首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various hypotheses have been proposed about the Quaternary evolutionary history of plant species on the Qinghai–Tibet Plateau (QTP), yet only a handful of studies have considered both population genetics and ecological niche context. In this study, we proposed and compared climate refugia hypotheses based on the phylogeographic pattern of Anisodus tanguticus (three plastid DNA fragments and nuclear internal transcribed spacer regions from 32 populations) and present and past species distribution models (SDMs). We detected six plastid haplotypes in two well‐differentiated lineages. Although all haplotypes could be found in its western (sampling) area, only haplotypes from one lineage occurred in its eastern area. Meanwhile, most genetic variations existed between populations (FST = 0.822). The SDMs during the last glacial maximum and last interglacial periods showed range fragmentation in the western area and significant range contraction in the eastern area, respectively, in comparison with current potential distribution. This species may have undergone intraspecific divergence during the early Quaternary, which may have been caused by survival in different refugia during the earliest known glacial in the QTP, rather than geological isolation due to orogenesis events. Subsequently, climate oscillations during the Quaternary resulted in a dynamic distribution range for this species as well as the distribution pattern of its plastid haplotypes and nuclear genotypes. The interglacial periods may have had a greater effect on A. tanguticus than the glacial periods. Most importantly, neither genetic data nor SDM alone can fully reveal the climate refugia history of this species. We also discuss the conservation implications for this important Tibetan folk medicine plant in light of these findings and SDMs under future climate models. Together, our results underline the necessity to combine phylogeographic and SDM approaches in future investigations of the Quaternary evolutionary history of species in topographically complex areas, such as the QTP.  相似文献   

2.
The Qinghai‐Tibetan Plateau (QTP) is thought to be more strongly affected by the Quaternary glaciations than most other regions of the same latitude. It would be of great interest to investigate the population genetic structure of organisms distributed on the platform and its correlation with the Quaternary climatic oscillations. Here we used the chloroplast (cp)DNA trnT‐trnF sequence to study genetic variation and phylogeography of Pedicularis longiflora, an alpine herb with extensive distribution on the QTP. Based on a range‐wide sampling comprising 41 populations and 910 individuals, we detected 30 cpDNA haplotypes that were divided into five clades by phylogenetic and network analyses and a strong phylogeographical structure. All haplotypes but one in the three basal clades occur exclusively in the southeast QTP, whereas haplotypes in the young clade V occupy almost the whole species range. In particular, the young haplotype H18 occurs in 420 individuals, even at a frequency of 100% in some QTP platform populations and the Altai population. The haplotype distribution pattern, together with molecular clock estimation and mismatch distribution analysis, suggests that the southeast QTP was either a refuge for P. longiflora during the Quaternary climatic change or is the place of origin of the species. The present wide distribution of the species on the QTP platform has resulted from recent population expansions which could be dated back to 120 000–17 000 years ago, a period mostly before the last glacial maximum. The possible relationships among geographic genetic structure, climatic change and species diversification in Pedicularis are also discussed.  相似文献   

3.
A knowledge of intraspecific divergence and range dynamics of dominant forest trees in response to past geological and climate change is of major importance to an understanding of their recent evolution and demography. Such knowledge is informative of how forests were affected by environmental factors in the past and may provide pointers to their response to future environmental change. However, genetic signatures of such historical events are often weak at individual loci due to large effective population sizes and long generation times of forest trees. This problem can be overcome by analysing genetic variation across multiple loci. We used this approach to examine intraspecific divergence and past range dynamics in the conifer Picea likiangensis, a dominant tree of forests occurring in eastern and southern areas of the Qinghai‐Tibet Plateau (QTP). We sequenced 13 nuclear loci, two mitochondrial DNA regions and three plastid (chloroplast) DNA regions in 177 individuals sampled from 22 natural populations of this species, and tested the hypothesis that its evolutionary history was markedly affected by Pliocene QTP uplifts and Quaternary climatic oscillations. Consistent with the taxonomic delimitation of the three morphologically divergent varieties examined, all individuals clustered into three genetic groups with intervariety admixture detected in regions of geographical overlap. Divergence between varieties was estimated to have occurred within the Pliocene and ecological niche modelling based on 20 ecological variables suggested that niche differentiation was high. Furthermore, modelling of population‐genetic data indicated that two of the varieties (var. rubescens and var. linzhiensis) expanded their population sizes after the largest Quaternary glaciation in the QTP, while expansion of the third variety (var. likiangensis) began prior to this, probably following the Pliocene QTP uplift. These findings point to the importance of geological and climatic changes during the Pliocene and Pleistocene as causes of intraspecific diversification and range shifts of dominant tree species in the QTP biodiversity hot spot region.  相似文献   

4.
The silver‐studded blue, Plebejus subsolanus, is widely distributed in the Russian Altai mountains, northeastern China, the Korean Peninsula, and the Japanese archipelago. In Japan, the species is distributed across wide elevation ranges from the lowlands of Hokkaido to the subalpine zone of Honshu. Current subspecies classification in Japan is as follows: ssp. iburiensis, occurring in lowland grasslands in Hokkaido; ssp. yaginus in lower mountain grasslands in Honshu; and ssp. yarigadakeanus in higher mountain grasslands in Honshu. The habitat of this species has been markedly reduced due to recent habitat destruction and land‐use changes. Here, we undertook phylogeographic analyses of two subspecies, ssp. yaginus and yarigadakeanus in the central mountainous regions of Japan, based on two mitochondrial gene sequences, in order to collect information for establishing effective conservation strategies. From 57 samples from the four mountain ranges, we obtained a haplotype network comprised of 12 haplotypes. Because of the haplotype network topology, the geographic distribution of haplotypes and the correspondence of haplotype divergence to subspecies taxonomy, we provisionally divided the haplotypes into three haplogroups: YR1 and YR2, which comprised ssp. yarigadakeanus, and YG, which comprised ssp. yaginus. Mitochondrial DNA genetic differentiation generally agreed with morphological subspecies classification. The haplotype network suggested that ssp. yarigadakeanus populations had multiple origins, and the subspecies character of “bright blue of the male's wings” was assumed to have evolved independently in each subalpine meadow. We found that P. subsolanus was genetically differentiated depending upon the elevation at each mountain region, suggesting that each haplogroup should be a conservation unit.  相似文献   

5.
Geographic patterns of genetic variation are strongly influenced by historical changes in species habitats. Whether such patterns are common to co‐distributed taxa may depend on the extent to which species vary in ecology and vagility. We investigated whether broad‐scale phylogeographic patterns common to a number of small‐bodied vertebrate and invertebrate species in eastern Australian forests were reflected in the population genetic structure of an Australo‐Papuan forest marsupial, the red‐legged pademelon (Macropodidae: Thylogale stigmatica). Strong genetic structuring of mtDNA haplotypes indicated the persistence of T. stigmatica populations across eastern Australia and southern New Guinea in Pleistocene refugial areas consistent with those inferred from studies of smaller, poorly dispersing species. However, there was limited divergence of haplotypes across two known historical barriers in the northeastern Wet Tropics (Black Mountain Barrier) and coastal mideastern Queensland (Burdekin Gap) regions. Lack of divergence across these barriers may reflect post‐glacial recolonization of forests from a large, central refugium in the Wet Tropics. Additionally, genetic structure is not consistent with the present delimitation of subspecies T. s. wilcoxi and T. s. stigmatica across the Burdekin Gap. Instead, the genetic division occurs further to the south in mideastern Queensland. Thus, while larger‐bodied marsupials such as T. stigmatica did persist in Pleistocene refugia common to a number of other forest‐restricted species, species‐specific local extinction and recolonization events have resulted in cryptic patterns of genetic variation. Our study demonstrates the importance of understanding individualistic responses to historical climate change in order to adequately conserve genetic diversity and the evolutionary potential of species.  相似文献   

6.
The Qinghai–Tibet Plateau (QTP) has been considered as one of the most sensitive regions to climate change on Earth, and the growth and distribution of alpine species on this plateau have been suggested to depend greatly on their ability to survive within a small range of temperatures. However, the responses of most species in the QTP to the Quaternary climatic oscillation remain largely unknown. We sequenced two cpDNA fragments and nrITS to examine genetic variations in 22 natural populations across the range of distribution in this region to investigate the phylogeographical distributional pattern of Gentiana straminea (Gentianaceae) in the QTP. The high haplotype diversity from populations on the platform suggested the existence of intraspecific diversification. Molecular dating estimated that all haplotypes have differentiated before the Last Glacial Maximum (LGM). Moreover, the haplotype distribution map based on both cpDNA and nrDNA data suggested expansions from QTP to its outer edges. Finally, ecological niche modeling further demonstrated the glacial survival of this species on the platform and continuous expansion to the platform edge. These findings imply that G. straminea should have experienced initial diversification, glacial survival on the platform, and continuous expansion to the QTP edge during the glacial period.  相似文献   

7.
The impact of ecological factors on natural hybridization is of widespread interest. Here, we asked whether climate niche influences hybridization between the two closely related plant species Myriophyllum sibiricum and M. spicatum. Eight microsatellite loci and two chloroplast fragments were used to investigate the occurrence of hybridization between these two species in two co‐occurring regions: north‐east China (NEC) and the Qinghai‐Tibetan Plateau (QTP). The climate niches of the species were quantified by principal component analysis with bioclimatic data, and niche comparisons were performed between the two species in each region. Reciprocal hybridization was observed, and M. sibiricum was favoured as the maternal species. Furthermore, hybrids were rare in NEC but common in the QTP. Accordingly, in NEC, the two species were climatically distinct, and hybrids only occurred in the narrow geographical or ecological transition zone, whereas in the QTP, obvious niche overlaps were found for the two species, and hybrids occurred in multiple contact zones. This association between hybridization pattern and climate niche similarity suggests that the level of hybridization was promoted by niche overlap. Compared with the parental species, similar climate niches were found for the hybrid populations in the QTP, indicating that other environmental factors rather than climate were important for hybrid persistence. Our findings highlight the significance of climate niche with respect to hybridization patterns in plants.  相似文献   

8.
Mussels in several orders possess two separate mitochondrial lineages: a standard female‐inherited form and one inherited only through males. This system of doubly uniparental inheritance (DUI) for mitochondrial genes provides an opportunity to compare the population structure of gene‐lineages passed either mother‐to‐daughter or father‐to‐son. In the present study, we contrast variation in the male and female haplotype lineages of the American freshwater mussel species, Lampsilis siliquoidea (sometimes called Lampsilis radiata luteola), throughout the Lake Erie, Ohio River, and upper Mississippi River watersheds, and contrast variation with the sequences obtained for the related species/subspecies Lampsilis radiata radiata from Maine. The genetic markers were fragments of the cytochrome c oxidase subunit I gene (COI), which occurs in both mitochondrial types, F (female) and M (male). High haplotype diversity was found in the two independent lineages, although purifying selection against amino acid change appeared to be stronger in the female than the male lineage. Phylogeographical patterns also varied between mitochondria passing through females and males. The female lineage exhibited more population structure, with the occurrence of private or nearly‐private haplotypes within two streams, and three others showed restricted haplotype distributions. By contrast to the F‐haplotypes, complex phylogenetic structure occurred for M‐haplotypes, yet this phylogenetic variation coincided with almost no geographical pattern within haplotypes. Basically, F‐haplotypes showed isolation, especially above physical barriers, whereas M‐haplotypes did not. A few individuals in the eastern Lake Erie watershed even possessed M‐haplotypes of an Atlantic Slope (L. radiata radiata) origin, although their F‐haplotypes were typical of Midwestern L. siliquoidea. The finding that mussels package sperm as spermatozuegmata, which float downstream, may underlie greater gene mobility in male‐inherited mitochondria. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 229–240.  相似文献   

9.
The Himalaya–Hengduan Mountain region is one of the hotspots of biodiversity research. The uplift of the Qinghai–Tibetan Plateau (QTP) and the Quaternary glaciation caused great environmental changes in this region, and the responses of many species in the QTP to the Quaternary climate are still largely unknown. The genetic structure and phylogeographical history of Gentiana crassicaulis Duthie ex Burk, an endemic Chinese alpine species in this area, were investigated based on four chloroplast fragments and internal transcribed spacer region of the nuclear ribosomal DNA (nrITS) sequences of 11 populations. The populations with highly diverse chloroplast haplotypes were mainly found at the edge of the QTP. There were two main haplotypes of nrITS clones, one shared by the Yunnan and Guizhou populations, and the other by the remaining populations. The population with the highest diversity was the Gansu population, located at the edge of the plateau. Based on molecular dating, the diversification of G. crassicaulis at the edge of the plateau occurred before the Last Glacial Maximum (LGM), and the species may have completed its expansion from the edge to the platform. Ecological niche models were conducted to predict the distributional ranges of G. crassicaulis at present, during the LGM, and during the last interglacial (LIG) period. The results demonstrated that G. crassicaulis survived on the QTP platform and at the edge during the LGM but afterward retreated from the platform to the southern edge, followed by expansion to the platform.  相似文献   

10.
Plateau uprisings and climatic oscillations are considered to have caused extensive allopatric divergences that account for the rich species diversity of the Qinghai‐Tibetan Plateau (QTP). However, secondary contact during range shifts in the Quaternary glacial cycles or inter‐uplift stages may have restored the gene flow between species and so counteracted these divergences, particularly in rapidly‐adapting dominant elements. We tested this hypothesis by determining the phylogeographical history of Dasiphora (Rosaceae), a genus of two species that are widely distributed on the QTP and co‐exist in numerous localities. We sequenced two chloroplast DNA fragments (rbcL, trnT‐L) for 559 individuals from 87 populations. Bayesian methods were used to identify phylogenetic relationships and to estimate divergence times. Demographic histories were inferred using neutrality tests, mismatch distribution analysis, and coalescent simulation. A total of 112 haplotypes that clustered into three major groups were identified. The formation of these groups and their subgroups was dated to between the Pliocene and the late Pleistocene. In addition, we found that some groups underwent multiple extensive expansions. Species‐specific haplotypes were identified for each species, although these haplotypes phylogenetically intermixed. These results suggest that recent plateau uplifts and climatic oscillations might have caused the deep divergences observed within this genus. However, later range expansions probably blurred these divergences and possible species boundaries. Our results shed new light on the complex evolutionary history of the QTP alpine plants. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 777–788.  相似文献   

11.
We used the Allium przewalskianum diploid–tetraploid complex on the Qinghai‐Tibetan Plateau (QTP) as a model to examine how this complex responded to the Quaternary climatic oscillations, and whether multiple autopolyploidizations have occurred. We sequenced five chloroplast DNA (cpDNA) fragments (accD‐psaI, trnH‐psbA, trnL‐trnF, trnS‐trnG and rpl16‐intron) in 306 individuals (all of known ploidy level) from 48 populations across the distribution of this species complex. We identified a total of 32 haplotypes—11 in diploids only, 13 in tetraploids only, and 8 found in both cytotypes. This, plus network analyses, indicated that tetraploids have arisen independently from diploids at least eight times. Most populations in the eastern QTP contained multiple haplotypes, but only a single haplotype was found for 17 tetraploid populations on the western QTP, suggesting a recent colonization of the western QTP. We further found that this species complex underwent an earlier range expansion around 5–150 thousand years ago (kya), after the largest glacial period (800–170 kya) in the QTP. In addition, the high frequencies of tetraploids in the QTP suggested that the tetraploid A. przewalskianum cytotype has evolutionary advantages over diploids in colonizing and/or surviving the arid habitats of the QTP.  相似文献   

12.
13.
The genetic structure and phylogeographical history of the alpine shrubs Sibiraea angustata (Rosaceae) and Sibiraea laevigata from the Qinghai–Tibetan Plateau (QTP) were investigated to identify alpine plant responses to changes in the QTP and glaciations. Fifty-five populations were analyzed using four chloroplast DNA (cpDNA) regions and (nuclear ribosomal internal transcribed spacer) nrITS sequence data. In all, 21 cpDNA haplotypes and 13 nrITS sequence types were detected. Analyses of the genetic diversity and phylogenetic relationships detected two rarely reported glacial refugia. One was the Yushu–Nangqian area, and the other consisted of the area from the Songpan Plateau to the southeastern margin of the QTP. Sibiraea species populations experienced divergent evolution and founder effects when they recolonized the QTP platform and adjacent high-altitude regions following glaciations. The divergence times of the main lineages and haplotypes were in the range of 1.60–2.58 Ma. The population size of Sibiraea species in the QTP decreased approximately 23-fold during the last 0.12 Ma, indicating that Sibiraea species were significantly affected by environmental changes in the QTP. Therefore, the rapid uplift of the QTP and subsequent glaciations likely played an important role in driving genetic divergence and population size changes of Sibiraea species in the QTP.  相似文献   

14.
The genus Diplodus presents multiple cases of taxonomic conjecture. Among these the D. cervinus complex was previously described as comprising three subspecies that are now regarded as separate species: Diplodus cervinus, Diplodus hottentotus and Diplodus omanensis. Diplodus hottentotus exhibits a clear break in its distribution around the Benguela Current system, prompting speculation that Angolan and South African populations flanking this area may be isolated and warrant formal taxonomic distinction. This study reports the first integrated genetic [mitochondrial (mt)DNA and nuclear microsatellite] and morphological (morphometric, meristic and colouration) study to assess patterns of divergence between populations in the two regions. High levels of cytonuclear divergence between the populations support a prolonged period of genetic isolation, with the sharing of only one mtDNA haplotype (12 haplotypes were fully sorted between regions) attributed to retention of ancestral polymorphism. Fish from the two regions were significantly differentiated at a number of morphometric (69·5%) and meristic (46%) characters. In addition, Angolan and South African fish exhibited reciprocally diagnostic colouration patterns that were more similar to Mediterranean and Indian Ocean congeners, respectively. Based on the congruent genetic and phenotypic diversity we suggest that the use of hottentotus, whether for full species or subspecies status, should be restricted to South African D. cervinus to reflect their status as a distinct species‐like unit, while the relationship between Angolan and Atlantic–Mediterranean D. cervinus will require further demo‐genetic analysis. This study highlights the utility of integrated genetic and morphological approaches to assess taxonomic diversity within the biogeographically dynamic Benguela Current region.  相似文献   

15.
Variation of the cytochrome b gene fragment was examined in 27 flat-headed voles Alticola strelzowi from different parts of the species range. A total of 15 haplotypes were described, while the species is characterized by low levels of genetic differentiation and polymorphism. The haplotypes form three haplogroups, one of which corresponded to the subspecies A. s. strelzowi, and the other two, to A. s. desertorum. Based on different indices, the level of genetic polymorphism in the later subspecies was considered to be higher than in the first one. Phylogeographic analysis suggested post-glacial dispersal of flat-headed voles from a single refugium located in Western Altai. Using different techniques, relatively recent colonization of the Central Altai territory was demonstrated (subspecies A. s. strelzowi), which determined low level of genetic variation in this territory.  相似文献   

16.
The genus Schizothorax (Cyprinidae), one of the most diverse genera of ichthyofauna of the Qinghai‐Tibetan Plateau (QTP), is a good candidate for investigating patterns of genetic variation and evolutionary mechanisms. In this study, sequences from the mitochondrial control region, the cytochrome b gene, and two nuclear genes were used to re‐examine the genetic diversity and investigate the evolutionary history of the Schizothorax species complex inhabiting the Lancang River. Three maternal clades were detected in the Schizothorax species complex, but frequent nuclear allele sharing also occurred among the three maternal clades. A discrepancy between topologies of mitochondrial and nuclear loci might result from introgression or/and incomplete lineage sorting. The divergence of the clades of the Schizothorax species complex was closely related to the Late Pliocene and Early Pleistocene orogenesis of the QTP and Southwest Mountains of China. Demographic analyses indicated that the species complex subsequently persisted in situ with stable populations during Pleistocene glacial cycling, which suggested that Pleistocene climate changes did not exert a remarkable influence on the species complex. Our study provides a comprehensive analysis of the genetic diversity and evolutionary history of the Schizothorax species complex in the Lancang River.  相似文献   

17.
Range expansion caused by climate oscillations in the past probably promoted morphological radiation in a few plant groups. In this study, we aim to test this hypothesis through phylogeographical analysis of the cold‐tolerant fir genus (Abies) in the Qinghai‐Tibet Plateau (QTP) and Himalayas, where it comprises 12 described species. We examined sequence variation in two maternally inherited mitochondrial (mt) DNA fragments (nad5‐4 and nad7‐1) and two paternally inherited plastid DNA fragments (trnS‐G and trnL‐F) for 733 individuals from 75 populations of the species in a monophyletic group. Only six mtDNA haplotypes were recovered, but five were shared between multiple species and one occurred at a high frequency, providing strong evidence of range expansion. Forty‐three plastid DNA haplotypes were detected, 19 of which were shared between species and three occurred at high frequency. Network, mismatch and Bayesian skyline plot analyses of all plastid DNA haplotypes from this clade clearly suggested range expansion. This expansion was dated as having occurred during the longest and most extensive glaciation in the Pleistocene. Our results therefore supported the range expansion hypothesis for this clade of Abies during the Pleistocene; expansion probably drove the morphological radiation of the clade in the QTP and Himalayas, although it remains unclear whether the different morphotypes should be acknowledged as independent, reproductively isolated species. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 444–453.  相似文献   

18.
With its vast territory and complex natural environment, China boasts rich cattle genetic resources. To gain the further insight into the genetic diversity and paternal origins of Chinese cattle, we analyzed the polymorphism of Y‐SNPs (UTY19 and ZFY10) and Y‐STRs (INRA189 and BM861) in 34 Chinese cattle breeds/populations, including 606 males representative of 24 cattle breeds/populations collected in this study as well as previously published data for 302 bulls. Combined genotypic data identified 14 Y‐chromosome haplotypes that represented three haplogroups. Y2‐104‐158 and Y2‐102‐158 were the most common taurine haplotypes detected mainly in northern and central China, whereas the indicine haplotype Y3‐88‐156 predominates in southern China. Haplotypes Y2‐108‐158, Y2‐110‐158, Y2‐112‐158 and Y3‐92‐156 were private to Chinese cattle. The population structure revealed by multidimensional scaling analysis differentiated Tibetan cattle from the other three groups of cattle. Analysis of molecular variance showed that the majority of the genetic variation was explained by the genetic differences among groups. Overall, our study indicates that Chinese cattle retain high paternal diversity (= 0.607 ± 0.016) and probably much of the original lineages that derived from the domestication center in the Near East without strong admixture from commercial cattle carrying Y1 haplotypes.  相似文献   

19.
Louse flies, also known as deer keds (Lipoptena mazamae Rondani), infest cervids such as white‐tailed deer, Odocoileus virginianus and vector pathogens such as Anaplasma and Bartonella schoenbuchensis to cattle and humans, respectively. The population genetic structure of 30 L. mazamae collected from white‐tailed deer in four regions of Arkansas, U.S.A., designated by county boundaries, was examined using DNA sequences of a 259‐bp region of the mitochondrial DNA rRNA 16S gene. Of the 259 nucleotide characters, 33 were variable and 6 haplotypes were identified. Two haplotypes occurred only once (haplotype 3 and 4), whereas two other haplotypes occurred in 43% (haplotype 1 in two regions) and 40% (haplotype 6 in three regions) of the samples. Phylogenetic relationships of the six L. mazamae haplotypes were constructed with other Hippoboscid and Glossinid samples and two clades resulted. Clade 1 was located in the north and western Ozarks whereas clade 2 was found in the northern and eastern Ozarks. Results from the present study indicate that Lipoptena may be a polyphyletic genus; consequently, more research into genetic variation within this genus is necessary.  相似文献   

20.
The phylogeography of Sibiraea angustata, an endemic shrub species, was studied in the Qinghai–Tibet plateau (QTP). We investigated 466 individuals of S. angustata from 39 populations basically covering its total distribution area. Eight haplotypes (A–H) were detected by sequencing the intergenic chloroplast spacer trnS–trnG (600 bp), and one ancestral haplotype (A) was found to be widely distributed. The level of differentiation among populations was very high (GST=0.768; NST=0.850) and a significant phylogeographical structure was revealed (NST>GST). Analysis of molecular variance (AMOVA) similarily revealed a high level of differentiation among populations (84%, FST=0.842), indicating that little gene flow has occurred among populations mutually isolated by high mountains and rivers in the QTP. On the QTP platform there was only one widespread haplotype (A) in most populations, while populations along the eastern and southeastern edges had high diversity and unique haplotypes. Our results suggest that a glacial refugium may have been located on the eastern or southeastern edges of QTP during the last glaciation, and that interglacial and postglacial range expansion occurred from that refugium. Nested clade analysis (NCA) also suggests this scenario, which indicates that the current spatial distribution of cpDNA haplotypes and populations mainly resulted from long distance colonization, possibly coupled with subsequent or past fragmentation followed by range expansion and allopatric fragmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号