共查询到20条相似文献,搜索用时 0 毫秒
1.
位于我国南方丘陵的粤港澳地区拥有丰富杜鹃花资源,长期以来受杜鹃花不适宜在高温低海拔地区进行开发利用等思想的影响,该区域野生杜鹃花的开发、保护与利用研究寥寥无几,但低海拔野生杜鹃花在气候变化下正面临较高灭绝风险。基于粤港澳地区杜鹃花属(Rhododendron)14个筛选后的野生物种229个标本点位数据,利用最大熵模型(Maxent)模拟粤港澳地区野生杜鹃花在2070年低、中、高3种温室气体排放模式(RCP2.6、RCP4.5、RCP8.5)下的适生区范围大小与方向的变化及其主导环境变量。研究发现未来粤港澳地区野生杜鹃花的适生区范围整体呈缩小趋势,且随着温室气体排放浓度的增加,即从RCP2.6到RCP8.5,越来越多杜鹃花物种适生区呈现向高纬度、高海拔方向迁移的趋势;对杜鹃花分布影响最大的变量为最冷月的最低温、温度季节性和最干月降水量。本研究通过探究气候变化对野生杜鹃花适生区范围的影响,以期为粤港澳地区野生杜鹃花的保护与开发利用提供科学指导。 相似文献
2.
Christine Adams‐Hosking Clive McAlpine Jonathan R. Rhodes Hedley S. Grantham Patrick T. Moss 《Diversity & distributions》2012,18(9):847-860
Aim An important consideration when planning to conserve a species under climate change is to understand how the distribution of its food resources may also contract or shift under those same climatic conditions. Here, we use a case study to demonstrate a spatial conservation planning approach to inform decisions about where, under climate change, to protect and restore critical food and habitat resources for highly specialized species. Location Eastern Australia. Methods We developed fitted models for the koala (Phascolarctos cinereus) and five of its key eucalypt food trees using the maximum entropy algorithm available in Maxent. We then projected these models using a range of IPCC A1FI climate change scenarios and identified areas with a higher probability of occurrence. We calculated where the koala and its food trees may co‐occur under future climate change. Results The koala and its food trees experienced significant range contractions as climate change progressed, sometimes to regions outside their current distributions. The inland species Eucalyptus camaldulensis and Eucalyptus coolabah contracted from the more arid interior, which is outside the koala range, but persisted in the eastern regions of the koala’s range, while Eucalyptus viminalis, Eucalyptus populnea and Eucalyptus tereticornis contracted eastwards and southwards, with a fragmented distribution. The highest probabilities of overlap between koalas and their food trees were identified in fragmented coastal and southern regions of the koala’s current range. Main conclusions The application of a robust species distribution modelling decision support tool identified important changes, under climate change, in the distribution of a specialist species and its key food trees. These distributions did not change in complete synergy and therefore areas of overlap varied, depending on the food tree species modelled. This is of particular importance in a conservation planning context, when considering targeted protection and restoration of species‐specific habitat resources. 相似文献
3.
气候变化广泛影响着物种多样性及其分布变迁。优化模型模拟结果,获取气候变化影响下的优先保护区域将为制定应对气候变化的物种保护政策或行动提供理论依据,提升保护绩效。选取东北地区五种代表性动物,包括黑熊(Ursus thibetanus)、驼鹿(Alces alces)、水獭(Lutra lutra)、紫貂(Martes zibellina)及黑嘴松鸡(Tetrao parvirostris);结合最大熵模型(Maxent)模拟在不同RCP情景下未来3个年代(2030s,2050s,2070s)的物种潜在栖息地。根据九个常用气候模式的评价结果,获取东北地区合适的气候模式,了解气候变化对物种潜在栖息地的影响,同时开展物种保护规划,识别保护空缺,为应对气候变化、保持生物多样性提供支持。结果显示,在气候变化背景下物种潜在栖息地面积整体呈现下降趋势,但不同气候模式之间存在差异;评价结果推荐CCSM4、Nor ESM1-M、Had GEM2-AO及GFDL-CM3气候模式,推荐在东北地区使用以上气候模式进行物种未来潜在分布的研究。5个物种潜在栖息地平均面积变化率分别为-62.16%,-73.93%,-78.46%(2030s,2050s,2070s)。综合5个重点保护物种的保护优先区,大兴安岭的呼中、汗马与额尔古纳国家级自然保护区,延边地区的天佛指山、老爷岭东北虎、珲春东北虎与汪清原麝国家级自然保护区,长白山国家级自然保护区是气候变化下物种保护的热点区域。 相似文献
4.
Bats are considered important bioindicators and deliver key ecosystem services to humans. However, it is not clear how the individual and combined effects of climate change and land-use change will affect their conservation in the future. We used a spatial conservation prioritization framework to determine future shifts in the priority areas for the conservation of 169 bat species under projected climate and land-use change scenarios across Africa. Specifically, we modelled species distribution models under four different climate change scenarios at the 2050 horizon. We used land-use change scenarios within the spatial conservation prioritization framework to assess habitat quality in areas where bats may shift their distributions. Overall, bats’ representation within already existing protected areas in Africa was low (∼5% of their suitable habitat in protected areas which cover ∼7% of Africa). Accounting for future land-use change resulted in the largest shift in spatial priority areas for conservation actions, and species representation within priority areas for conservation actions decreased by ∼9%. A large proportion of spatial conservation priorities will shift from forested areas with little disturbance under present conditions to agricultural areas in the future. Planning land use to reduce impacts on bats in priority areas outside protected areas where bats will be shifting their ranges in the future is crucial to enhance their conservation and maintain the important ecosystem services they provide to humans. 相似文献
5.
Mengyi Huang;Hongguang Liu;Yan Tong;Shuqiang Li;Zhonge Hou; 《Diversity & distributions》2024,30(2):e13798
Climate change threatens freshwater faunal diversity. To prioritize areas for conservation, patterns in the distribution of species must be understood. We apply genetic analysis and species distribution models to identify patterns in the distribution of freshwater amphipods around Xinjiang, China, and project the impact of climate change on endemic species. 相似文献
6.
Li Wen Neil Saintilan Julian R. W. Reid Matthew J. Colloff 《Ecology and evolution》2016,6(18):6672-6689
Provision of suitable habitat for waterbirds is a major challenge for environmental managers in arid and semiarid regions with high spatial and temporal variability in rainfall. It is understood in broad terms that to survive waterbirds must move according to phases of wet–dry cycles, with coastal habitats providing drought refugia and inland wetlands used during the wet phase. However, both inland and coastal wetlands are subject to major anthropogenic pressures, and the various species of waterbird may have particular habitat requirements and respond individualistically to spatiotemporal variations in resource distribution. A better understanding of the relationships between occurrence of waterbirds and habitat condition under changing climatic conditions and anthropogenic pressures will help clarify patterns of habitat use and the targeting of investments in conservation. We provide the first predictive models of habitat availability between wet and dry phases for six widely distributed waterbird species at a large spatial scale. We first test the broad hypothesis that waterbirds are largely confined to coastal regions during a dry phase. We then examine the contrasting results among the six species, which support other hypotheses erected on the basis of their ecological characteristics. There were large increases in area of suitable habitat in inland regions in the wet year compared with the dry year for all species, ranging from 4.14% for Australian White Ibis to 31.73% for Eurasian Coot. With over half of the suitable habitat for three of the six species was located in coastal zones during drought, our study highlights the need to identify and conserve coastal drought refuges. Monitoring of changes in extent and condition of wetlands, combined with distribution modeling of waterbirds, will help support improvements in the conservation and management of waterbirds into the future. 相似文献
7.
Climate change can induce species range shifts. However, the intensity of climate change, the intrinsic dispersal ability of species and the anthropization of landscapes are impeding species movements in most cases. In this context, preserving and promoting climate corridors for species to migrate from their current habitats to their future climatically similar habitats is an important strategy for preventing species extinction. Climate connectivity modelling is a tool that can identify these potential movement pathways. Here, we aimed to model connectivity between climate analogues across Europe under various ecological assumptions and climate change scenarios, in order to identify areas of high potential connectivity and to quantify variation in connectivity across a range of hypotheses. We also overlapped connectivity maps with protected areas to determine whether climate connectivity was sufficiently protected. We showed that climatic connectivity did not differ much between different scenarios of climate change, but was strongly dependent on species’ dispersal assumptions. It was also relatively similar to a scenario of non-climatic connectivity. Therefore, it may be feasible to anticipate the effect of climate change on species movements regardless of the future trajectory of climate, but the implementation of protection strategies for multiple species will certainly prove complex. Overall, protected areas were located in the regions of high and stable connectivity, but some countries lack the appropriate protection schemes, especially regarding strong protections. Our results have the potential to serve in the construction of land cover change scenarios to identify the best strategies to improve climate connectivity. 相似文献
8.
Ulrich Irmler Kai Heller Hans Meyer Hans-Dieter Reinke 《Biodiversity and Conservation》2002,11(7):1129-1147
The ground beetles and spiders of two salt marshes at the German Northand Baltic Sea coast were investigated by pitfall traps in 1997 and 1998. Whilethe sites at the North Sea coast are tidal salt marshes, the salt marshes at theBaltic Sea are not influenced by tides. Pitfall traps were installed in agradient from 20 to 150 cm above MHT (mean high tide: 157cm + NN, NN: 500 cm above 0 at Amsterdam gauge) atthe North Sea coast or NN at the Baltic Sea coast at six or sevensampling elevations, each with five replicates. Conductivity, water content, organic substance,frequency or duration of floodings, sand content and pH of the soil weredetermined. The flooding regime is the major factor controlling the zonation ofinvertebrates. Two and three invertebrate assemblages at the North and BalticSea, respectively, were distinguished. These corresponded well with thevegetational zones. The border between the two zones was at 60–80cm above MHT at the North Sea. The three zones at the Baltic Seaextended between 20 and 30 cm, 40 to 80 cm and 100 to150 cm above NN. The elevation of the mean abundance of speciesabove MHT or NN was calculated. A tide simulation experiment resulted in ashifting population and in an increasing activity under a tidal regime aspredicted for the global climate change conditions in 2050. From the actualelevation of the mean abundance, the habitat size of salt marsh species wascalculated for a moderate and worse scenario of global climate change. Habitatreduction becomes highest for species of the lower salt marsh zone. Under worseconditions the gradiental length of habitat will only amount to a maximum of 20m at the slopes of the dikes. 相似文献
9.
10.
《Journal for Nature Conservation》2014,22(5):391-404
Biodiversity in the Tropical Andes is under continuous threat from anthropogenic activities. Projected changes in climate will likely exacerbate this situation. Using species distribution models, we assess possible future changes in the diversity and climatic niche size of an unprecedented number of species for the region. We modeled a broad range of taxa (11,012 species of birds and vascular plants), including both endemic and widespread species and provide a comprehensive estimation of climate change impacts on the Andes. We find that if no dispersal is assumed, by 2050s, more than 50% of the species studied are projected to undergo reductions of at least 45% in their climatic niche, whilst 10% of species could be extinct. Even assuming unlimited dispersal, most of the Andean endemics (comprising ∼5% of our dataset) would become severely threatened (>50% climatic niche loss). While some areas appear to be climatically stable (e.g. Pichincha and Imbabura in Ecuador; and Nariño, Cauca, Valle del Cauca and Putumayo in Colombia) and hence depict little diversity loss and/or potential species gains, major negative impacts were also observed. Tropical high Andean grasslands (páramos and punas) and evergreen montane forests, two key ecosystems for the provision of environmental services in the region, are projected to experience negative changes in species richness and high rates of species turnover. Adapting to these impacts would require a landscape-network based approach to conservation, including protected areas, their buffer zones and corridors. A central aspect of such network is the implementation of an integrated landscape management approach based on sustainable management and restoration practices covering wider areas than currently contemplated. 相似文献
11.
The present study provides first comprehensive and up-to-date results on alien plant taxa in Iceland since 1967. We evidenced the presence of 336 alien vascular plant taxa, including 277 casuals and 59 naturalised taxa, two being invasive. The distribution of the alien flora exhibits a clear spatial pattern showing hotspots of occurrence and diversity within areas of major settlement centres. Altitude above sea level and temperature-related variables proved to be the most important factors shaping alien plant distribution in Iceland. Predictive modelling evidenced that arctic areas of Iceland and the Central Highlands are under serious risk of alien plant invasion due to climate change. The results provide crucial information for alien and invasive plant management and contribute data for meta-analyses of invasion processes worldwide. 相似文献
12.
Jinju Zhang Qigang Ye Puxin Gao Xiaohong Yao 《Botanical journal of the Linnean Society. Linnean Society of London》2012,170(2):232-242
Sinojackia, a member of the family Styracaceae, is an endangered genus endemic to China. The number of populations and population size of Sinojackia have decreased sharply because of habitat fragmentation and destruction. We studied the genetic diversity of extant populations in two different cohorts (adult and seedling) using eight microsatellite markers to investigate the genetic footprints of habitat fragmentation in four recognized Sinojackia spp. and to develop appropriate conservation measures. Data on intrapopulational genetic diversity suggest that Sinojackia populations have maintained relatively high levels of genetic diversity and low levels of genetic differentiation despite severe fragmentation. The high genetic diversity may be explained by the outcrossing mating system and high longevity of Sinojackia spp. The amount of genetic variation is not associated with population size, which was also supported by bottleneck analysis. In the species studied, there was no significant difference in the genetic diversity between the two cohorts analysed. However, inbreeding increased from adult trees to seedling populations, suggesting that the higher proportion of biparental inbreeding in the recent generations of seedlings is the result of restricted current genetic flow caused by habitat fragmentation. Average seed set per population was not significantly correlated with either population size or genetic diversity. Conservation management should aim to monitor inbreeding and outbreeding depression carefully to ensure the in situ and ex situ conservation of Sinojackia spp. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, ?? , ??–??. 相似文献
13.
《Mammalian Biology》2014,79(1):58-63
The invasive American mink has been a component of Iceland's fauna since the 1930s. Hunting statistics indicate that until 2003 the population size was increasing, but thereafter decreased rapidly. The Icelandic marine environment has experienced various changes in recent years, including rising sea temperature and sand-eel collapse followed by seabird recruitment failure and population declines. Furthermore the arctic fox population has increased at least six-fold in the last three decades. Mink stomach content analysis in the period 2001–2009 revealed diet changes, and signs of reduced prey availability for this generalist predator, that were most significant in males. The most marked shift in composition was a decrease in consumption of birds. Our findings suggest that climate events, together with competition with increasing numbers of arctic foxes over terrestrial food, contributed to the sharp reduction in the mink population from 2004 and onwards. Despite their generalist behaviour, mink have apparently failed to respond fully to these environmental changes, and this susceptibility may benefit attempts to control their numbers. The results are relevant to the ability of top predators in general to cope with diverse ecosystem alterations triggered by climate change. 相似文献
14.
用RAPD标记方法对神农架地区香果树4个自然居群的28个个体进行了遗传多样性分析,11个引物共得到71个扩增位点,其中多态性位点39个。POPGENE分析显示:在物种水平上,神农架地区香果树的多态性条带百分率为54.93%,Nei基因多样性指数(h)为0.1903,Shannon信息指数(I)为0.2856;而在居群水平上,上述3个指标平均值依次为16.2%、0.0578和0.0865。4个自然居群间的遗传分化程度较低,居群间的基因流(Nm)为0.2329。结果表明神农架地区香果树的遗传多样性较低,居群间基因流较低可能是香果树的致濒原因之一。 相似文献
15.
生物多样性保护对维持城市生态系统功能具有重要意义。以39种厦门市重点保护植物为对象,通过物种分布模型MaxENT获得物种潜在分布栅格图,利用空间保护优先化定量工具Zonation软件识别理论上既适宜重点保护植物生存又能够保证景观连通性的区域,获得本地重点保护植物景观保护等级。根据2020年全球生物多样性目标,将景观保护等级最高的17%区域视为多物种空间优先保护区,结合Zonation模型生成的随景观丧失物种加权灭绝风险曲线,将保护等级最高的8%区域划为一级保护区,保护等级在8%-17%范围内的区域划为二级保护区。利用MaxENT模型中的jackknife刀切法发现海拔是对本地重点保护植物分布影响最大的环境因子,优先保护区集中分布于海拔较低的海岸带区域。将优先保护区与自然保护地建设现状、厦门市生态功能区规划、土地利用规划、城市总体规划对比发现厦门市岛外西部、北部的优先保护区得到了较好保护;岛外的西南部及东南部、岛内的东部及南部海岸带的优先保护区被建设用地大规模占用,已纳入自然保护地范围的区域较少,存在大量的海岸带优先保护区保护空缺;岛外东南部的部分优先保护区虽未被占用,但规划中属发展备用地,缺乏生态保护。为避免优先保护区面积的进一步萎缩,应重点关注海岸带区域优先保护区的生态保护,将目前属于发展备用地的优先保护区转划为生态留白空间,针对一级、二级优先保护区分别实施刚性和弹性的生态保育措施,在保护生物多样性的同时,严控对海岸带区域优先保护区的进一步开发利用,协调优先保护区内保护与开发利用间的关系。 相似文献
16.
应用林窗模型-FAREAST,模拟未来气候变化对中国东北主要类型森林演替动态的影响.根据大气环流模型ECHAM5-OM和HadCM3预测的气候变化资料,模拟选择了目前气候情景、增暖情景、增暖且降水变化情景3种气候情景.结果表明:维持目前气候不变,东北森林树种组成和森林生物量基本维持动态平衡.气候增暖不利于东北主要森林类型生长,主要针叶树种比例下降,阔叶树比例增加;温带针阔混交林垂直分布带有上移的趋势;增暖幅度越大,变化越明显.气候增暖基础上考虑降水变化,东北森林水平分布带有北移的趋势,降水对低海拔温带针阔混交林影响不大. 相似文献
17.
Ramonda serbica Pan?. (Gesneriaceae) is an endangered endemic species of the Balkan Peninsula which has been the subject of several studies in the past, but has not yet been investigated in terms of its genetic variation. Ramonda serbica is one of only five European representatives of the mainly subtropical family Gesneriaceae categorized as paleoendemics or Tertiary relicts sequestered in southern Europe by Quaternary climate oscillations. Here, an inter simple sequence repeat (ISSR) analysis was performed to determine the genetic diversity of five populations sampled from the geographically eastern fringe of its range in northwestern Bulgaria. We found relatively low levels of genetic diversity and significant genetic differentiation among the investigated populations, typical of a leading edge scenario. From a conservation point of view, the low genetic diversity, together with the presence of only few extant localities stress the need for urgent in situ and ex situ conservation actions to ensure the long‐term survival of R. serbica in Bulgaria. 相似文献
18.
19.
Preserving genetic health is an important aspect of species conservation. Allelic diversity is particularly important to conserve, as it provides capacity for adaptation and thus enables long‐term population viability. Allele retention is difficult to predict beyond one generation for real populations with complex demography and life‐history traits, so we developed a computer model to simulate allele retention in small populations. AlleleRetain is an individual‐based model implemented in r and can be applied to assess management options for conserving allelic diversity in small populations of animals with overlapping generations. AlleleRetain remedies the limitations of similar existing software, and its source code is freely available for further modification. AlleleRetain and its supporting materials can be downloaded from https://sites.google.com/site/alleleretain/ or CRAN ( http://cran.r-project.org ). 相似文献
20.
基于气候资料和日本松干蚧传播资料,根据传播扩散范围及入侵地的气候特征,分析了日本松干蚧主要影响因子的年代变化对日本松干蚧在东北地区扩散的影响。结果表明:东北地区最冷月各旬及月平均最低气温总的呈升高趋势(r=0.86,P0.05),冬季极端最低气温也有缓慢上升趋势(r=0.93,P0.01),其年代间的冷暖变化与日本松干蚧在东北地区扩散有明显的相关性。1月平均最低气温和冬季极端最低气温明显升高的20世纪70年代和90年代,日本松干蚧快速扩散、危害地虫口密度大、危害程度重。日本松干蚧大范围扩散和爆发都发生在1月份最低气温较高的年份。1月最低气温和冬季极端最低气温升高是日本松干蚧在东北地区传播扩散的重要因素。复苏后的降水量、卵孵化期的空气相对湿度和夏季最高气温的年代变化对日本松干蚧扩散的影响不显著。 相似文献