首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous work suggests that larvae from Sydney rock oysters that have been selectively bred for fast growth and disease resistance are more resilient to the impacts of ocean acidification than nonselected, wild‐type oysters. In this study, we used proteomics to investigate the molecular differences between oyster populations in adult Sydney rock oysters and to identify whether these form the basis for observations seen in larvae. Adult oysters from a selective breeding line (B2) and nonselected wild types (WT) were exposed for 4 weeks to elevated pCO2 (856 μatm) before their proteomes were compared to those of oysters held under ambient conditions (375 μatm pCO2). Exposure to elevated pCO2 resulted in substantial changes in the proteomes of oysters from both the selectively bred and wild‐type populations. When biological functions were assigned, these differential proteins fell into five broad, potentially interrelated categories of subcellular functions, in both oyster populations. These functional categories were energy production, cellular stress responses, the cytoskeleton, protein synthesis and cell signalling. In the wild‐type population, proteins were predominantly upregulated. However, unexpectedly, these cellular systems were downregulated in the selectively bred oyster population, indicating cellular dysfunction. We argue that this reflects a trade‐off, whereby an adaptive capacity for enhanced mitochondrial energy production in the selectively bred population may help to protect larvae from the effects of elevated CO2, whilst being deleterious to adult oysters.  相似文献   

2.
The recent development of Pacific oyster (Crassostrea gigas) SNP genotyping arrays has allowed detailed characterisation of genetic diversity and population structure within and between oyster populations. It also raises the potential of harnessing genomic selection for genetic improvement in oyster breeding programmes. The aim of this study was to characterise a breeding population of Australian oysters through genotyping and analysis of 18 027 SNPs, followed by comparison with genotypes of oyster sampled from Europe and Asia. This revealed that the Australian populations had similar population diversity (HE) to oysters from New Zealand, the British Isles, France and Japan. Population divergence was assessed using PCA of genetic distance and revealed that Australian oysters were distinct from all other populations tested. Australian Pacific oysters originate from planned introductions sourced from three Japanese populations. Approximately 95% of these introductions were from geographically, and potentially genetically, distinct populations from the Nagasaki oysters assessed in this study. Finally, in preparation for the application of genomic selection in oyster breeding programmes, the strength of LD was evaluated and subsets of loci were tested for their ability to accurately infer relationships. Weak LD was observed on average; however, SNP subsets were shown to accurately reconstitute a genomic relationship matrix constructed using all loci. This suggests that low‐density SNP panels may have utility in the Australian population tested, and the findings represent an important first step towards the design and implementation of genomic approaches for applied breeding in Pacific oysters.  相似文献   

3.
Murray MC  Hare MP 《Molecular ecology》2006,15(13):4229-4242
The degree of population structure within species often varies considerably among loci. This makes it difficult to determine whether observed variance reflects neutral-drift stochasticity or locus-specific selection at one or more loci. This uncertainty is exacerbated when evolutionary equilibrium cannot be assumed and/or admixture potentially inflates genomic variance. Thus, the value of a 'genome scan', where locus-specific summary statistics are compared with a simulated neutral distribution among loci, may be limited in secondary contact zones if the null distribution is sensitive to the timing of secondary contact. Of particular interest here is the wide variance previously observed in locus-specific patterns of population structure between Atlantic and Gulf of Mexico populations of eastern oyster, Crassostrea virginica. To test the robustness of an equilibrium null model, we compared among-locus distributions of F(ST) simulated under migration-drift equilibrium and several nonequilibrium secondary contact histories. We then tested for evidence of divergent selection between two oyster populations on either side of a secondary contact zone using 215 amplified fragment length polymorphism (AFLP) loci. Constant-migration equilibrium and nonequilibrium secondary-contact simulations produced equivalent distributions of F(ST) when anchored by the global mean F(ST) observed in oysters, 0.0917. The 99th quantile of simulated neutral F(ST) encompassed most of the variation among oyster loci. Three AFLP loci exhibited F(ST) values higher than this threshold. Although no locus was significant after correcting for multiple tests, our results show in geographically clinal organisms: AFLPs can efficiently characterize the genomic distribution of F(ST); equilibrium models can be used to evaluate outliers; these procedures help focus research on genomic regions of interest.  相似文献   

4.
Gulf of Mexico versus Atlantic populations of several coastal species in the southeastern United States are known to differ sharply in genetic composition, but most transitional zones have not previously been examined in detail. Here we employ molecular markers from mitochondrial and nuclear loci to characterize cytonuclear genetic associations at meso- and microgeographic scales along an eastern Florida transitional zone between genetically distinct Atlantic and Gulf populations of the American oyster, Crassostrea virginica. The single- and multilocus cytonuclear patterns display: (1) a cline extending along 340 km of the east Florida coastline; (2) a pronounced step in the cline centered at Cape Canaveral (shifts in allelic frequencies by 50–75% over a 20 km distance); (3) a close agreement of observed genotypic frequencies with Hardy-Weinberg expectations within locales; and (4) mild or nonexistent nuclear and cytonuclear disequilibria in most local population samples. These results imply: (1) considerable restrictions to interpopulational gene flow along the eastern Florida coastline; (2) within locales, free interbreeding (as opposed to mere population admixture) between Gulf and Atlantic forms of oysters; and (3) localized population recruitment in the transition zone localities. These findings demonstrate that marine organisms with high dispersal potential via long-lived pelagic larvae can nonetheless display pronounced spatial population genetic structure, and more generally they exemplify the utility of pronounced genetic transition zones for the study of population level processes.  相似文献   

5.
Understanding how the density and spatial arrangement of invaders is critical to developing management strategies of pest species. The Pacific oyster, Crassostrea gigas, has been translocated around the world for aquaculture and in many instances has established wild populations. Relative to other species of bivalve, it displays rapid suspension feeding, which may cause mortality of pelagic invertebrate larvae. We compared the effect on settlement of Sydney rock oyster, Saccostrea glomerata, larvae of manipulating the spatial arrangement and density of native S. glomerata, and non‐native C. gigas. We hypothesized that while manipulations of dead oysters would reveal the same positive relationship between attachment surface area and S. glomerata settlement between the two species, manipulations of live oysters would reveal differing density‐dependent effects between the native and non‐native oyster. In the field, whether oysters were live or dead, more larvae settled on C. gigas than S. glomerata when substrate was arranged in monospecific clumps. When, however, the two species were interspersed, there were no differences in larval settlement between them. By contrast, in aquaria simulating a higher effective oyster density, more larvae settled on live S. glomerata than Cgigas. When C. gigas was prevented from suspension feeding, settlement of larvae on C. gigas was enhanced. By contrast, settlement was similar between the two species when dead. While the presently low densities of the invasive oyster C. gigas may enhance S. glomerata larval settlement in east Australian estuaries, future increases in densities could produce negative impacts on native oyster settlement. Synthesis and applications: Our study has shown that both the spatial arrangement and density of invaders can influence their impact. Hence, management strategies aimed at preventing invasive populations reaching damaging sizes should not only consider the threshold density at which impacts exceed some acceptable limit, but also how patch formation modifies this.  相似文献   

6.
Culture of the eastern oyster (Crassostrea virginica) is rapidly expanding. Combined with their continuing role as an environmental sentinel species and ecological model, this trend necessitates improved molecular tools for breeding and selection, as well as population assessment and genetic conservation. Here, we describe the development and validation of two panels of 58 single nucleotide polymorphism markers (SNPs) for the species. Population analyses revealed three distinct populations, based on FST values and STRUCTURE, among wild oysters sampled from Delaware Bay (1), northwest Florida (2), Alabama (2), Louisiana (2), and the Texas Gulf Coast (3), consistent with previous microsatellite and mtDNA analyses. In addition, utilizing the developed panels for parentage assignment in cultured oysters (Rutgers, New Jersey) resulted in a highly accurate identification of parent pairs (99.37%). The SNP markers could, furthermore, clearly discriminate between hatchery stocks and wild-sourced individuals. The developed SNP panels may serve as an important tool for more rapid and affordable genetic analyses in eastern oyster.  相似文献   

7.
The red tide dinoflagellate Karenia brevis (Davis) G. Hansen and Moestrup is noted for causing mass mortalities of marine organisms in the Gulf of Mexico. Most research has focused on culture isolates from the eastern Gulf of Mexico. In this investigation, we examine the effects of light, temperature and salinity on the growth rate of K. brevis from the western Gulf of Mexico. Growth rates of K. brevis were determined under various combinations of irradiance (19, 31, 52, 67, and 123 μmol m−2 s−1), salinity (25, 30, 35, 40 and 45), and temperature (15, 20, 25, and 30 °C). Maximum growth rates varied from 0.17 to 0.36 div day−1 with exponential growth rates increasing with increasing irradiance. Little or no growth was supported at 19 μmol photons m−2 s−1 for any experiment. Maximum growth rates at 15 °C were much lower than at other temperatures. Maximum growth rates of the Texas clone (SP3) fell within the range of Florida clones reported in the literature (0.17–0.36 div day−1 versus 0.2–1.0 div day−1). The Texas clone SP3 had a very similar light saturation point compared to that of a Florida isolate (Wilson's clone) (67 μmol m−2 s−1 versus 65 μmol m−2 s−1), and light compensation (20–30 μmol m−2 s−11). The upper and lower salinity tolerance of the Texas clone was similar than that of some Florida clones (45 versus 46 and 25 versus 22.5, respectively). In our study, the Texas clone had the same temperature tolerance reported for Florida clones (15–30 °C). While individual clones can vary considerably in maximum growth rates, our results indicate only minor differences exist between the Texas and Florida strains of K. brevis in their temperature and salinity tolerance for growth. While the literature notes lower salinity occurrences of K. brevis in nearby Louisiana, our isolate from the southern Texas coast has the higher salinity requirements typical of K. brevis in the eastern Gulf of Mexico.  相似文献   

8.
We examined a secondary contact zone between two species of desert tortoise, Gopherus agassizii and G. morafkai. The taxa were isolated from a common ancestor during the formation of the Colorado River (4–8 mya) and are a classic example of allopatric speciation. However, an anomalous population of G. agassizii comes into secondary contact with G. morafkai east of the Colorado River in the Black Mountains of Arizona and provides an opportunity to examine reinforcement of species' boundaries under natural conditions. We sampled 234 tortoises representing G. agassizii in California (n = 103), G. morafkai in Arizona (n = 78), and 53 individuals of undetermined assignment in the contact zone including and surrounding the Black Mountains. We genotyped individuals for 25 STR loci and determined maternal lineage using mtDNA sequence data. We performed multilocus genetic clustering analyses and used multiple statistical methods to detect levels of hybridization. We tested hypotheses about habitat use between G. agassizii and G. morafkai in the region where they co‐occur using habitat suitability models. Gopherus agassizii and G. morafkai maintain independent taxonomic identities likely due to ecological niche partitioning, and the maintenance of the hybrid zone is best described by a geographical selection gradient model.  相似文献   

9.
Oyster reef restoration has become a principal strategy for ameliorating the loss of natural Crassostrea virginica populations and increasing habitat provision. In 2014, a large‐scale, high‐relief, 23‐ha subtidal C. virginica reef was restored at the historically productive Half Moon Reef in Matagorda Bay, TX, using concrete and limestone substrates. Encrusting and motile fauna were sampled seasonally until 17 months postrestoration at the restored reef and at adjacent unrestored sites. Restored oysters developed rapidly and were most abundant 3 months postrestoration, with subsequent declines possibly due to interacting effects of larval settlement success on new substrate versus post‐settlement mortality due to competitors and predators. Oyster densities were 2× higher than in a restored oyster population in Chesapeake Bay that was reported to be the largest reestablished metapopulation of native oysters in the world. Resident fauna on the restored reef were 62% more diverse, had 433% greater biomass, and comprised a distinct faunal community compared to unrestored sites. The presence of three‐dimensional habitat was the most important factor determining resident faunal community composition, indicating that substrate limitation is a major hindrance for oyster reef community success in Texas and other parts of the Gulf of Mexico. There were only minor differences in density, biomass, and diversity of associated fauna located adjacent (13 m) versus distant (150 m) to the restored reef. The two substrate types compared had little influence on oyster recruitment or faunal habitat provision. Results support the use of reef restoration as a productive means to rebuild habitat and facilitate faunal enhancement.  相似文献   

10.
Geographic range size and genetic diversity are key correlates of extinction risk and evolutionary potential of a species, with species occupying smaller geographic ranges and showing limited genetic diversity assumed to be more threatened by environmental changes. The Italian Aesculapian snake Zamenis lineatus is a narrow‐range endemic of southern Italy and Sicily, once considered as part of the widespread species Z. longissimus. To date, we still lack comprehensive data on geographic range and intraspecific diversity of Z. lineatus. In this study, we analysed 106 Aesculapian snakes across the Italian Peninsula and Sicily in order to define the genetic diversity and distribution range of Z. lineatus, its possible range overlap with Z. longissimus and to assess whether hybridization occurs at the species’ range boundaries. We combined genetic data from mitochondrial and nuclear DNA markers with phenotypic data suitable for taxonomic identification. The observed phylogeographic pattern of Z. lineatus suggests: (i) a reduced peninsular range size, about a half of what is currently considered; (ii) limited genetic diversity and weak population structure; (iii) the occurrence of pervasive introgressive hybridization with Z. longissimus in the eastern contact zone. Together, results from this study indicate a higher extinction risk for Z. lineatus than previously appreciated and provide directions for future studies on the hybridization at the contact zone(s) between Z. lineatus and Z. longissimus.  相似文献   

11.
Climate change poses several challenges to biological communities including changes in the frequency of encounters between closely related congeners as a result of range shifts. When climate change leads to increased hybridization, hybrid dysfunction or genetic swamping may increase extinction risk—particularly in range‐restricted species with low vagility. The Peaks of Otter Salamander, Plethodon hubrichti, is a fully terrestrial woodland salamander that is restricted to ~18 km of ridgeline in the mountains of southwestern Virginia, and its range is surrounded by the abundant and widespread Eastern Red‐backed Salamander, Plethodon cinereus. In order to determine whether these two species are hybridizing and how their range limits may be shifting, we assessed variation at eight microsatellite loci and a 1,008 bp region of Cytochrome B in both species at allopatric reference sites and within a contact zone. Our results show that hybridization between P. hubrichti and P. cinereus either does not occur or is very rare. However, we find that diversity and differentiation are substantially higher in the mountaintop endemic P. hubrichti than in the widespread P. cinereus, despite similar movement ability for the two species as assessed by a homing experiment. Furthermore, estimation of divergence times between reference and contact zone populations via approximate Bayesian computation is consistent with the idea that P. cinereus has expanded into the range of P. hubrichti. Given the apparent recent colonization of the contact zone by P. cinereus, future monitoring of P. cinereus range limits should be a priority for the management of P. hubrichti populations.  相似文献   

12.
The pine processionary moth (Thaumetopoea pityocampa) is an important pest of coniferous forests at the southern edge of its range in Maghreb. Based on mitochondrial markers, a strong genetic differentiation was previously found in this species between western (pityocampa clade) and eastern Maghreb populations (ENA clade), with the contact zone between the clades located in Algeria. We focused on the moth range in Algeria, using both mitochondrial (a 648 bp fragment of the tRNA‐cox2) and nuclear (11 microsatellite loci) markers. A further analysis using a shorter mtDNA fragment and the same microsatellite loci was carried out on a transect in the contact zone between the mitochondrial clades. Mitochondrial diversity showed a strong geographical structure and a well‐defined contact zone between the two clades. In particular, in the pityocampa clade, two inner subclades were found whereas ENA did not show any further structure. Microsatellite analysis outlined a different pattern of differentiation, with two main groups not overlapping with the mitochondrial clades. The inconsistency between mitochondrial and nuclear markers is probably explained by sex‐biased dispersal and recent afforestation efforts that have bridged isolated populations.  相似文献   

13.
In this study, we have developed a SYBR Green™ I-based real-time multiplexed PCR assay for the detection of Vibrio parahaemolyticus in Gulf of Mexico water (gulf water), artificially seeded and natural oysters targeting three hemolysin genes, tlh, tdh and trh in a single reaction. Post-amplification melt-temperature analysis confirmed the amplification of all three targeted genes with high specificity. The detection sensitivity was 10 cfu (initial inoculum) in 1 ml of gulf water or oyster tissue homogenate, following 5 h enrichment. The results showed 58% of the oysters to be positive for tlh, indicating the presence of V. parahaemolyticus; of which 21% were positive for tdh; and 0.7% for trh, signifying the presence of pathogenic strains. The C t values showed that oyster tissue matrix had some level of inhibition, whereas the gulf water had negligible effect on PCR amplification. The assay was rapid (~8 h), specific and sensitive, meeting the ISSC guidelines. Rapid detection using real-time multiplexed PCR will help reduce V. parahaemolyticus-related disease outbreaks, thereby increasing consumer confidence and economic success of the seafood industry.  相似文献   

14.
Knowledge of the degree to which populations are connected through larval dispersal is imperative to effective management, yet little is known about larval dispersal ability or population connectivity in Lophelia pertusa, the dominant framework-forming coral on the continental slope in the North Atlantic Ocean. Using nine microsatellite DNA markers, we assessed the spatial scale and pattern of genetic connectivity across a large portion of the range of L. pertusa in the North Atlantic Ocean. A Bayesian modeling approach found four distinct genetic groupings corresponding to ocean regions: Gulf of Mexico, coastal southeastern U.S., New England Seamounts, and eastern North Atlantic Ocean. An isolation-by-distance pattern was supported across the study area. Estimates of pairwise population differentiation were greatest with the deepest populations, the New England Seamounts (average F ST = 0.156). Differentiation was intermediate with the eastern North Atlantic populations (F ST = 0.085), and smallest between southeastern U.S. and Gulf of Mexico populations (F ST = 0.019), with evidence of admixture off the southeastern Florida peninsula. Connectivity across larger geographic distances within regions suggests that some larvae are broadly dispersed. Heterozygote deficiencies were detected within the majority of localities suggesting deviation from random mating. Gene flow between ocean regions appears restricted, thus, the most effective management scheme for L. pertusa involves regional reserve networks.  相似文献   

15.
We investigate the genetic variation between populations of the American sweetgum (Liquidambar styraciflua), a tree species with a disjunct distribution between northeastern Texas and Mexico, by analyzing sequences of two chloroplast DNA plastid regions in Mesoamerica. Our results revealed phylogeographical structure, with private haplotypes distributed in unique environmental space at either side of the Trans‐Mexican Volcanic Belt, and a split in the absence of gene flow dating back ca. 4.2–1.4 million years ago (MYA). Species distribution modeling results fit a model of refugia along the Gulf and Atlantic coasts but the present ranges of US and Mesoamerican populations persisted disjunct during glacial/interglacial cycles. Divergence between the US and Mesoamerican (ca. 8.4–2.8 MYA) populations of L. styraciflua and asymmetrical gene flow patterns support the hypothesis of a long‐distance dispersal during the Pliocene, with fragmentation since the most recent glacial advance (120,000 years BP) according to coalescent simulations and high effective migration rates from Mesoamerica to the USA and close to zero in the opposite direction. Our findings implicate the Trans‐Mexican Volcanic Belt as a porous barrier driving genetic divergence of L. styraciflua, corresponding with environmental niche differences, during the Pliocene to Quaternary volcanic arc episode 3.6 MYA, and a Mesoamerican origin of populations in the USA.  相似文献   

16.
Yellow Warblers (Setophaga petechia) are abundant breeding birds in North America, but their migratory and non‐breeding biology remain poorly understood. Studies where genetic and isotopic techniques were used identified parallel migration systems and longitudinal segregation among eastern‐ and western‐breeding populations of Yellow Warblers in North America, but these techniques have low spatial resolution. During the 2015 breeding season, we tagged male Yellow Warblers breeding in Maine (= 10) and Wisconsin (= 10) with light‐level geolocators to elucidate fine‐scale migratory connectivity within the eastern haplotype of this species and determine fall migration timing, routes, and wintering locations. We recovered seven of 20 geolocators (35%), including four in Maine and three in Wisconsin. The mean duration of fall migration was 49 d with departure from breeding areas in late August and early September and arrival in wintering areas in mid‐October. Most individuals crossed the Gulf of Mexico to Central America before completing the final eastward leg of their migration to northern South America. Yellow Warblers breeding in Maine wintered in north‐central Colombia, west of those breeding in Wisconsin that wintered in Venezuela and the border region between Brazil, Colombia, and Venezuela. Our results provide an example of crosswise migration, where the more easterly breeding population wintered farther west than the more westerly breeding population (and vice versa), a seldom‐documented phenomenon in birds. Our results confirm earlier work demonstrating that the eastern haplotype of northern Yellow Warblers winters in northern South America, and provide novel information about migratory strategies, timing, and wintering locations of birds from two different populations.  相似文献   

17.
We evaluated the mtDNA divergence and relationships within Geomys pinetis to assess the status of formerly recognized Geomys taxa. Additionally, we integrated new hypothesis‐based tests in ecological niche models (ENM) to provide greater insight into causes for divergence and potential barriers to gene flow in Southeastern United States (Alabama, Florida, and Georgia). Our DNA sequence dataset confirmed and strongly supported two distinct lineages within G. pinetis occurring east and west of the ARD. Divergence date estimates showed that eastern and western lineages diverged about 1.37 Ma (1.9 Ma–830 ka). Predicted distributions from ENMs were consistent with molecular data and defined each population east and west of the ARD with little overlap. Niche identity and background similarity tests were statistically significant suggesting that ENMs from eastern and western lineages are not identical or more similar than expected based on random localities drawn from the environmental background. ENMs also support the hypothesis that the ARD represents a ribbon of unsuitable climate between more suitable areas where these populations are distributed. The estimated age of divergence between eastern and western lineages of G. pinetis suggests that the divergence was driven by climatic conditions during Pleistocene glacial–interglacial cycles. The ARD at the contact zone of eastern and western lineages of G. pinetis forms a significant barrier promoting microgeographic isolation that helps maintain ecological and genetic divergence.  相似文献   

18.
Capitella capitata was traditionally used as a biological indicator species due to its ubiquitous distribution and high densities in disturbed and polluted marine and estuarine sediments. Based on allozyme and developmental studies, it is now clear that C. capitata is a species complex consisting of multiple distinct lineages worldwide, including the recently described C. teleta, a model species for spiralian development. The coast of the northern Gulf of Mexico, with its numerous bays and estuaries and frequently occurring natural and anthropogenic disturbances, provides an appropriate region for such studies. We sequenced a fragment of the mitochondrial cytochrome c oxidase subunit I gene for individuals of C. cf. capitata and C. cf. aciculata (distinguished by acicular spines on the first two chaetigers) collected from Texas and Florida coasts and analyzed them in conjunction with data available in GenBank. Our results indicate the presence of a Gulf of Mexico clade that is distinct from populations in Canada and the Indo‐Pacific. Populations in the northern Gulf of Mexico are structured geographically, with support for Texas and Florida clades, and there do not seem to be clear boundaries between C. cf. capitata and C. cf. aciculata. This is corroborated by the fact that multiple specimens were morphologically intermediate between the two species. In future studies, we aim to clarify whether the intermediate morphologies represent ontogenetic stages, neutral morphological variation, phenotypic plasticity, or sexual dimorphism in a single species or whether several lineages with incomplete reproductive barriers are present.  相似文献   

19.
Natural hybridization of plants can result in many outcomes with several evolutionary consequences, such as hybrid speciation and introgression. Natural hybrid zones can arise in mountain systems as a result of fluctuating climate during the exchange of glacial and interglacial periods, where species retract and expand their territories, resulting in secondary contacts. Willows are a large genus of woody plants with an immense capability of interspecific crossing. In this study, the sympatric area of two diploid sister species, S. foetida and S. waldsteiniana in the eastern European Alps, was investigated to study the genomic structure of populations within and outside their contact zone and to analyze congruence of morphological phenotypes with genetic data. Eleven populations of the two species were sampled across the Alps and examined using phylogenetic network and population genetic structure analyses of RAD Seq data and morphometric analyses of leaves. The results showed that a homoploid hybrid zone between the two species was established within their sympatric area. Patterns of genetic admixture in homoploid hybrids indicated introgression with asymmetric backcrossing to not only one of the parental species but also one hybrid population forming a separate lineage. The lack of F1 hybrids indicated a long-term persistence of the hybrid populations. Insignificant isolation by distance suggests that gene flow can act over large geographical scales. Morphometric characteristics of hybrids supported the molecular data and clearly separated populations of the parental species, but showed intermediacy in the hybrid zone populations with a bias toward S. waldsteiniana. The homoploid hybrid zone might have been established via secondary contact hybridization, and its establishment was fostered by the low genetic divergence of parental species and a lack of strong intrinsic crossing barriers. Incomplete ecological separation and the ability of long-distance dispersal of willows could have contributed to the spatial expansion of the hybrid zone.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号