首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In East Asia, temperate forests are predicted to have retracted southward to c. 30° N during the last glacial maximum (LGM) based on fossil pollen data, whereas phylogeographic studies have often suggested glacial in situ survival of cool‐temperate deciduous trees in their modern northern ranges. Here we report a study of the genetic diversity and structure of 29 natural Mongolian oak (Quercus mongolica) populations using 19 nuclear simple sequence repeat (nSSR) loci and four chloroplast DNA fragments. Bayesian clustering analysis with nSSRs revealed five groups, which were inferred by approximate Bayesian computation (ABC) to have diverged in multiple refugia through multiple glacial–interglacial cycles. Analysis of chloroplast DNA variation revealed four lineages that were largely but incompletely geographically disjunct. Ecological niche modelling (ENMs) indicated a southward range shift of the oak's distribution at the LGM, although high suitability scores were also evident in the Changbai Mts. (Northeast China), the Korean Peninsula, areas surrounding the Bohai Sea, and along the coast of the Russian Far East. In addition, endemic chloroplast DNA haplotypes and nuclear lineages occurred in high‐latitude northern areas where the ENM predicted no suitable habitat. The combined evidence from nuclear and chloroplast DNA, and the results of the ENM clearly demonstrate that multiple northern refugia, including cryptic ones, were maintained across the current distributional range of the Mongolian oak during the LGM or earlier glacial periods. Though spatially limited, postglacial expansions from these refugia have led to a pattern of decreased genetic diversity with increasing latitude.  相似文献   

2.
Climate oscillations are the key factors to understand the patterns in modern biodiversity. East Asia harbors the most diverse temperate flora, largely because an extensive terrestrial ice cap was absent during repeated Pleistocene glaciation–interglacial cycles. Comparing the demographic histories of species that are codistributed and are close relatives may provide insight into how the process of climate change influences species ranges. In this study, we compared the spatial genetic structure and demographic histories of two coexisting Eleutherococcus species, Eleutherococcus senticosus and E. sessiliflorus. Both species are distributed in northern China, regions that are generally considered to be sensitive to climatic fluctuations. These regions once hosted temperate forest, but this temperate forest was replaced by tundra and taiga forest during the Last Glacial Maximum (LGM), according to pollen records. Using three chloroplast DNA fragments, we assessed the genetic structure of 20 and 9 natural populations of E. senticosus and E. sessiliflorus, respectively. Extremely contrasting genetic patterns were found between the two species; E. sessiliflorus had little genetic variation, whereas E. senticosus had considerably higher levels of genetic variation (15 haplotypes). We speculated that a recent severe bottleneck may have resulted in the extremely low genetic diversity in E. sessiliflorus. In E. senticosus, populations in Northeast China (NEC) harbored all of the haplotypes found in this species and included private haplotypes. The populations in NEC had higher levels of genetic diversity than did those from North China (NC). Therefore, we suggest that both the NC and NEC regions can sustain LGM refugia and that lineage admixture from multiple refugia took place after the LGM elevated the local genetic diversity in NEC. In NEC, multiple genetic hot spots were found in the Changbai Mountains and the Xiaoxing'an Range, which implied that multiple locations in NEC may sustain LGM refugia, even in the Xiaoxing'an Range.  相似文献   

3.
北京东灵山地区森林的物种多样性和景观格局多样性研究   总被引:49,自引:4,他引:49  
选取北京东灵山地区暖温带落叶阔叶林中7种主要森林和1个灌丛类型的11个样方,通过比较这些类型的物种多样性的相关的环境因子,及运用和度分析测度景观格局多样性,揭示了这些类型物种多样性的差异,与环境因子的关系,及其空间分布规律。结果显示:1)各森林类型乔木层物种丰富度均较低,灌木层和草本层物种丰富度较高。大多数森林类型中,物种丰富度的垂直结构是:草本层〉灌木层〉乔木层。2)各森林类型的Shannon指  相似文献   

4.
中国东部森林植被带划分之我见   总被引:27,自引:0,他引:27  
简要回顾了中国东部森林植被带划分研究的历史及当前存在的争论。提出了中国东部植被带划分应以植被本身的特征,特别是地带性的生物群落集为主要依据,同时参照它们的区系组成和气候指标。根据上述原则将中国东部划分为6个植被带∶北方针叶林带、凉温带针阔混交林带、温带落叶阔叶林带、暖温带常绿落叶阔叶混交林带、亚热带常绿阔叶林带和热带雨林、季雨林带,并对各植被带的特征作了简要的描述。阐述了对一些植被带名称、界线改动的原因,特别讨论了我国常绿落叶阔叶混交林以及常绿阔叶林生物气候带的归属问题,认为前者归属于暖温带植被,后者归属于亚热带植被为宜。  相似文献   

5.
We investigated a palynological section from middle Miocene sediments at Eskihisar (south‐western Anatolia) to establish biogeographic links of the palynoflora and to infer the palaeoenvironment. Four algal palynomorphs, nine spore taxa, eight gymnosperms, three monocots and 67 dicot pollen types were encountered and investigated using the ‘single grain method’ that combines light microscopy and scanning electron microscopy. Two pollen zones reflect different phases of basin development. Zonal vegetation remained fairly stable across the section and reflects heterogeneous environments including broad‐leaved deciduous forest, subtropical forest and sclerophyllous and semi‐evergreen oak forest. Conifers were accessory elements in the broad‐leaved deciduous forest communities and replaced these at higher elevations. Some herbaceous taxa (Plumbaginaceae) indicate scattered occurrences of sandy and/or rocky soils. Biogeographic affinities are general Northern Hemisphere, North American and East Asian, as also suggested by the macrofossil record. Only two taxa provide potential biogeographic links with the African flora. This suggests that biome shifts of plant taxa between African subtropical/tropical biomes and Anatolian (western Eurasian) temperate forests and shrublands may have been rare in the middle Miocene.  相似文献   

6.
Climate changes are assumed to shift the ranges of tree species and forest biomes. Such range shifts result from changes in abundances of tree species or functional types. Owing to global warming, the abundance of a tree species or functional type is expected to increase near the colder edge of its range and decrease near the warmer edge. This study examined directional changes in abundance and demographic parameters of forest trees along a temperature gradient, as well as a successional gradient, in Japan. Changes in the relative abundance of each of four functional types (evergreen broad‐leaved, deciduous broad‐leaved, evergreen temperate conifer, and evergreen boreal conifer) and the demography of each species (recruitment rate, mortality, and population growth rate) were analyzed in 39 permanent forest plots across the Japanese archipelago. Directional changes in the relative abundance of functional types were detected along the temperature gradient. Relative abundance of evergreen broad‐leaved trees increased near their colder range boundaries, especially in secondary forests, coinciding with the decrease in deciduous broad‐leaved trees. Similarly, relative abundance of deciduous broad‐leaved trees increased near their colder range boundaries, coinciding with the decrease in boreal conifers. These functional‐type‐level changes were mainly due to higher recruitment rates and partly to the lower mortality of individual species at colder sites. This is the first report to show that tree species abundances in temperate forests are changing directionally along a temperature gradient, which might be due to current or past climate changes as well as recovery from past disturbances.  相似文献   

7.
Aim Palaeontologial data suggest that all temperate forest species in northern China migrated southwards during the Last Glacial Maximum (LGM) and recolonized post‐glacially within the Holocene. We tested this assumption using phylogeographical studies of a temperate deciduous shrub species (Ostryopsis davidiana Decne., Betulaceae), which has a wide distribution in northern China. Location Northern China. Methods We sequenced two chloroplast DNA (cpDNA) fragments (trnL–trnF and psbA–trnH, together about 1300 bp in length) of 294 plants from 21 populations across the total distribution range of this species. We used maximum parsimony and haplotype network methods to construct phylogenetic relationships among haplotypes. Results The analysis of cpDNA variation identified eight haplotypes. A single haplotype was fixed in all populations except for one population that was polymorphic, having two haplotypes. The population subdivisions were extremely high (GST = 0.972 and NST = 0.974), suggesting very low gene flow between populations. Haplotypes clustered into two tentative clades, both of which occur in the southern region of the species’ range but only one of which occurs in the northern region. Across the sampled populations, the haplotype distributions were differentiated geographically. Main conclusions Our analyses suggest that multiple refugia were maintained across the range of O. davidiana in both northern (north of the Qing Mountains) and southern (south of the Qing Mountains) regions during the LGM rather than that the species survived only in the south and subsequently colonized northwards. The extremely low within‐population diversity of this species suggests strong bottleneck or founder effects within each fragmented region during the Quaternary climatic oscillations. These findings provide important clues for understanding range shifts and changes in within‐ and/or between‐population genetic diversity of temperate forests in response to past climatic oscillations in northern China.  相似文献   

8.
Aim This paper documents reconstructions of the vegetation patterns in Australia, Southeast Asia and the Pacific (SEAPAC region) in the mid‐Holocene and at the last glacial maximum (LGM). Methods Vegetation patterns were reconstructed from pollen data using an objective biomization scheme based on plant functional types. The biomization scheme was first tested using 535 modern pollen samples from 377 sites, and then applied unchanged to fossil pollen samples dating to 6000 ± 500 or 18,000 ± 1000 14C yr bp . Results 1. Tests using surface pollen sample sites showed that the biomization scheme is capable of reproducing the modern broad‐scale patterns of vegetation distribution. The north–south gradient in temperature, reflected in transitions from cool evergreen needleleaf forest in the extreme south through temperate rain forest or wet sclerophyll forest (WSFW) and into tropical forests, is well reconstructed. The transitions from xerophytic through sclerophyll woodlands and open forests to closed‐canopy forests, which reflect the gradient in plant available moisture from the continental interior towards the coast, are reconstructed with less geographical precision but nevertheless the broad‐scale pattern emerges. 2. Differences between the modern and mid‐Holocene vegetation patterns in mainland Australia are comparatively small and reflect changes in moisture availability rather than temperature. In south‐eastern Australia some sites show a shift towards more moisture‐stressed vegetation in the mid‐Holocene with xerophytic woods/scrub and temperate sclerophyll woodland and shrubland at sites characterized today by WSFW or warm‐temperate rain forest (WTRF). However, sites in the Snowy Mountains, on the Southern Tablelands and east of the Great Dividing Range have more moisture‐demanding vegetation in the mid‐Holocene than today. South‐western Australia was slightly drier than today. The single site in north‐western Australia also shows conditions drier than today in the mid‐Holocene. Changes in the tropics are also comparatively small, but the presence of WTRF and tropical deciduous broadleaf forest and woodland in the mid‐Holocene, in sites occupied today by cool‐temperate rain forest, indicate warmer conditions. 3. Expansion of xerophytic vegetation in the south and tropical deciduous broadleaf forest and woodland in the north indicate drier conditions across mainland Australia at the LGM. None of these changes are informative about the degree of cooling. However the evidence from the tropics, showing lowering of the treeline and forest belts, indicates that conditions were between 1 and 9 °C (depending on elevation) colder. The encroachment of tropical deciduous broadleaf forest and woodland into lowland evergreen broadleaf forest implies greater aridity. Main conclusions This study provides the first continental‐scale reconstruction of mid‐Holocene and LGM vegetation patterns from Australia, Southeast Asia and the Pacific (SEAPAC region) using an objective biomization scheme. These data will provide a benchmark for evaluation of palaeoclimate simulations within the framework of the Palaeoclimate Modelling Intercomparison Project.  相似文献   

9.
山东植物区系的演变和来源   总被引:1,自引:0,他引:1  
1 现代植物区系山东省位于我国东部、黄河下游 ,北濒渤海 ,东临黄海 ,地理范围介于北纬 34°2 3′~38°2 4′,东经 1 1 4°4 8′~ 1 2 2°4 3′之间。全省总面积为 1 5.72万 km2 ,占全国总面积的 1 .6%。属暖温带季风气候 ,沿海比较湿润 ,地带性植被主要是暖温带落叶阔叶林和松、栎类针阔叶混交林。山东省在中国植物区系的分区地位隶属于泛北极植物区、中国 -日本森林植物亚区、华北植物地区 [1 ]。据最近研究统计 ,现有野生维管植物 1 47科、61 4属 ,约 1 547种 (包括变种 ,下同 )。其中蕨类植物 2 4科 39属 1 0 5种 ,裸子植物 3科 3属 …  相似文献   

10.
BIOME 6000 is an international project to map vegetation globally at mid‐Holocene (6000 14C yr bp ) and last glacial maximum (LGM, 18,000 14C yr bp ), with a view to evaluating coupled climate‐biosphere model results. Primary palaeoecological data are assigned to biomes using an explicit algorithm based on plant functional types. This paper introduces the second Special Feature on BIOME 6000. Site‐based global biome maps are shown with data from North America, Eurasia (except South and Southeast Asia) and Africa at both time periods. A map based on surface samples shows the method’s skill in reconstructing present‐day biomes. Cold and dry conditions at LGM favoured extensive tundra and steppe. These biomes intergraded in northern Eurasia. Northern hemisphere forest biomes were displaced southward. Boreal evergreen forests (taiga) and temperate deciduous forests were fragmented, while European and East Asian steppes were greatly extended. Tropical moist forests (i.e. tropical rain forest and tropical seasonal forest) in Africa were reduced. In south‐western North America, desert and steppe were replaced by open conifer woodland, opposite to the general arid trend but consistent with modelled southward displacement of the jet stream. The Arctic forest limit was shifted slighly north at 6000 14C yr bp in some sectors, but not in all. Northern temperate forest zones were generally shifted greater distances north. Warmer winters as well as summers in several regions are required to explain these shifts. Temperate deciduous forests in Europe were greatly extended, into the Mediterranean region as well as to the north. Steppe encroached on forest biomes in interior North America, but not in central Asia. Enhanced monsoons extended forest biomes in China inland and Sahelian vegetation into the Sahara while the African tropical rain forest was also reduced, consistent with a modelled northward shift of the ITCZ and a more seasonal climate in the equatorial zone. Palaeobiome maps show the outcome of separate, independent migrations of plant taxa in response to climate change. The average composition of biomes at LGM was often markedly different from today. Refugia for the temperate deciduous and tropical rain forest biomes may have existed offshore at LGM, but their characteristic taxa also persisted as components of other biomes. Examples include temperate deciduous trees that survived in cool mixed forest in eastern Europe, and tropical evergreen trees that survived in tropical seasonal forest in Africa. The sequence of biome shifts during a glacial‐interglacial cycle may help account for some disjunct distributions of plant taxa. For example, the now‐arid Saharan mountains may have linked Mediterranean and African tropical montane floras during enhanced monsoon regimes. Major changes in physical land‐surface conditions, shown by the palaeobiome data, have implications for the global climate. The data can be used directly to evaluate the output of coupled atmosphere‐biosphere models. The data could also be objectively generalized to yield realistic gridded land‐surface maps, for use in sensitivity experiments with atmospheric models. Recent analyses of vegetation‐climate feedbacks have focused on the hypothesized positive feedback effects of climate‐induced vegetation changes in the Sahara/Sahel region and the Arctic during the mid‐Holocene. However, a far wider spectrum of interactions potentially exists and could be investigated, using these data, both for 6000 14C yr bp and for the LGM.  相似文献   

11.
Abstract. This study deals with stand dynamics over a 6‐yr period in a conifer/broad‐leaved mixed forest in Hokkaido, northern Japan. The annual rates of gap formation and recovery were 81.3 m2/ha and 66.7 m2/ha, respectively and turnover time of the canopy was 125 yr. The recruitment processes of the component species in this cool‐temperate forest were governed by different canopy types: gap, canopy edge and closed canopy. Magnolia obovata regenerated in canopy edges, and Acer mono and Prunus ssiori regenerated in canopy edges and gaps. The results suggested that the mosaic structure made up of closed canopy, canopy edge and gap was related to various regeneration niches. Abies sachalinensis had high mortality rates, initiating gap expansion. The transition probabilities from closed canopy or canopy edge to gap for deciduous broad‐leaved trees were lower than for A. sachalinensis, which implies that the difference in degeneration patterns of conifer and broad‐leaved canopies contributes to the heterogeneity of spatial structure in the mixed forests. Spatial dynamics were determined by a combination of gap expansion by A. sachalinensis (neighbour‐dependent disturbance) and gap formation by deciduous broad‐leaved trees (random disturbance).  相似文献   

12.
Hua Zhu  Min Cao  Huabin Hu 《Biotropica》2006,38(3):310-317
Xishuangbanna of southern Yunnan is biogeographically located at a transitional zone from tropical Southeast (SE) Asia to subtropical East Asia, and is at the junction of the Indian and Burmese plates of Gondwana and the Eurasian plate of Laurasia. The flora of the region consists of a recorded 3336 native seed plant species, belonging to 1140 genera in 197 families, among which 83.5 percent are tropical genera and 32.8 percent are endemic to tropical Asia, suggesting a strong affinity to tropical Asian flora. The vegetation of Xishuangbanna is organized into four forest types: tropical rain forest, tropical seasonal moist forest, tropical montane evergreen broad‐leaved forest, and tropical monsoon forest. The tropical rain forest in Xishuangbanna has the same floristic composition of families and genera as some lowland equatorial rain forests in SE Asia, and is dominated (with a few exceptions) by the same families both in species richness and stem dominance. The exceptions include some deciduous trees in the canopy layer, fewer megaphanerophytes and epiphytes, and a higher abundance of lianas and microphyllic plants. We consider the tropical rain forest of Xishuangbanna as a type of tropical Asian rain forest, based on their conspicuous similarities in ecological and floristic characteristics.  相似文献   

13.
This study quantifies the nationwide land cover and long-term changes in forests and its implications on forest fragmentation in Nepal. The multi-source datasets were used to generate the forest cover information for 1930, 1975, 1985, 1995, 2005 and 2014. This study analyzes distribution of land cover, rate of deforestation, changes across forest types, forest canopy density and pattern of fragmentation. The land cover legend for 2014 is consisting of 21 classes: tropical dry deciduous sal forest, tropical moist deciduous sal forest, subtropical broad-leaved forest, subtropical pine forest, lower temperate broad leaved forest, upper temperate broad leaved forest, lower temperate mixed broad leaved forest, upper temperate mixed broad leaved forest, temperate needle leaved forest, subalpine forest, plantations, tropical scrub, subtropical scrub, temperate scrub, alpine scrub, grassland, agriculture, water bodies, barren land and settlements. The forest cover statistics for Nepal obtained in this study shows an area of 76,710 km2 in 1930 which has decreased to 39,392 km2 in 2014. A net loss of 37,318 km2 (48.6%) was observed in last eight decades. Analysis of annual rate of net deforestation for the recent period indicates 0.01% during 2005–2014. An increase in the number of forest patches from 6925 (in 1930) to 42,961 (in 2014) was noticed. The significant observation is 75.5% of reduction in core 3 forest, whereas, patch, perforated and edge classes show the increase in percentage of fragmentation classes from 1930 to 2014. The results of this work will support the understanding of deforestation and its consequences on fragmentation for maintaining and improving the forest resources of Nepal.  相似文献   

14.
The Pleistocene was an epoch of extreme climatic and environmental changes. How individual species responded to the repeated cycles of warm and cold stages is a major topic of debate. For the European fauna and flora, an expansion–contraction model has been suggested, whereby temperate species were restricted to southern refugia during glacial times and expanded northwards during interglacials, including the present interglacial (Holocene). Here, we test this model on the red deer (Cervus elaphus) a large and highly mobile herbivore, using both modern and ancient mitochondrial DNA from the entire European range of the species over the last c. 40 000 years. Our results indicate that this species was sensitive to the effects of climate change. Prior to the Last Glacial Maximum (LGM) haplogroups restricted today to South‐East Europe and Western Asia reached as far west as the UK. During the LGM, red deer was mainly restricted to southern refugia, in Iberia, the Balkans and possibly in Italy and South‐Western Asia. At the end of the LGM, red deer expanded from the Iberian refugium, to Central and Northern Europe, including the UK, Belgium, Scandinavia, Germany, Poland and Belarus. Ancient DNA data cannot rule out refugial survival of red deer in North‐West Europe through the LGM. Had such deer survived, though, they were replaced by deer migrating from Iberia at the end of the glacial. The Balkans served as a separate LGM refugium and were probably connected to Western Asia with genetic exchange between the two areas.  相似文献   

15.
秦岭太白山弃耕地植物群落演替的生态学研究   总被引:35,自引:0,他引:35  
应用物种丰富度、Simpson指数、Shannon-Wiener指数、Pielou均匀度指数、Alatalo均匀度指数研究了太白山弃耕地植物群落次生演替过程中的群落α多样性动态特征,结果表明,群落在由一年生草本植物群落阶段向多年生草本植物群落、灌丛、混交林阶段的演替过程中,群落多样性指数逐渐上升,至混交林阶段达到最高值。若以分布在这一垂直地带的代表性森林群落锐齿栎林为演替进一步发展的方向,则由多样  相似文献   

16.
We investigated the biogeographic history of Kalopanax septemlobus, one of the most widespread temperate tree species in East Asia, using a combined phylogeographic and palaeodistribution modelling approach. Range-wide genetic differentiation at nuclear microsatellites (G'(ST) = 0.709; 2205 samples genotyped at five loci) and chloroplast DNA (G(ST) = 0.697; 576 samples sequenced for 2055 bp at three fragments) was high. A major phylogeographic break in Central China corresponded with those of other temperate species and the spatial delineation of the two temperate forest subkingdoms of East Asia, consistent with the forests having been isolated within both East and West China for multiple glacial-interglacial cycles. Evidence for multiple glacial refugia was found in most of its current range in China, South Japan and the southernmost part of the Korean Peninsula. In contrast, lineage admixture and absence of private alleles and haplotypes in Hokkaido and the northern Korean Peninsula support a postglacial origin of northernmost populations. Although palaeodistribution modelling predicted suitable climate across a land-bridge extending from South Japan to East China during the Last Glacial Maximum, the genetic differentiation of regional populations indicated a limited role of the exposed sea floor as a dispersal corridor at that time. Overall, this study provides evidence that differential impacts of Quaternary climate oscillation associated with landscape heterogeneity have shaped the genetic structure of a wide-ranging temperate tree in East Asia.  相似文献   

17.
陈瑜  倪健 《植物生态学报》2008,32(5):1201-1212
 古植被定量重建是过去全球变化研究的重点之一, 生物群区化(Biomisation)方法以特征植物功能型来定义生物群区, 通过一种标准化数量方法计算孢粉谱的相似得分, 以此把孢粉谱转变为生物群区类型, 是进行古植被定量重建的一种有效方法。该文在前人综述文章的基础上, 简述了生物群区化方法定量重建古植被格局的发展历史、具体步骤及存在问题, 重点描述了以此方法为基础重建的全新世中期(MH)和末次盛冰期(LGM)的全球古植被分布格局, 以及中国的古植被定量重建工作和古植被格局变化。目前的研究表明, 全新世中期北极森林界线在某些地区有轻微的北移迹象, 北部的温带森林带通常向北远距离迁移, 欧洲的温带落叶林也大范围向地中海地区(向南)和向北扩展, 在北美内陆, 草原侵入到森林生物群区, 但中亚地区却没有此现象, 中国大陆的森林生物群区扩张, 典型撒哈尔植被(如干草原、干旱疏林灌丛和热带干旱森林)进入撒哈拉地区, 而非洲热带雨林却呈减少趋势; 末次盛冰期苔原和草原扩张, 在欧亚大陆北部逐渐混合, 北半球的森林生物群区向南迁移, 北方常绿森林(泰加林)和温带落叶林呈碎片状, 而欧洲和东亚的草原却大范围扩张, 非洲的热带湿润森林(比如热带雨林和热带季雨林)有所减少, 在北美洲的西南地区, 荒漠和草原被开阔针叶疏林所取代。  相似文献   

18.
Extreme climatic events can trigger gradual or abrupt shifts in forest ecosystems via the reduction or elimination of foundation species. However, the impacts of these events on foundation species' demography and forest dynamics remain poorly understood. Here we quantified dynamics for both evergreen and deciduous broad‐leaved species groups, utilizing a monitoring permanent plot in a subtropical montane mixed forest in central China from 2001 to 2010 with particular relevance to the anomalous 2008 ice storm episode. We found that both species groups showed limited floristic alterations over the study period. For each species group, size distribution of dead individuals approximated a roughly irregular and flat shape prior to the ice storm and resembled an inverse J‐shaped distribution after the ice storm. Furthermore, patterns of mortality and recruitment displayed disequilibrium behaviors with mortality exceeding recruitment for both species groups following the ice storm. Deciduous broad‐leaved species group accelerated overall diameter growth, but the ice storm reduced evergreen small‐sized diameter growth. We concluded that evergreen broad‐leaved species were more susceptible to ice storms than deciduous broad‐leaved species, and ice storm events, which may become more frequent with climate change, might potentially threaten the perpetuity of evergreen‐dominated broad‐leaved forests in this subtropical region in the long term. These results underscore the importance of long‐term monitoring that is indispensible to elucidate causal links between forest dynamics and climatic perturbations.  相似文献   

19.
Phylogeography can help to determine LGM refugia and postglacial migration routes. However, the locations of LGM refugial areas in eastern Europe are not clear. Moose (Alces alces) is presently a common species in central and north-eastern Europe, but there are no studies showing its phylogenetic pattern and genetic diversity across its whole continuous range. Moose never became extinct in the eastern part of its range, and the eastern mtDNA lineage has the largest effective population size. The present study shows the phylogeographic pattern and genetic diversity of European moose and compares the results of mtDNA analyses with the archaeological record of the species to identify its LGM refugia and postglacial migration routes. I combined the mtDNA control region sequences obtained in all studies of moose in Europe and western Asia. The genetic data were then compared with the archaeological records of the species dated to the LGM. I found that the European moose lineage inhabits Europe and western Asia. It is composed of two clades: the eastern and the central-western, consisting of a total of six discrete haplogroups. The most complex, the eastern clade, has the largest range. Some of the haplogroups have narrow or scattered distributions and two are common in almost the whole range. Genetic diversity hotspots were detected in contact zones of different mtDNA haplogroups rather than in the LGM refugial areas of moose. Archaeological records dated to the LGM were found in several localities in central, southern and eastern Europe as well as in western Asia. The range of the moose during the LGM was much larger than previously thought. The eastern clade survived the LGM in western Siberia, the Ural Mountains and Russian plain. LGM refugia of moose were also located in the Caucasus, Carpathians, Balkans and northern Italy.  相似文献   

20.
Genetic diversity of contemporary domesticated species is shaped by both natural and human‐driven processes. However, until now, little is known about how domestication has imprinted the variation of fruit tree species. In this study, we reconstruct the recent evolutionary history of the domesticated almond tree, Prunus dulcis, around the Mediterranean basin, using a combination of nuclear and chloroplast microsatellites [i.e. simple sequence repeat (SSRs)] to investigate patterns of genetic diversity. Whereas conservative chloroplast SSRs show a widespread haplotype and rare locally distributed variants, nuclear SSRs show a pattern of isolation by distance with clines of diversity from the East to the West of the Mediterranean basin, while Bayesian genetic clustering reveals a substantial longitudinal genetic structure. Both kinds of markers thus support a single domestication event, in the eastern side of the Mediterranean basin. In addition, model‐based estimation of the timing of genetic divergence among those clusters is estimated sometime during the Holocene, a result that is compatible with human‐mediated dispersal of almond tree out of its centre of origin. Still, the detection of region‐specific alleles suggests that gene flow from relictual wild preglacial populations (in North Africa) or from wild counterparts (in the Near East) could account for a fraction of the diversity observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号