首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the generation of five mouse strains with the tamoxifen‐inducible Cre (Cre‐ERT2; CE) gene cassette knocked into the endogenous loci of Pax3, Myod1, Myog, Myf6, and Myl1, collectively as a resource for the skeletal muscle research community. We characterized these CE strains using the Cre reporter mice, R26RLacZ, during embryogenesis and show that they direct tightly controlled tamoxifen‐inducible reporter expression within the expected cell lineage determined by each myogenic gene. We also examined a few selected adult skeletal muscle groups for tamoxifen‐inducible reporter expression. None of these new CE alleles direct reporter expression in the cardiac muscle. All these alleles follow the same knock‐in strategy by replacing the first exon of each gene with the CE cassette, rendering them null alleles of the endogenous gene. Advantages and disadvantages of this design are discussed. Although we describe potential immediate use of these strains, their utility likely extends beyond foreseeable questions in skeletal muscle biology. genesis 52:759–770, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
Wnt/β‐catenin signals are important regulators of embryonic and adult stem cell self‐renewal and differentiation and play causative roles in tumorigenesis. Purified recombinant Wnt3a protein, or Wnt3a‐conditioned culture medium, has been widely used to study canonical Wnt signaling in vitro or ex vivo. To study the role of Wnt3a in embryogenesis and cancer models, we developed a Cre recombinase activatable Rosa26Wnt3a allele, in which a Wnt3a cDNA was inserted into the Rosa26 locus to allow for conditional, spatiotemporally defined expression of Wnt3a ligand for gain‐of‐function (GOF) studies in mice. To validate this reagent, we ectopically overexpressed Wnt3a in early embryonic progenitors using the T‐Cre transgene. This resulted in up‐regulated expression of a β‐catenin/Tcf‐Lef reporter and of the universal Wnt/β‐catenin pathway target genes, Axin2 and Sp5. Importantly, T‐Cre; Rosa26Wnt3a mutants have expanded presomitic mesoderm (PSM) and compromised somitogenesis and closely resemble previously studied T‐Cre; Ctnnb1ex3 (β‐cateninGOF) mutants. These data indicate that the exogenously expressed Wnt3a stimulates the Wnt/β‐catenin signaling pathway, as expected. The Rosa26Wnt3a mouse line should prove to be an invaluable tool to study the function of Wnt3a in vivo.  相似文献   

3.
4.
Cre/LoxP‐mediated recombination allows for conditional gene activation or inactivation. When combined with an independent lineage‐tracing reporter allele, this technique traces the lineage of presumptive genetically modified Cre‐expressing cells. Several studies have suggested that floxed alleles have differential sensitivities to Cre‐mediated recombination, which raises concerns regarding utilization of Cre‐reporters to monitor recombination of other floxed loci of interest. Here, we directly investigate the recombination correlation, at cellular resolution, between several floxed alleles induced by Cre‐expressing mouse lines. The recombination correlation between different reporter alleles varied greatly in otherwise genetically identical cell types. The chromosomal location of floxed alleles, distance between LoxP sites, sequences flanking the LoxP sites, and the level of Cre activity per cell all likely contribute to observed variations in recombination correlation. These findings directly demonstrate that, due to non‐parallel recombination events, commonly available Cre reporter mice cannot be reliably utilized, in all cases, to trace cells that have DNA recombination in independent‐target floxed alleles, and that careful validation of recombination correlations are required for proper interpretation of studies designed to trace the lineage of genetically modified populations, especially in mosaic situations. genesis 51:436–442. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
We have generated a transgenic mouse that expresses Cre recombinase only in skeletal muscle and only following tetracycline treatment. This spatiotemporal specificity is achieved using two transgenes. The first transgene uses the human skeletal actin (HSA) promoter to drive expression of the reverse tetracycline‐controlled transactivator (rtTA). The second transgene uses a tetracycline responsive promoter to drive the expression of Cre recombinase. We monitored transgene expression in these mice by crossing them with ROSA26 loxP‐LacZ reporter mice, which express β‐galactosidase when activated by Cre. We find that the expression of this transgene is only detectable within skeletal muscle and that Cre expression in the absence of tetracycline is negligible. Cre is readily induced in this model with tetracycline analogs at a range of embryonic and postnatal ages and in a pattern consistent with other HSA transgenic mice. This mouse improves upon existing transgenic mice in which skeletal muscle Cre is expressed throughout development by allowing Cre expression to begin at later developmental stages. This temporal control of transgene expression has several applications, including overcoming embryonic or perinatal lethality due to transgene expression. This mouse is especially suited for studies of steroid hormone action, as it uses tetracycline, rather than tamoxifen, to activate Cre expression. In summary, we find that this transgenic induction system is suitable for studies of gene function in the context of hormonal regulation of skeletal muscle or interactions between muscle and motoneurons in mice. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

6.
7.
The Cre/lox and FLP/FRT recombination systems have been used extensively for both conditional knockout and cell lineage analysis in mice. Here we report a new multifunctional Cre/FLP dual reporter allele (R26NZG) that exhibits strong and apparently ubiquitous marker expression in embryos and adults. The reporter construct, which is driven by the CAG promoter, was knocked into the ROSA26 locus providing an open chromatin domain for consistent expression and avoiding site‐of‐integration effects often observed with transgenic reporters. R26NZG directs Cre‐dependent nuclear‐localized β‐galactosidase (β‐gal) expression, and can be converted into a Cre‐dependent EGFP reporter (R26NG) by germline excision of the FRT‐flanked nlslacZ cassette. Alternatively, germline excision of the floxed PGKNEO cassette in R26NZG generates an FLP‐dependent EGFP reporter (R26ZG) that expresses β‐gal in FLP‐nonexpressing cells. Finally, by the simultaneous use of both Cre and FLP deleters, R26NZG allows lineage relationships to be interrogated with greater refinement than is possible with single recombinase reporter systems. genesis 47:107–114, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
In caudal regions of the CNS, glycine constitutes the major inhibitory neurotransmitter. Here, we describe a mouse line that expresses Cre recombinase under the control of a BAC transgenic glycine transporter 2 (GlyT2) promoter fragment. Mating of GlyT2‐Cre mice with the Cre reporter mouse lines Rosa26/LacZ and Rosa26/YFP and analysis of double transgenic offsprings revealed strong transgene activity in caudal regions of the central nervous system, i.e., brain stem and spinal cord. Some additional Cre expression was observed in cortical and cerebellar regions. In brain stem and spinal cord, Cre expressing cells were identified as glycinergic interneurons by staining with GlyT2‐ and glycine‐immunoreactive antibodies; here, >80% of the glycine‐immunoreactive cells expressed the Cre reporter protein. These data indicate that GlyT2‐Cre mice are a useful tool for the genetic manipulation of glycinergic interneurons. genesis 48:437–445, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
We have created a mouse model expressing tamoxifen‐inducible Cre recombinase (CreERT2) under the control of the thyroglobulin (Tg) gene promoter to be able to study the role of defined genetic modifications in the regulation of thyroid function. We chose the thyroglobulin promoter, as it is expressed specifically in the thyroid. In order to obtain reliable expression under the control of the Tg promoter, we used a P1 artificial chromosome (PAC) containing a large piece of the Tg promoter. A tamoxifen inducible CreERT2 construct was selected to avoid the possible consequences of the gene deletion for the development of the thyroid gland, and to study the role of gene deletion in the adult thyroid. Transgenic lines (TgCreERT2) carrying this construct were generated and analyzed by crossing the TgCreERT2 mice with the ROSA26LacZ reporter strain. The activity and specificity of the Cre recombinase was tested by staining for β‐galactosidase activity and by immunohistochemistry using an anti‐Cre‐antibody. In the TgCreERT2xROSA26LacZ reporter line, Cre‐mediated recombination occurred specifically in the thyrocytes only after tamoxifen administration, and no significant staining was observed in controls. The recombination efficiency was nearly complete, since almost all thyrocytes showed X‐gal staining. We could also induce the recombination in utero by giving tamoxifen to the pregnant female. In addition, mice expressing TgCreERT2 had no obvious histological changes, hormonal alterations, or different response to growth stimuli as compared to controls. These results demonstrate that the TgCreERT2 mouse line is a powerful tool to study temporally controlled deletion of floxed genes in the thyroid. genesis 52:333–340, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
Postnatal cartilage development and growth are regulated by key growth factors and signaling molecules. To fully understand the function of these regulators, an inducible and chondrocyte-specific gene deletion system needs to be established to circumvent the perinatal lethality. In this report, we have generated a transgenic mouse model (Col2a1-CreER(T2)) in which expression of the Cre recombinase is driven by the chondrocyte-specific col2a1 promoter in a tamoxifen-inducible manner. To determine the specificity and efficiency of the Cre recombination, we have bred Col2a1-CreER(T2) mice with Rosa26R reporter mice. The X-Gal staining showed that the Cre recombination is specifically achieved in cartilage tissues with tamoxifen-induction. In vitro experiments of chondrocyte cell culture also demonstrate the 4-hydroxy tamoxifen-induced Cre recombination. These results demonstrate that Col2a1-CreER(T2) transgenic mice can be used as a valuable tool for an inducible and chondrocyte-specific gene deletion approach.  相似文献   

11.
Tnnt2, encoding thin‐filament sarcomeric protein cardiac troponin T, plays critical roles in heart development and function in mammals. To develop an inducible genetic deletion strategy in myocardial cells, we generated a new Tnnt2:MerCreMer (Tnnt2MerCreMer/+) knock‐in mouse. Rosa26 reporter lines were used to examine the specificity and efficiency of the inducible Cre recombinase. We found that Cre was specifically and robustly expressed in the cardiomyocytes at embryonic and adult stages following tamoxifen induction. The knock‐in allele on Tnnt2 locus does not impact cardiac function. These results suggest that this new Tnnt2MerCreMer/+ mouse could be applied towards the temporal genetic deletion of genes of interests in cardiomyocytes with Cre‐LoxP technology. The Tnnt2MerCreMer/+ mouse model also provides a useful tool to trace myocardial lineage during development and repair after cardiac injury. genesis 53:377–386, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
Generation of gain-of-function transgenic mice by targeting the Rosa26 locus has been established as an alternative to classical transgenic mice produced by pronuclear microinjection. However, targeting transgenes to the endogenous Rosa26 promoter results in moderate ubiquitous expression and is not suitable for high expression levels. Therefore, we now generated a modified Rosa26 (modRosa26) locus that combines efficient targeted transgenesis using recombinase-mediated cassette exchange (RMCE) by Flipase (Flp-RMCE) or Cre recombinase (Cre-RMCE) with transgene expression from exogenous promoters. We silenced the endogenous Rosa26 promoter and characterized several ubiquitous (pCAG, EF1α and CMV) and tissue-specific (VeCad, αSMA) promoters in the modRosa26 locus in vivo. We demonstrate that the ubiquitous pCAG promoter in the modRosa26 locus now offers high transgene expression. While tissue-specific promoters were all active in their cognate tissues they additionally led to rare ectopic expression. To achieve high expression levels in a tissue-specific manner, we therefore combined Flp-RMCE for rapid ES cell targeting, the pCAG promoter for high transgene levels and Cre/LoxP conditional transgene activation using well-characterized Cre lines. Using this approach we generated a Cre/LoxP-inducible reporter mouse line with high EGFP expression levels that enables cell tracing in live cells. A second reporter line expressing luciferase permits efficient monitoring of Cre activity in live animals. Thus, targeting the modRosa26 locus by RMCE minimizes the effort required to target ES cells and generates a tool for the use exogenous promoters in combination with single-copy transgenes for predictable expression in mice.  相似文献   

13.
14.
To establish a genetic tool for manipulating the neural stem/progenitor cell (NSC) lineage in a temporally controlled manner, we generated a transgenic mouse line carrying an NSC‐specific nestin promoter/enhancer expressing a fusion protein encoding Cre recombinase coupled to modified estrogen receptor ligand‐binding domain (ERT2). In the background of the Cre reporter mouse strain Rosa26lacZ, we show that the fusion CreERT2 recombinase is normally silent but can be activated by the estrogen analog tamoxifen both in utero, in infancy, and in adulthood. As assayed by β‐galactosidase activity in embryonic stages, tamoxifen activates Cre recombinase exclusively in neurogenic cells and their progeny. This property persists in adult mice, but Cre activity can also be detected in granule neurons and Bergmann glia at the anterior of the cerebellum, in piriform cortex, optic nerve, and some peripheral ganglia. No obvious Cre activity was observed outside of the nervous system. Thus, the nestin regulated inducible Cre mouse line provides a powerful tool for studying the physiology and lineage of NSCs. genesis 47:122–131, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

15.
Cre recombinase is extensively used to engineer the genome of experimental animals. However, its usefulness is still limited by the lack of an efficient temporal control over its activity. We have recently developed a conceptually new approach to regulate Cre recombinase, that we have called Dimerizable Cre or DiCre. It is based on splitting Cre into two inactive moieties and fusing them to FKBP12 (FK506-binding protein) and FRB (binding domain of the FKBP12-rapamycin associated protein), respectively. These latter can be efficiently hetero-dimerized by rapamycin, leading to the reinstatement of Cre activity. We have been able to show, using in vitro approaches, that this ligand-induced dimerization is an efficient way to regulate Cre activity, and presents a low background activity together with a high efficiency of recombination following dimerization. To test the in vivo performance of this system, we have, in the present work, knocked-in DiCre into the Rosa26 locus of mice. To evaluate the performance of the DiCre system, mice have been mated with indicator mice (Z/EG or R26R) and Cre-induced recombination was examined following activation of DiCre by rapamycin during embryonic development or after birth of progenies. No recombination could be observed in the absence of treatment of the animals, indicating a lack of background activity of DiCre in the absence of rapamycin. Postnatal rapamycin treatment (one to five daily injection, 10 mg/kg i.p) induced recombination in a number of different tissues of progenies such as liver, heart, kidney, muscle, etc. On the other hand, recombination was at a very low level following in utero treatment of DiCrexR26R mice. In conclusion, DiCre has indeed the potentiality to be used to establish conditional Cre-deleter mice. An added advantage of this system is that, contrary to other modulatable Cre systems, it offers the possibility of obtaining regulated recombination in a combinatorial manner, i.e. induce recombination at any desired time-point specifically in cells characterized by the simultaneous expression of two different promoters.  相似文献   

16.
Cell type-specific genetic modification using the LoxP/Cre system is a powerful tool for genetic analysis of distinct cell lineages. Because of the unique arterial smooth muscle-restricted expression of a 5.0 kb cysteine-rich protein (Csrp1) enhancer (Lilly et al.,2001, Dev Biol 240:531-547), we hypothesized that a transgenic Cre line would prove useful for the smooth muscle lineage-specific genetic manipulation. Here we describe a transgenic mouse line, ECsrp1(Cre), where Cre is initially specifically expressed in arterial smooth muscle cells. Use of the ROSA26R reporter allele confirmed that Cre-mediated recombination in vascular smooth muscle cells began at approximately E10.0 and was highly proficient. Subsequently, Cre is expressed in restricted skeletal and nonvascular smooth muscle lineages. This lineage tracing data is important for future conditional knockout studies to understand where and when Cre-mediated deletion occurs and where Cre-expressing daughter cells finally localize. Additionally, we crossed the ECsrp1(Cre) mice to the ROSA26(-eGFP-DTA) diphtheria toxin A-expressing mice to genetically ablate ECsrp1(Cre) expressing cells. This ECsrp1(Cre) transgenic line should thus prove useful for genetic analysis of diverse aspects of cardiovascular morphogenesis and as a general smooth muscle lineage deletor line.  相似文献   

17.
18.
We report the generation and initial characterization of a mouse line expressing tamoxifen‐inducible improved Cre (iCre) recombinase (iCre‐ERT2) under the regulation of NPHS2 (podocin) gene promoter. The resulting transgenic mouse line was named podocin‐iCreERT2 mice. The efficiency of iCre activity was confirmed by crossing podocin‐iCreERT2 with the ROSA26 reporter mouse. By using the floxed ROSA reporter mice, we found that tamoxifen specifically induced recombination in the kidneys. In the absence of tamoxifen, recombination was undetectable in podocin‐iCreERT2;ROSA26 mice. However, following intraperitoneal injection of tamoxifen, selective recombination was observed in the podocytes of adult animals. We further examined the efficiency of recombination by assessing various tamoxifen exposure regimens in adult mice. These results suggest that podocin‐iCre‐ERT2 mouse provides an excellent genetic tool to examine the function of candidate genes in podocytes in a spatially and temporally‐restricted manner. genesis 48:446–451, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号