首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trees bearing novel or exotic gene components are poised to contribute to the bioeconomy for a variety of purposes such as bioenergy production, phytoremediation, and carbon sequestration within the forestry sector, but sustainable release of trees with novel traits in large‐scale plantations requires the quantification of risks posed to native tree populations. Over the last century, exotic hybrid poplars produced through artificial crosses were planted throughout eastern Canada as ornamentals or windbreaks and these exotics provide a proxy by which to examine the fitness of exotic poplar traits within the natural environment to assess risk of exotic gene escape, establishment, and spread into native gene pools. We assessed postzygotic fitness traits of native and exotic poplars within a naturally regenerated stand in eastern Canada (Quebec City, QC). Pure natives (P. balsamifera and P. deltoides spp. deltoides), native hybrids (P. deltoides × P. balsamifera), and exotic hybrids (trees bearing Populus nigra and P. maximowiczii genetic components) were screened for reproductive biomass, yield, seed germination, and fungal disease susceptibility. Exotic hybrids expressed fitness traits intermediate to pure species and were not significantly different from native hybrids. They formed fully viable seed and backcrossed predominantly with P. balsamifera. These data show that exotic hybrids were not unfit and were capable of establishing and competing within the native stand. Future research will seek to examine the impact of exotic gene regions on associated biotic communities to fully quantify the risk exotic poplars pose to native poplar forests.  相似文献   

2.
Species‐specific microsatellite markers were obtained for the unambiguous recognition of five poplar species of ecological and commercial importance to eastern North America: the native species Populus balsamifera and Populus deltoides, the exotic species Populus maximowiczii, Populus nigra, Populus trichocarpa and their interspecific hybrids. Forty‐four of 71 tested primer pairs amplified simple sequence repeat (SSR) loci for all five taxa. Six of these loci showed non‐overlapping allelic diversity between species, including fixed differences. Together, they were useful to identify unambiguously the five taxa and to validate parental contributions in a group of hybrid progeny. These markers will be invaluable to detect gene flow from plantations of exotic poplar into adjacent stands of native species and between the two potentially hybridizing native species P. balsamifera and P. deltoides.  相似文献   

3.

Background  

Two thaumatin-like proteins (TLPs) were previously identified in phloem exudate of hybrid poplar (Populus trichocarpa × P. deltoides) using proteomics methods, and their sieve element localization confirmed by immunofluorescence. In the current study, we analyzed different tissues to further understand TLP expression and localization in poplar, and used immunogold labelling to determine intracellular localization.  相似文献   

4.
Hybrid fitness is an important parameter to predict the evolutionary consequences of a hybridization event and to characterize hybrid zones. We studied fitness parameters of F1 and later‐generation hybrids between the lowland species Salix purpurea and the alpine S. helvetica that have recently emerged during colonization of an alpine glacier forefield. Fruit production (number of capsules per catkin and fruit set) did not differ between hybrids and parents, but the number of seeds per capsule of F1 hybrids was slightly lower than that of later‐generation hybrids and of the parents. Germination rates and seedling growth were tested on three substrates (pH 4.5, 7.0, and 8.0). Germination rates of seeds collected from F1 hybrids were lower on acid and neutral substrates, but equal at pH 8.0 compared to all other groups, while the seeds from later‐generation hybrids performed as well as the parents on all three substrates. In seedling growth, the colonizer S. purpurea performed better than all other taxa on all three substrates, while hybrids resembled the subalpine species S. helvetica. Results suggest that endogenous selection acts against F1 hybrids, but favors fitter genotypes in later‐generation hybrids. Exogenous selection via soil pH appears to be weak during seedling establishment. The pioneer vegetation on the glacier forefield may offer sufficient niche space for hybrid seedlings. Owing to the relatively high fitness of the hybrids and the scattered distribution of hybrids and parental individuals on the glacier forefield, this hybrid zone can be assigned to a mosaic model, probably facilitating gene flow and introgression between the parental species. As establishment of the hybrid zone appears to be linked to a colonization process, we propose to call it a pioneer mosaic hybrid zone.  相似文献   

5.
It is known that various poplar species and cultivated poplar hybrids have the potential to interbreed and produce fertile offspring. Conservation strategies for the genetic resources of the endangered Eurasian black poplar (Populus nigra L.) thus rely on a monitoring which enables the identification and verification of the pure species status. At the same time, the risk of hybrid dispersal and introgressive gene flow has to be estimated. In the present study a combination of two molecular markers, one from chloroplast DNA and the other from nuclear DNA, was applied to evaluate a large P. nigra population on the Elbe River. Hybrid clones of P. × canadensis are scattered within this population and also occur as plantations in the surrounding landscape. By means of the DNA markers the taxonomic status of 208 adult trees in the population and 140 young poplars along the riverbank was monitored. From the analysed young poplars, almost 20 percent were found to exhibit at least one of the two P. deltoides or P. × canadensis diagnostic alleles or genotypes, respectively. Possible vegetative spreads of F1 hybrids and precedent mating scenarios are discussed. Most interestingly we found clear evidence for a small number of backcross hybrids where P.  × canadensis acted as pollen donor. This case had long been debated and thought to be less probable, so far.  相似文献   

6.
Cottonwoods are well known as foundation riparian trees that support diverse communities and drive ecosystem processes. Although hybridization naturally occurs when the distributions of two or more cottonwood species overlap, few cottonwood hybrid zones have been genetically characterized. We use genetic and genomic analyses to characterize patterns of admixture and introgression for a newly described hybrid zone at the intersection of three species (Populus L. Salicaceae—Populus deltoides, Populus fremontii, and Populus angustifolia) in southwestern Colorado, USA. Analysis of nuclear and chloroplast microsatellite marker data detected substantial genetic variation among individuals, revealing that (1) hybridization is occurring between two, not three, species (P. deltoides and P. angustifolia); (2) gene flow is bidirectional; (3) hybrids are not abundant (admixture detected in only 34 of 270 trees), with most being early-generation F1 hybrids; (4) cytonuclear disequilibria exists and F1 hybrids tend to retain P. deltoides—like chloroplasts; and (5) roughly 30 % of the nuclear markers deviated from a neutral pattern of introgression, suggesting that selection may play a role in shaping the genetic structure of the hybrid zone in this region. Overall, our results show that despite strong selection maintaining species divergence, transfer of allelic variants across species boundaries can occur. Our study assesses the fine-scale genetic structure of hybridization between P. angustifolia and P. deltoides and lays the foundation for examining how geographic differences in hybrid zone dynamics arise and may influence subsequent ecological and evolutionary processes.  相似文献   

7.
The effects of hybridization on evolutionary processes are primarily determined by the differential between hybrid and parental species fitness. Assessing the impacts of hybridization can be challenging, however, as determining the relationship between individual fitness and the extent of introgression in wild populations is difficult. We evaluated the fitness consequences of hybridization for pure and hybrid females in a hybrid zone between two tidal marsh birds, the saltmarsh sparrow (Ammodramus caudacutus), a salt marsh obligate, and Nelson's sparrow (A. nelsoni), which has a broader ecological niche and a much younger evolutionary association with salt marshes. Biotic stressors associated with nesting in tidal environments suggest an important role for differential adaptation in shaping hybrid zone dynamics, with saltmarsh sparrows predicted to be better adapted to nesting in salt marshes. We collected DNA samples from adults (= 394) and nestlings (= 431) to determine the extent of introgression using 12 microsatellite loci and tested for the influence of extrinsic (nest placement) and intrinsic (genotype) factors on female reproductive success. We monitored nests (= 228), collected data on reproductive output, and estimated daily nest survival rates using female genotype and nest characteristics as covariates. To test for reduced survival of hybrid females, we also used capture data to assess the distribution of admixed male and female individuals across age classes. Reproductive success of females varied by genotypic class, but hybrids did not have intermediate success as predicted. Instead, we found that pure Nelson's sparrows had, on average, 33% lower hatching success than any other genotype, whereas F1/F2 hybrids, backcrossed Nelson's sparrows, and backcrossed and pure saltmarsh sparrows all had similar hatching success. We found no effect of genotype or nest placement on daily nest survival probabilities. However, hybrid individuals with a higher proportion of saltmarsh sparrow alleles exhibit nesting behaviours better suited to nesting successfully in tidal marshes. Further, while the proportion of F1/F2 individuals was similar between nestling and adult males, we found that the proportion of F1/F2 individuals was 2.3 times greater in nestling females compared with adult females, indicating reduced survival of F1 females. We conclude that differences in reproductive success among pure and admixed individuals coupled with intrinsic mechanisms (reduced survival in F1 females) shape hybrid zone dynamics in this system.  相似文献   

8.
Hybrid zones provide insight into the nature of species boundaries and the evolution of barriers to gene exchange. Characterizing multiple regions within hybrid zones is essential for understanding both their history and current dynamics. Here, we describe a previously uncharacterized region of a well‐studied hybrid zone between two species of field crickets, Gryllus pennsylvanicus and G. firmus. We use a combination of mitochondrial DNA sequencing, morphological data, and modeling of environmental variables to identify the ecological factors structuring the hybrid zone and define patterns of hybridization and introgression. We find an association between species distribution and natural habitat; Gryllus pennsylvanicus occupies natural habitat along forest edges and natural clearings, whereas G. firmus occupies more disturbed areas in agricultural and suburban environments. Hybridization and introgression occur across patch boundaries; there is evidence of substantial admixture both in morphological characters and mtDNA, over a broad geographic area. Nonetheless, the distribution of morphological types is bimodal. Given that F1 hybrids are viable and fertile in the lab, this suggests that strong pre‐zygotic barriers are operating in this portion of the hybrid zone.  相似文献   

9.
Introgression can introduce novel genetic variation at a faster rate than mutation alone and result in adaptive introgression when adaptive alleles are maintained in the recipient genome over time by natural selection. A previous study from our group demonstrated adaptive introgression from Populus balsamifera into P. trichocarpa in a target genomic region. Here we expand our local ancestry analysis to the whole genome of both parents to provide a comprehensive view of introgression patterns and to identify additional candidate regions for adaptive introgression genomewide. Populus trichocarpa is a large, fast‐growing tree of mild coastal regions of the Pacific Northwest, whereas P. balsamifera is a smaller stature tree of continental and boreal regions with intense winter cold. The species hybridize where they are parapatric. We detected asymmetric patterns of introgression across the whole genome of these two poplar species adapted to contrasting environments, with stronger introgression from P. balsamifera to P. trichocarpa than vice versa. Admixed P. trichocarpa individuals contained more genomic regions with unusually high levels of introgression (19 regions) and also the largest introgressed genome fragment (1.02 Mb) compared with admixed P. balsamifera (nine regions). Our analysis also revealed numerous candidate regions for adaptive introgression with strong signals of selection, notably related to disease resistance, and enriched for genes that may play crucial roles in survival and adaptation. Furthermore, we detected a potential overrepresentation of subtelomeric regions in P. balsamifera introgressed into P. trichocarpa and possible protection of sex‐determining regions from interspecific gene flow.  相似文献   

10.
Hybridization and gene flow between diverging lineages are increasingly recognized as common evolutionary processes, and their consequences can vary from hybrid breakdown to adaptive introgression. We have previously found a population of wood ant hybrids between Formica aquilonia and F. polyctena that shows antagonistic effects of hybridization: females with introgressed alleles show hybrid vigour, whereas males with the same alleles show hybrid breakdown. Here, we investigate whether hybridization is a general phenomenon in this species pair and analyse 647 worker samples from 16 localities in Finland using microsatellite markers and a 1200‐bp mitochondrial sequence. Our results show that 27 sampled nests contained parental‐like gene pools (six putative F. polyctena and 21 putative F. aquilonia) and all remaining nests (69), from nine localities, contained hybrids of varying degrees. Patterns of genetic variation suggest these hybrids arise from several hybridization events or, instead, have backcrossed to the parental gene pools to varying extents. In contrast to expectations, the mitochondrial haplotypes of the parental species were not randomly distributed among the hybrids. Instead, nests that were closer to parental‐like F. aquilonia for nuclear markers preferentially had F. polyctena's mitochondria and vice versa. This systematic pattern suggests there may be underlying selection favouring cytonuclear mismatch and hybridization. We also found a new hybrid locality with strong genetic differences between the sexes similar to those predicted under antagonistic selection on male and female hybrids. Further studies are needed to determine the selective forces that act on male and female genomes in these newly discovered hybrids.  相似文献   

11.
The narrowleaf cottonwood, Populus angustifolia, occurs in occasionally flooded, low elevation zones along river valleys near the North American Rocky Mountains. This small poplar has narrow leaves and fine branching and thus resembles willows, which are commonly flood-tolerant. We investigated the flood response of narrowleaf cottonwoods and a related native hybrid, jackii cottonwood (P. × jackii = P. balsamifera × P. deltoides), by studying saplings of 24 clones in a greenhouse, with some pots being inundated to provide the flood treatment. Flooding slightly reduced leaf numbers (−10%), and leaf sizes were reduced by about 21% in female P. angustifolia versus a 50% reduction in the female hybrids. Flooding-reduced stomatal conductance and net photosynthetic rate, and reduced transpiration particularly in P. × jackii. The effects on foliar gas exchange declined over a 5-week interval, suggesting compensation. The moderate impact of flooding supports the hypothesis that narrowleaf cottonwoods are flood-tolerant, and we anticipate that these trees could provide traits to increase the flood tolerance of fast-growing hybrid poplars. The results further indicate that female cottonwoods may be more flood-tolerant than males, and females could be more successful in lower, flood-prone sites.  相似文献   

12.
Hybridization and introgression appear more common in rapidly evolving groups, suggesting an important role in the evolutionary process. Detailed studies of how extrinsic or intrinsic forces regulate hybridization and introgression have the potential for broadening our understanding of mechanisms generating diversity. Species in the Fundulus notatus species complex have broad overlapping ranges and occur in replicated hybrid zones along predictable stream gradients. Typical hybrid zone structure has Fundulus olivaceus in headwaters, F. notatus downstream, and hybrid zones near confluences or abrupt shifts in habitat. Rarely, the typical upstream‐downstream orientation is reversed raising questions as to how hybrid zones are formed and maintained. We used next‐generation sequencing data to study hybridization and introgression in hybrid zones in neighboring drainages that differ in orientation (typical and reversed). We predicted extrinsic forces linked to stream gradients would result in noticeable differences between the two. Contrary to predictions, the data indicate the hybrid zones are remarkably similar. We used individual‐based simulations to explore the potential role of intrinsic and extrinsic forces in generating and maintaining typical and reversed hybrid zones. Simulation results were consistent with reversed hybrid zones being formed from stochastic processes combined with strong intrinsic forces and weak extrinsic forces.  相似文献   

13.
Natural hybridization of plants can result in many outcomes with several evolutionary consequences, such as hybrid speciation and introgression. Natural hybrid zones can arise in mountain systems as a result of fluctuating climate during the exchange of glacial and interglacial periods, where species retract and expand their territories, resulting in secondary contacts. Willows are a large genus of woody plants with an immense capability of interspecific crossing. In this study, the sympatric area of two diploid sister species, S. foetida and S. waldsteiniana in the eastern European Alps, was investigated to study the genomic structure of populations within and outside their contact zone and to analyze congruence of morphological phenotypes with genetic data. Eleven populations of the two species were sampled across the Alps and examined using phylogenetic network and population genetic structure analyses of RAD Seq data and morphometric analyses of leaves. The results showed that a homoploid hybrid zone between the two species was established within their sympatric area. Patterns of genetic admixture in homoploid hybrids indicated introgression with asymmetric backcrossing to not only one of the parental species but also one hybrid population forming a separate lineage. The lack of F1 hybrids indicated a long-term persistence of the hybrid populations. Insignificant isolation by distance suggests that gene flow can act over large geographical scales. Morphometric characteristics of hybrids supported the molecular data and clearly separated populations of the parental species, but showed intermediacy in the hybrid zone populations with a bias toward S. waldsteiniana. The homoploid hybrid zone might have been established via secondary contact hybridization, and its establishment was fostered by the low genetic divergence of parental species and a lack of strong intrinsic crossing barriers. Incomplete ecological separation and the ability of long-distance dispersal of willows could have contributed to the spatial expansion of the hybrid zone.  相似文献   

14.
A pot experiment was conducted in a growth chamber to investigate the effects of dandelion (Taraxacum officinale) and quackgrass (Elymus repens) on the growth of hybrid poplar (Populus deltoides × Populus × petrowskyana var. Walker). Single hybrid poplar seedlings were grown in pots either alone (SHP) or with four or eight dandelion plants per pot or with one or three quackgrass plants per pot in two soils collected from sites previously managed for alfalfa and pasture near Meadow Lake, Saskatchewan, Canada. Hybrid poplar and weed species were harvested approximately 7 and 14 weeks after planting. Approximately 14 weeks after planting, hybrid poplar shoot biomass in the SHP treatment was 28 g for the pasture soil and 22 g for the alfalfa soil. Corresponding shoot biomass for hybrid poplar grown with the dandelion and quackgrass treatments varied from 0.54 to 0.81 g and 0.3 to 3.66 g, respectively. Other hybrid poplar growth parameters including stem height, root collar diameter and fresh root biomass were similarly reduced by competition with the weed species. During the growing period, soil solution N and K concentrations decreased several-fold in both soils; however, the magnitude of decrease was comparatively higher in the weed treatments. Nitrogen, P and K uptake by hybrid poplar was greater in the SHP treatment in both the soils (337–425, 38–49 and 396–463 mg pot−1, respectively) compared to the weed treatments (4–28, 0.4–6.2 and 0.6–54.0 mg pot−1, respectively) by the end of the experiment. The presence of quackgrass and dandelion severely affects the growth of hybrid poplar by causing intense below-ground competition for nutrients. Responsible Editor: Ismael Cakmak.  相似文献   

15.

Background  

Thaxtomin A (TA), a phytotoxin produced by the phytopathogen Streptomyces scabies, is essential for the development of potato common scab disease. TA inhibits cellulose synthesis but its actual mode of action is unknown. Addition of TA to hybrid poplar (Populus trichocarpa x Populus deltoides) cell suspensions can activate a cellular program leading to cell death. In contrast, it is possible to habituate hybrid poplar cell cultures to grow in the presence of TA levels that would normally induce cell death. The purpose of this study is to characterize TA-habituated cells and the mechanisms that may be involved in enhancing resistance to TA.  相似文献   

16.
Many economically important species of Populus, especially those in sections Aigeiros and Tacamahaca, remain recalcitrant to genetic transformation. In this study, a simple and reliable protocol was developed for the efficient Agrobacterium-mediated transformation of a difficult-to-transform, but commercially viable, hybrid poplar Populus nigra L. × P. maximowiczii A. Henry (NM6). A plant transformation vector designed to express the β-glucuronidase (GUS) gene was used to detect transformation events at early stages of plant regeneration and to optimize parameters affecting poplar transformation. The use of zeatin riboside in shoot-induction medium, regeneration of shoots via indirect organogenesis, and early selection pressure were the major modifications that drastically improved the efficiency of poplar transformation and minimized the number of untransformed regenerants. Transgenic shoots were routinely obtained 4–10 weeks after co-culture with A. tumefaciens, with a greater than 90% rate of plant recovery. Stable transgene integration, ranging from a single insertion to ten copies per genome, was confirmed by Southern blot analysis. The mean transformation frequency was 36.3% and about two-thirds of the lines had 1–2 transgene copies. Among the explants, petioles and leaves had a higher transformation frequency than did stem segments. Growth characteristics and the morphology of transgenic poplar plants were identical to untransformed controls. These findings will accelerate the development of P. nigra × P. maximowiczii plants with novel traits, and may also be useful to improve transformation procedures for other Populus species.  相似文献   

17.
The maintenance or breakdown of reproductive isolation is an observable outcome of secondary contact between species. In cases where hybrids beyond the F1 are formed, the representation of each species' ancestry can vary dramatically among genomic regions. This genomic heterogeneity in ancestry and introgression can offer insight into evolutionary processes, particularly if introgression is compared in multiple hybrid zones. Similarly, considerable heterogeneity exists across the genome in the extent to which populations and species have diverged, reflecting the combined effects of different evolutionary processes on genetic variation. We studied hybridization across two hybrid zones of two phenotypically well‐differentiated bird species in Mexico (Pipilo maculatus and P. ocai), to investigate genomic heterogeneity in differentiation and introgression. Using genotyping‐by‐sequencing (GBS) and hierarchical Bayesian models, we genotyped 460 birds at over 41 000 single nucleotide polymorphism (SNP) loci. We identified loci exhibiting extreme introgression relative to the genome‐wide expectation using a Bayesian genomic cline model. We also estimated locus‐specific FST and identified loci with exceptionally high genetic divergence between the parental species. We found some concordance of locus‐specific introgression in the two independent hybrid zones (6–20% of extreme loci shared across zones), reflecting areas of the genome that experience similar gene flow when the species interact. Additionally, heterogeneity in introgression and divergence across the genome revealed another subset of loci under the influence of locally specific factors. These results are consistent with a history in which reproductive isolation has been influenced by a common set of loci in both hybrid zones, but where local environmental and stochastic factors also lead to genomic differentiation.  相似文献   

18.
? Premise of the study: Poplars and their hybrids are seen as important candidates for bioenergy initiatives. However, many concerns have been raised about large-scale plantations of new poplar cultivars. The deployment of such plants with novel traits brings the risk of potential spread of novel genome regions (including exotic genes, transgenes, or other heritable modifications) into natural populations of related species. The possibility of introgression is especially high in poplars because reproductive barriers between species are weak. Knowledge of the frequency of hybridization between cultivated trees and natural populations is one important step in the risk-assessment process. ? Methods: We studied the rate of spontaneous hybridization from two sexually mature poplar plantations into adjacent natural populations of Populus deltoides and P. balsamifera. The two plantations, both in eastern Canada, contain many different complex hybrid clones with components from exotic species, mostly P. nigra, P. trichocarpa, and P. maximowiczii. We analyzed 12 species-specific single nucleotide polymorphisms from six different genes in 5373 offspring sampled from the natural populations. ? Results: Contributions from all three exotics were found in the offspring, confirming low reproductive barriers among poplar species in these sections. The frequency of hybrid offspring varied among pollen donors, recipient populations, and years. ? Conclusions: The remarkably high rate of hybridization that was found in the smallest natural population sampled suggests that small peripheral populations carry a higher risk of introgression. These results could be used as a starting point for developing regulatory guidelines for the introduction of plants with novel traits.  相似文献   

19.
Populus alba is widely distributed and cultivated in Europe and Asia. This species has been used for diverse studies. In this study, we assembled a de novo genome sequence of P. alba var. pyramidalis (= P. bolleana) and confirmed its high transformation efficiency and short transformation time by experiments. Through a process of hybrid genome assembly, a total of 464 M of the genome was assembled. Annotation analyses predicted 37 901 protein‐coding genes. This genome is highly collinear to that of P. trichocarpa, with most genes having orthologs in the two species. We found a marked expansion of gene families related to histone and the hormone auxin but loss of disease resistance genes in P. alba if compared with the closely related P. trichocarpa. The genome sequence presented here represents a valuable resource for further molecular functional analyses of this species as a new tree model, poplar breeding practices and comparative genomic analyses across different poplars.  相似文献   

20.
The ecological and genetic factors determining the extent of introgression between species in secondary contact zones remain poorly understood. Here, we investigate the relative importance of isolating barriers and the demographic expansion of invasive Mytilus galloprovincialis on the magnitude and the direction of introgression with the native Mytilus trossulus in a hybrid zone in central California. We use double‐digest restriction‐site‐associated DNA sequencing (ddRADseq) to genotype 1337 randomly selected single nucleotide polymorphisms and accurately distinguish early and advanced generation hybrids for the first time in the central California Mytilus spp. hybrid zone. Weak levels of introgression were observed in both directions but were slightly more prevalent from the native M. trossulus into the invasive M. galloprovincialis. Few early and advanced backcrossed individuals were observed across the hybrid zone confirming the presence of strong barriers to interbreeding. Heterogeneous patterns of admixture across the zone of contact were consistent with the colonization history of M. galloprovincialis with more extensive introgression in northern localities furthest away from the putative site of introduction in southern California. These observations reinforce the importance of dynamic spatial and demographic expansions in determining patterns of introgression between close congeners, even in those with high dispersal potential and well‐developed reproductive barriers. Our results suggest that the threat posed by invasive M. galloprovincialis is more ecological than genetic as it has displaced, and continues to displace the native M. trossulus from much of central and southern California.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号