共查询到20条相似文献,搜索用时 0 毫秒
1.
Aerial survey is an important, widely employed approach for estimating free‐ranging wildlife over large or inaccessible study areas. We studied how a distance covariate influenced probability of double‐observer detections for birds counted during a helicopter survey in Canada’s central Arctic. Two observers, one behind the other but visually obscured from each other, counted birds in an incompletely shared field of view to a distance of 200 m. Each observer assigned detections to one of five 40‐m distance bins, guided by semi‐transparent marks on aircraft windows. Detections were recorded with distance bin, taxonomic group, wing‐flapping behavior, and group size. We compared two general model‐based estimation approaches pertinent to sampling wildlife under such situations. One was based on double‐observer methods without distance information, that provide sampling analogous to that required for mark–recapture (MR) estimation of detection probability, , and group abundance, , along a fixed‐width strip transect. The other method incorporated double‐observer MR with a categorical distance covariate (MRD). A priori, we were concerned that estimators from MR models were compromised by heterogeneity in due to un‐modeled distance information; that is, more distant birds are less likely to be detected by both observers, with the predicted effect that would be biased high, and biased low. We found that, despite increased complexity, MRD models (ΔAICc range: 0–16) fit data far better than MR models (ΔAICc range: 204–258). However, contrary to expectation, the more naïve MR estimators of were biased low in all cases, but only by 2%–5% in most cases. We suspect that this apparently anomalous finding was the result of specific limitations to, and trade‐offs in, visibility by observers on the survey platform used. While MR models provided acceptable point estimates of group abundance, their far higher stranded errors (0%–40%) compared to MRD estimates would compromise ability to detect temporal or spatial differences in abundance. Given improved precision of MRD models relative to MR models, and the possibility of bias when using MR methods from other survey platforms, we recommend avian ecologists use MRD protocols and estimation procedures when surveying Arctic bird populations. 相似文献
2.
Brett T. McClintock 《Ecology and evolution》2015,5(21):4920-4931
I describe an open‐source R package, multimark , for estimation of survival and abundance from capture–mark–recapture data consisting of multiple “noninvasive” marks. Noninvasive marks include natural pelt or skin patterns, scars, and genetic markers that enable individual identification in lieu of physical capture. multimark provides a means for combining and jointly analyzing encounter histories from multiple noninvasive sources that otherwise cannot be reliably matched (e.g., left‐ and right‐sided photographs of bilaterally asymmetrical individuals). The package is currently capable of fitting open population Cormack–Jolly–Seber (CJS) and closed population abundance models with up to two mark types using Bayesian Markov chain Monte Carlo (MCMC) methods. multimark can also be used for Bayesian analyses of conventional capture–recapture data consisting of a single‐mark type. Some package features include (1) general model specification using formulas already familiar to most R users, (2) ability to include temporal, behavioral, age, cohort, and individual heterogeneity effects in detection and survival probabilities, (3) improved MCMC algorithm that is computationally faster and more efficient than previously proposed methods, (4) Bayesian multimodel inference using reversible jump MCMC, and (5) data simulation capabilities for power analyses and assessing model performance. I demonstrate use of multimark using left‐ and right‐sided encounter histories for bobcats (Lynx rufus) collected from remote single‐camera stations in southern California. In this example, there is evidence of a behavioral effect (i.e., trap “happy” response) that is otherwise indiscernible using conventional single‐sided analyses. The package will be most useful to ecologists seeking stronger inferences by combining different sources of mark–recapture data that are difficult (or impossible) to reliably reconcile, particularly with the sparse datasets typical of rare or elusive species for which noninvasive sampling techniques are most commonly employed. Addressing deficiencies in currently available software, multimark also provides a user‐friendly interface for performing Bayesian multimodel inference using capture–recapture data consisting of a single conventional mark or multiple noninvasive marks. 相似文献
3.
Yvonne C. Collingham Brian Huntley Res Altwegg Phoebe Barnard Oliver S. Beveridge Richard D. Gregory Lucy R. Mason H. Dieter Oschadleus Robert E. Simmons Stephen G. Willis Rhys E. Green 《Ibis》2014,156(4):741-754
Estimates of annual survival rates of birds are valuable in a wide range of studies of population ecology and conservation. These include modelling studies to assess the impacts of climatic change or anthropogenic mortality for many species for which no reliable direct estimates of survival are available. We evaluate the performance of regression models in predicting adult survival rates of birds from values of demographic and ecological covariates available from textbooks and databases. We estimated adult survival for 67 species using dead recoveries of birds ringed in southern Africa and fitted regression models using five covariates: mean clutch size, mean body mass, mean age at first breeding, diet and migratory tendency. Models including these explanatory variables performed well in predicting adult survival in this set of species, both when phylogenetic relatedness of the species was taken into account using phylogenetic generalized least squares (51% of variation in logit survival explained) and when it was not (48%). Two independent validation tests also indicated good predictive power, as indicated by high correlations of observed with expected values in a leave‐one‐out cross validation test performed using data from the 67 species (35% of variation in logit survival explained), and when annual survival rates from independent mark–recapture studies of 38 southern African species were predicted from covariates and the regression using dead recoveries (48%). Clutch size and body mass were the most influential covariates, both with and without the inclusion of phylogenetic effects, and a regression model including only these two variables performed well in both of the validation tests (39 and 48% of variation in logit survival explained). Our regression models, including the version with only clutch size and body mass, are likely to perform well in predicting adult survival rate for southern African species for which direct survival estimates are not available. 相似文献
4.
DAMIEN BRODERICK JENNY OVENDEN ROB SLADE JANET M. LANYON 《Molecular ecology resources》2007,7(6):1275-1277
Twenty‐six microsatellite loci have been isolated from a dugong (Dugong dugon). The average heterozygosity was 0.52 with two to 10 alleles per locus surveyed from 50 individuals. The markers are suitable for genetic mark–recapture (PID = 5 × 10?16) in dugongs and they could also be used to quantify physical tag loss, estimate relatedness, assign paternity, elucidate population structure and identify migrants. The loci also amplified in Florida manatees (22/26) and Asian elephants (6/26). 相似文献
5.
Changes in demographic rates underpin changes in population size, and understanding demographic rates can greatly aid the design and development of strategies to maintain populations in the face of environmental changes. However, acquiring estimates of demographic parameters at relevant spatial scales is difficult. Measures of annual survival rates can be particularly challenging to obtain because large‐scale, long‐term tracking of individuals is difficult and the resulting data contain many inherent biases. In recent years, advances in both tracking and analytical techniques have meant that, for some taxonomic groups, sufficient numbers of survival estimates are available to allow variation within and among species to be explored. Here we review published estimates of annual adult survival rates in shorebird species across the globe, and construct models to explore the phylogenetic, geographical, seasonal and sex‐based variation in survival rates. Models of 295 survival estimates from 56 species show that survival rates calculated from recoveries of dead individuals or from return rates of marked individuals are significantly lower than estimates from mark–recapture models. Survival rates also vary across flyways, largely as a consequence of differences in the genera that have been studied and the analytical methods used, with published estimates from the Americas and from smaller shorebirds (Actitis, Calidris and Charadrius spp.) tending to be underestimated. By incorporating the analytical method used to generate each estimate within a mixed model framework, we provide method‐corrected species‐specific and genus‐specific adult annual survival estimates for 52 species of 15 genera. 相似文献
6.
Antica Culina Shelly Lachish Roger Pradel Remi Choquet Ben C. Sheldon 《Ecology and evolution》2013,3(13):4326-4338
Fidelity rates of pair-bonded individuals are of considerable interest to behavioral and population biologists as they can influence population structure, mating rates, population productivity, and gene flow. Estimates of fidelity rates calculated from direct observations of pairs in consecutive breeding seasons may be biased because (i) individuals that are not seen are assumed to be dead, (ii) variation in the detectability of individuals is ignored, and (iii) pair status must be known with certainty. This can lead to a high proportion of observations being ignored. This approach also restricts the way variation in fidelity rates for different types of individuals, or the covariation between fidelity and other vital rates (e.g., survival) can be analyzed. In this study, we develop a probabilistic multievent capture–mark–recapture (MECMR) modeling framework for estimating pair fidelity rates that accounts for imperfect detection rates and capture heterogeneity, explicitly incorporates uncertainty in the assessment of pair status, and allows estimates of state-dependent survival and fidelity rates to be obtained simultaneously. We demonstrate the utility of our approach for investigating patterns of fidelity in pair-bonded individuals, by applying it to 30 years of breeding data from a wild population of great tits Parus major Linnaeus. Results of model selection supported state-dependent recapture, survival, and fidelity rates. Recapture rates were higher for individuals breeding with their previous partner than for those breeding with a different partner. Faithful birds that were breeding with the same partner as in the previous breeding season (i.e., at t − 1) experienced substantially higher survival rates (between t and t + 1) and were also more likely to remain faithful to their current partner (i.e., to remain in the faithful state at t + 1). First year breeders were more likely to change partner than older birds. These findings imply that traditional estimates, which do not account for state-dependent parameters, may be both inaccurate and biased, and hence, inferences based on them may conceal important biological effects. This was demonstrated in the analysis of simulated capture histories, which showed that our MECMR model was able to estimate state-dependant survival and pair fidelity rates in the face of varying state-dependant recapture rates robustly, and more accurately, than the traditional method. In addition, this new modeling approach provides a statistically rigorous framework for testing hypothesis about the causes and consequences of fidelity to a partner for natural populations. The novel modeling approach described here can readily be applied, either in its current form or via extension, to other populations and other types of dyadic interactions (e.g., between nonpaired individuals, such as parent–offspring relationships, or between individuals and locations, such as nest-site fidelity). 相似文献
7.
The federally endangered Cumberlandian combshell (Epioblasma brevidens) was propagated and reared to taggable size (5–10 mm), and released to the Powell River, Tennessee, to augment a relict population. Methodology using passive integrated transponder (PIT) tags on these mussels greatly facilitated the detection process. The overall mean detection probability and survival rate of released individuals reached 97.8 to 98.4% and 99.7 to 99.9% (per month), respectively, during nine successive recapture occasions in the 2‐year study period, regardless of seasonality. Nonhierarchical models and hierarchical models incorporating individual and seasonal variations through a Bayesian approach were compared and resulted in similar performance of prediction for detection probability and survival rate of mussels. This is the first study to apply the mark–recapture method to laboratory‐reared mussels using PIT tags and stochastic models. Quantitative analyses for individual heterogeneity allowed examination of demographic variance and effects of heterogeneity on population dynamics, although the individual and seasonal variations were small in this study. Our results provide useful information in implementing conservation strategies of this faunal group and a framework for other species or similar studies. 相似文献
8.
Leandro R. Monteiro Breno Mellado Marcelo R. Nogueira Marcio M. de Morais‐Jr 《Journal of evolutionary biology》2019,32(11):1207-1229
The measurement of fitness in wild populations is a challenging task, and a number of proxies have been proposed with different degrees of success. Developmental instability/stability (DI) is an organismal property associated with variance in bilateral asymmetry (fluctuating asymmetry—FA) and a correlated effect on fitness. This study provides evidence to corroborate the hypothesis that asymmetry partly reflects DI and is correlated with a reduction in fitness measured by survival and reproduction in bats. We studied two colonies of the bat Carollia perspicillata in southeastern Brazil over 5 years, marking and recapturing individuals. Gaussian mixture models for signed Forearm Asymmetry (ForA) distribution indicated that ~20% of asymmetry variation was due to DI heterogeneity among individuals. ForA, body condition (Scaled Mass Index—SMI) and Forearm Length (ForL) were used as predictors of survival probability in Cormack‐Jolly‐Seber models. Asymmetry was negatively associated with survival, whereas SMI and ForL were positively associated. The male C. perspicillata defend sites within the roost that are favoured by female harems, but there are mating opportunities for bachelor males, leading to both territorial disputes and sperm competition. As predicted by sexual selection, ForA was negatively associated with relative Testicle Length, a measure of reproductive potential. In females, ForA was negatively associated with the probability of two pregnancies (as opposed to one) in a given breeding season. The effect magnitudes and directions of associations suggest that asymmetry, even though not perfectly reflecting DI variation, is a useful predictor for fitness components in C. perspicillata. 相似文献
9.
The attraction of wild tephritids to semiochemical‐based lures is the ideal basis for trap network design in detection programmes, but in practice, mass‐reared colony insects are usually used to determine trap efficiency. For Bactrocera cucurbitae Coquillett, a lower response by wild males compared with colony‐derived individuals, usually used to estimate attraction parameters, could mean that the sensitivity of detection networks targeting this pest is reduced. We describe the results of mark–release–recapture experiments with wild‐ and colony‐derived B. cucurbitae males in a grid of cuelure‐baited traps within a macadamia nut orchard in Hawaii Island designed to quantify the attraction of cuelure to each fly type. For colony males, we estimate a 65% probability of capture at 27 m, intermediate with previous estimates on the attraction of methyl eugenol to Bactrocera dorsalis Hendel (36 m) and trimedlure to Ceratitis capitata Wiedemann (14 m) at the same site. Results suggest similar response over distance by wild‐derived B. cucurbitae compared with colony in the field, but there may be qualitative differences in response between wild and colony based on very low response of wild males in a standard bioassay of attraction. For both fly types, the estimates of attraction in the smaller of two grid sizes tested were lower than for the larger spacing, suggesting trap competition was a factor at an intertrap distance of 75 m. Dispersal patterns within the grid were generally to the south for the colony‐derived males and more variable for the wild‐derived males. In neither case was the direction of recapture correlated with the prevailing direction of the wind. 相似文献
10.
Meijuan Zhao Chris A. J. Klaassen Simeon Lisovski Marcel Klaassen 《Ecology and evolution》2019,9(3):1394-1402
As a key parameter in population dynamics, mortality rates are frequently estimated using mark–recapture data, which requires extensive, long‐term data sets. As a potential rapid alternative, we can measure variables correlated to age, allowing the compilation of population age distributions, from which mortality rates can be derived. However, most studies employing such techniques have ignored their inherent inaccuracy and have thereby failed to provide reliable mortality estimates. In this study, we present a general statistical model linking birth rate, mortality rate, and population age distributions. We next assessed the reliability and data needs (i.e., sample size) for estimating mortality rate of eight different aging techniques. The results revealed that for half of the aging techniques, correlations with age varied considerably, translating into highly variable accuracies when used to estimate mortality rate from age distributions. Telomere length is generally not sufficiently correlated to age to provide reliable mortality rate estimates. DNA methylation, signal‐joint T‐cell recombination excision circle (sjTREC), and racemization are generally more promising techniques to ultimately estimate mortality rate, if a sufficiently high sample size is available. Otolith ring counts, otolithometry, and age‐length keys in fish, and skeletochronology in reptiles, mammals, and amphibians, outperformed all other aging techniques and generated relatively accurate mortality rate estimation with a sample size that can be feasibly obtained. Provided the method chosen is minimizing and estimating the error in age estimation, it is possible to accurately estimate mortality rates from age distributions. The method therewith has the potential to estimate a critical, population dynamic parameter to inform conservation efforts within a limited time frame as opposed to mark–recapture analyses. 相似文献
11.
JONATHAN K. WEBB 《Austral ecology》2006,31(4):432-440
Abstract Many animals autotomize their tails to facilitate escape from predators. Although tail autotomy can increase the likelihood of surviving a predatory encounter, it may entail subsequent costs, including reduced growth, loss of energy stores, a reduction in reproductive output, loss of social status and a decreased probability of survival during subsequent encounters with predators. To date, few studies have investigated the potential fitness costs of tail autotomy in natural populations. I investigated whether tail loss influenced survival, growth and territory occupation of juvenile velvet geckos Oedura lesueurii in a population where predatory snakes were common. During the 3‐year mark–recapture study, 32% of juveniles voluntarily autotomized their tails when first captured. Analysis of survival using the program mark showed that voluntary tail autotomy did not influence the subsequent survival of juvenile geckos. Survival was age‐dependent and was higher in 1‐year‐old animals (0.98) than in hatchlings (0.76), whereas recapture probabilities were time‐dependent. Growth rates of tailed and tailless juveniles were very similar, but tailless geckos had slow rates of tail regeneration (0.14 mm day−1). Tail autotomy did not influence rock usage by geckos, and both tailed and tailless juveniles used few rocks as diurnal retreat sites (means of 1.64 and 1.47 rocks, respectively) and spent long time periods (85 and 82 days) under the same rocks. Site fidelity may confer survival advantages to juveniles in populations sympatric with ambush foraging snakes. My results show that two potential fitness costs of tail autotomy – decreased growth rates and a lower probability of survival – did not occur in juveniles from this population. However, compared with juveniles, significantly fewer adult geckos (17%) voluntarily autotomized their tails during capture. Because adults possess large tails that are used for lipid storage, the energetic costs of tail autotomy are likely to be much higher in adult than in juvenile O. lesueurii. 相似文献
12.
Ralf Hendrix Benedikt R. Schmidt Michael Schaub E. Tobias Krause Sebastian Steinfartz 《Molecular ecology》2017,26(22):6400-6413
Dispersal is considered to be a species‐specific trait, but intraspecific variation can be high. However, when and how this complex trait starts to differentiate during the divergence of species/lineages is unknown. Here, we studied the differentiation of movement behaviour in a large salamander population (Salamandra salamandra), in which individual adaptations to different habitat conditions drive the genetic divergence of this population into two subpopulations. In this system, salamanders have adapted to the deposition and development of their larvae in ephemeral ponds vs. small first‐order streams. In general, the pond habitat is characterized as a spatially and temporally highly unpredictable habitat, while streams provide more stable and predictable conditions for the development of larvae. We analysed the fine‐scale genetic distribution of larvae, and explored whether the adaptation to different larval habitat conditions has in turn also affected dispersal strategies and home range size of adult salamanders. Based on the genetic assignment of adult individuals to their respective larval habitat type, we show that pond‐adapted salamanders occupied larger home ranges, displayed long‐distance dispersal and had a higher variability of movement types than the stream‐adapted individuals. We argue that the differentiation of phenotypically plastic traits such as dispersal and movement characteristics can be a crucial component in the course of adaptation to new habitat conditions, thereby promoting the genetic divergence of populations. 相似文献
13.
David Outomuro Linus Söderquist Viktor Nilsson‐Örtman María Cortázar‐Chinarro Cecilia Lundgren Frank Johansson 《Evolution; international journal of organic evolution》2016,70(7):1582-1595
Wings are a key trait underlying the evolutionary success of birds, bats, and insects. For over a century, researchers have studied the form and function of wings to understand the determinants of flight performance. However, to understand the evolution of flight, we must comprehend not only how morphology affects performance, but also how morphology and performance affect fitness. Natural and sexual selection can either reinforce or oppose each other, but their role in flight evolution remains poorly understood. Here, we show that wing shape is under antagonistic selection with regard to sexual and natural selection in a scrambling damselfly. In a field setting, natural selection (survival) favored individuals with long and slender forewings and short and broad hindwings. In contrast, sexual selection (mating success) favored individuals with short and broad forewings and narrow‐based hindwings. Both types of selection favored individuals of intermediate size. These results suggest that individuals face a trade‐off between flight energetics and maneuverability and demonstrate how natural and sexual selection can operate in similar directions for some wing traits, that is, wing size, but antagonistically for others, that is, wing shape. Furthermore, they highlight the need to study flight evolution within the context of species’ mating systems and mating behaviors. 相似文献
14.
Laura L. E. Cowen Panagiotis Besbeas Byron J. T. Morgan Carl J. Schwarz 《Ecology and evolution》2014,4(2):210-218
Little attention has been paid to the use of multi‐sample batch‐marking studies, as it is generally assumed that an individual's capture history is necessary for fully efficient estimates. However, recently, Huggins et al. ( 2010 ) present a pseudo‐likelihood for a multi‐sample batch‐marking study where they used estimating equations to solve for survival and capture probabilities and then derived abundance estimates using a Horvitz–Thompson‐type estimator. We have developed and maximized the likelihood for batch‐marking studies. We use data simulated from a Jolly–Seber‐type study and convert this to what would have been obtained from an extended batch‐marking study. We compare our abundance estimates obtained from the Crosbie–Manly–Arnason–Schwarz (CMAS) model with those of the extended batch‐marking model to determine the efficiency of collecting and analyzing batch‐marking data. We found that estimates of abundance were similar for all three estimators: CMAS, Huggins, and our likelihood. Gains are made when using unique identifiers and employing the CMAS model in terms of precision; however, the likelihood typically had lower mean square error than the pseudo‐likelihood method of Huggins et al. ( 2010 ). When faced with designing a batch‐marking study, researchers can be confident in obtaining unbiased abundance estimators. Furthermore, they can design studies in order to reduce mean square error by manipulating capture probabilities and sample size. 相似文献
15.
We present information on an aniline dye marking method for black flies. In the laboratory, adults were sprayed with 2% aqueous solutions of four colors of aniline dyes; brilliant blue and methyl orange gave the best results in longevity trials. In field trials we were able to recapture 1.3% of newly emerged marked and released flies at oviposition sites. Mark–release–recapture experiments were designed to distinguish among three competing models concerning oviposition site selection by gravid female black flies: (1) larval site fidelity (“Do flies return to the site that they experienced as larvae?”), (2) adult site fidelity (“Do flies return to the site that they experienced as adults?”), and (3) no site fidelity (“Do flies oviposit at random, i.e., without regard to adult or larval experience?”). Models 1 and 2 were rejected. There is, however, no reason to reject Model 3, the no site fidelity model. Thus, we conclude that for members of the S. venustum/verecundum complex (i.e., S. rostratum, S. venustum, and S. truncatum) females find an “apparently suitable” waterway in which to oviposit; this may or may not be their natal site. 相似文献
16.
- In an intensive mark‐release‐recapture study of all butterfly species in a tropical rainforest understory, 5903 individuals from 90 butterfly species (from the estimated total of 104 ± 9 species present in understory habitat) were marked, and 1308 recaptured at least once.
- The study proved that mark‐recapture methods are feasible in tropical rainforests, but also showed its limitations, as after 232 person‐days of sampling we could only characterise dispersal for one‐third of the species present.
- The mean dispersal distance was 184 ± 46.1 m per species, while for six of the 14 species studied >1% of individuals were estimated to disperse 1 km or more. These parameters are, however, strongly dependent on the size and spatial configuration of the study plots, particularly in large homogeneous habitats. A new method proposed here to correct this bias revised the mean distance between two captures from 135 ± 33.6 to 325 ± 87.0 m per species.
- These results, in combination with data from large permanent rainforest plots, suggest that most woody plant species in tropical forests are sufficiently abundant to serve as host plant species even to monophagous Lepidoptera species.
17.
《Insect Conservation and Diversity》2018,11(3):294-304
- Parnassius apollo filabricus is a subspecies of apollo (Lepidoptera, Papilionidae) restricted to the Sierra de Baza‐Filabres range in southeastern Spain that has become increasingly rare in the last decades, disappearing from most of its known locations.
- In this article, we calculate both census and effective population size of a local population discovered in 2009 that occupies c. 30 ha.
- After 2 years of capture–mark–recapture work we estimate a population size of about 100 individuals.
- Genetic variation was characterised using 9 microsatellite markers and 29 individuals. Effective population size was estimated from 13 microsatellites. The studied population is strongly differentiated from the nearby Sierra Nevada apollo populations, and its expected heterozygosity and allelic richness were higher than the average value for Sierra Nevada.
- Genetic diversity of the population is not as low as expected by its small size, which points out to a recent population decline. We discuss the implications of these results for the conservation of the species.
18.
M. A. MacNeil N. A. J. Graham M. J. Conroy C. J. Fonnesbeck N. V. C. Polunin S. P. Rushton P. Chabanet T. R. McClanahan 《Journal of fish biology》2008,73(7):1748-1763
This study shows how capture–mark–recapture (CMR) models can provide robust estimates of detection heterogeneity (sources of bias) in underwater visual‐census data. Detection biases among observers and fish family groups were consistent between fished and unfished reef sites in Kenya, even when the overall level of detection declined between locations. Species characteristics were the greatest source of detection heterogeneity and large, highly mobile species were found to have lower probabilities of detection than smaller, site‐attached species. Fish family and functional‐group detectability were also found to be lower at fished locations, probably due to differences in local abundance. Because robust CMR models deal explicitly with sampling where not all species are detected, their use is encouraged for studies addressing reef‐fish community dynamics. 相似文献
19.
Life‐histories and demographic parameters of southern temperate bird species have been little studied. We estimated return rates between years and sexes, and adult apparent survival and recapture probabilities with mark–recapture data on White‐rumped Swallows and found a lower return rate of unsuccessful females. There was little support for influences of sex or year on survival rates. The estimates were equivalent to the lowest value reported for a northern congener, in contrast to the prediction of geographical variation under life‐history theory. 相似文献
20.