We examined the genetic response of banner‐tailed kangaroo rats (Dipodomys spectabilis) to landscape‐scale grassland restoration in the Chihuahuan Desert of New Mexico, USA. Dipodomys spectabilis is a grassland specialist and keystone species. At sites treated with herbicide to remove shrubs, colonization by D. spectabilis is slow and populations persist at low density for ≥10 years (≥6 generations). Persistence at low density and low gene flow may cause strong founder effects. We compared genetic structure of D. spectabilis populations between treated sites and remnant grasslands, and we examined how the genetic response to restoration depended on treatment age, area, and connectivity to source populations. Allelic richness and heterozygosity were similar between treated sites and remnant grasslands. Allelic richness at treated sites was greatest early in the restoration trajectory, and genetic divergence did not differ between recently colonized and established populations. These results indicated that founder effects during colonization of treated sites were weak or absent. Moreover, our results suggested founder effects were not mitigated by treatment area or connectivity. Dispersal is negatively density‐dependent in D. spectabilis, and we hypothesize that high gene flow may occur early in the restoration trajectory when density is low. Our study shows genetic diversity can be recovered more rapidly than demographic components of populations after habitat restoration and that founder effects are not inevitable for animals colonizing restored habitat in fragmented landscapes.  相似文献   

17.
The European natterjack toad (Bufo calamita) has declined rapidly in recent years, primarily due to loss of habitat, and in Denmark it is estimated that 50% of the isolated populations are lost each decade. To efficiently manage and conserve this species and its genetic diversity, knowledge of the genetic structure is crucial. Based on nine polymorphic microsatellite loci, the genetic diversity, genetic structure and gene flow were investigated at 12 sites representing 5–10% of the natterjack toad localities presently known in Denmark. The expected heterozygosity (H E) within each locality was generally low (range: 0.18–0.43). Further analyses failed to significantly correlate genetic diversity with population size, degree of isolation and increasing northern latitude, indicating a more complex combination of factors in determining the present genetic profile. Genetic differentiation was high (overall θ = 0.29) and analyses based on a Bayesian clustering method revealed that the dataset constituted 11 genetic clusters, defining nearly all sampling sites as distinct populations. Contemporary gene flow among populations was undetectable in nearly all cases, and the failure to detect a pattern of isolation by distance within major regions supported this apparent lack of a gene flow continuum. Indications of a genetic bottleneck were found in three populations. The analyses suggest that the remaining Bufo calamita populations in Denmark are genetically isolated, and represent independent units in a highly fragmented gene pool. Future conservation management of this species is discussed in light of these results. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
19.
The highly polymorphic genes of the major histocompatibility complex (MHC) are involved in disease resistance, mate choice and kin recognition. Therefore, they are widely used markers for investigating adaptive variation. Although selection is the key driver, gene flow and genetic drift also influence adaptive genetic variation, sometimes in opposing ways and with consequences for adaptive potential. To further understand the processes that generate MHC variation, it is helpful to compare variation at the MHC with that at neutral genetic loci. Differences in MHC and neutral genetic variation are useful for inferring the relative influence of selection, gene flow and drift on MHC variation. To date, such investigations have usually been undertaken at a broad spatial scale. Yet, evolutionary and ecological processes can occur at a fine spatial scale, particularly in small or fragmented populations. We investigated spatial patterns of MHC variation among three geographically close, naturally discrete, sampling sites of Egernia stokesii, an Australian lizard. The MHC of E. stokesii has recently been characterized, and there is evidence for historical selection on the MHC. We found E. stokesii MHC weakly differentiated among sites compared to microsatellites, suggesting selection, acting similarly at each site, has outweighed any effects of low gene flow or of genetic drift on E. stokesii MHC variation. Our findings demonstrate the strength of selection in shaping patterns of MHC variation or consistency at a fine spatial scale.  相似文献   

20.
Little is known about the natural history, biology, and population genetic structure of the Hardhead Silverside, Atherinomorus stipes, a small schooling fish found around islands throughout the Caribbean. Our field observations of A. stipes in the cays of Belize and the Florida Keys found that populations tend to be in close association with the shoreline in mangrove habitats. Due to this potential island‐based population structuring, A. stipes represents an ideal system to examine questions about gene flow and isolation by distance at different geographic scales. For this study, the mitochondrial gene nd2 was amplified from 394 individuals collected from seven different Belizean Cays (N = 175) and eight different Floridian Keys (N = 219). Results show surprisingly high haplotype diversity both within and between island‐groups, as well as a high prevalence of unique haplotypes within each island population. The results are consistent with models that require gene flow among populations as well as in situ evolution of rare haplotypes. There was no evidence for an isolation by distance model. The nd2 gene tree consists of two well‐supported monophyletic groups: a Belizean‐type clade and a Floridian‐type clade, indicating potential species‐level differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号