首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
《Developmental neurobiology》2017,77(10):1175-1187
Cyclin‐dependent kinase 5 (Cdk5) is recognized as a unique member among other Cdks due to its versatile roles in many biochemical processes in the nervous system. The proper development of neuronal dendrites is required for the formation of complex neural networks providing the physiological basis of various neuronal functions. We previously reported that sparse dendrites were observed on cultured Cdk5‐null Purkinje cells and Purkinje cells in Wnt1cre‐mediated Cdk5 conditional knockout (KO) mice. In the present study, we generated L7cre‐mediated p35; p39 double KO (L7cre‐p35f/f; p39–/–) mice whose Cdk5 activity was eliminated specifically in Purkinje cells of the developing cerebellum. Consequently, these mice exhibited defective Purkinje cell migration, motor coordination deficiency and a Purkinje dendritic abnormality similar to what we have observed before, suggesting that dendritic growth of Purkinje cells was cell‐autonomous in vivo . We found that mixed and overlay cultures of WT cerebellar cells rescued the dendritic deficits in Cdk5‐null Purkinje cells, however, indicating that Purkinje cell dendritic development was also supported by non‐cell‐autonomous factors. We then again rescued these abnormalities in vitro by applying exogenous brain‐derived neurotrophic factor (BDNF). Based on the results from culture experiments, we attempted to rescue the developmental defects of Purkinje cells in L7cre‐p35f/f; p39–/– mice by using a TrkB agonist. We observed partial rescue of morphological defects of dendritic structures of Purkinje cells. These results suggest that Cdk5 activity is required for Purkinje cell dendritic growth in cell‐autonomous and non‐cell‐autonomous manners. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1175–1187, 2017  相似文献   

2.
Activity of protein kinase C (PKC), and in particular the PKCγ‐isoform, has been shown to strongly affect and regulate Purkinje cell dendritic development, suggesting an important role for PKC in activity‐dependent Purkinje cell maturation. In this study we have analyzed the role of two additional Ca2+‐dependent PKC isoforms, PKCα and ‐β, in Purkinje cell survival and dendritic morphology in slice cultures using mice deficient in the respective enzymes. Pharmacological PKC activation strongly reduced basal Purkinje cell dendritic growth in wild‐type mice whereas PKC inhibition promoted branching. Purkinje cells from mice deficient in PKCβ, which is expressed in two splice forms by granule but not Purkinje cells, did not yield measurable morphological differences compared to respective wild‐type cells under either experimental condition. In contrast, Purkinje cell dendrites in cultures from PKCα‐deficient mice were clearly protected from the negative effects on dendritic growth of pharmacological PKC activation and showed an increased branching response to PKC inhibition as compared to wild‐type cells. Together with our previous work on the role of PKCγ, these data support a model predicting that normal Purkinje cell dendritic growth is mainly regulated by the PKCγ‐isoform, which is highly activated by developmental processes. The PKCα isoform in this model forms a reserve pool, which only becomes activated upon strong stimulation and then contributes to the limitation of dendritic growth. The PKCβ isoform appears to not be involved in the signaling cascades regulating Purkinje cell dendritic maturation in cerebellar slice cultures. © 2003 Wiley Periodicals, Inc. J Neurobiol 57: 95–109, 2003  相似文献   

3.
Summary Five monoclonal antibodies reacting with intracellular constituents of Purkinje cells were investigated by means of indirect immunofluorescence on fresh-frozen sections of the cerebellum and retina from developing and adult normal and mutant mice. Antibodies PC1, PC2 and PC3, which recognize Purkinje cells, but no other cerebellar neuron type, label these cells from day 4 onward. PC4 antigen is expressed in addition to Purkinje cells also in granule cells and neurons of deep cerebellar nuclei and appears in Purkinje cells at day 4. M1 antigen (Lagenaur et al. 1980) is first detectable in Purkinje cell bodies by day 5; it is also detectable in deep cerebellar neurons. In the adult retina, only PC4 antigen is detectably expressed and is localized in the inner segments of photoreceptor cells.The neurological mutants weaver, reeler,jimpy and wobbler show detectable levels of these antigens in Purkinje cells. However, the mutants staggerer and Purkinje cell degeneration are abnormal in expression PC1, PC2, PC3, and M1 antigens. Staggerer never starts to express the antigens during development, whereas Purkinje cell degeneration first expresses the antigens, but then loses antigen expression after day 23. PC4 antigen is detectable in the remaining Purkinje cells in staggerer and Purkinje cell degeneration mice at all ages tested in this study. Deep cerebellar neurons are positive for both antigens, PC4 and M1, in all mutants and at all ages studied. In retinas of staggerer and Purkinje cell degeneration mutants, PC4 antigen is normally detectable in the inner segments of photoreceptor cells, even when these have started to degenerate in the case of Purkinje cell degeneration.  相似文献   

4.
The differentiation and survival of heterozygous Lurcher (+/Lc) Purkinje cells in vitro was examined as a model system for studying how chronic ionic stress affects neuronal differentiation and survival. The Lurcher mutation in the δ2 glutamate receptor (GluRδ2) converts an orphan receptor into a membrane channel that constitutively passes an inward cation current. In the GluRδ2+/Lc mutant, Purkinje cell dendritic differentiation is disrupted and the cells degenerate following the first week of postnatal development. To determine if the GluRδ2+/Lc Purkinje cell phenotype is recapitulated in vitro, +/+, and +/Lc Purkinje cells from postnatal Day 0 pups were grown in either isolated cell or cerebellar slice cultures. GluRδ2+/+ and GluRδ2+/Lc Purkinje cells appeared to develop normally through the first 7 days in vitro (DIV), but by 11 DIV GluRδ2+/Lc Purkinje cells exhibited a significantly higher cation leak current. By 14 DIV, GluRδ2+/Lc Purkinje cell dendrites were stunted and the number of surviving GluRδ2+/Lc Purkinje cells was reduced by 75% compared to controls. However, treatment of +/Lc cerebellar cultures with 1‐naphthyl acetyl spermine increased +/Lc Purkinje cell survival to wild type levels. These results support the conclusion that the Lurcher mutation in GluRδ2 induces cell autonomous defects in differentiation and survival. The establishment of a tissue culture system for studying cell injury and death mechanisms in a relatively simple system like GluRδ2+/Lc Purkinje cells will provide a valuable model for studying how the induction of a chronic inward cation current in a single cell type affects neuronal differentiation and survival. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

5.
Some neurons, including cerebellar Purkinje cells, are completely ensheathed by astrocytes. When granule cell neurons and functional glia were eliminated from newborn mouse cerebellar cultures by initial exposure to a DNA synthesis inhibitor, Purkinje cells lacked glial sheaths and there was a tremendous sprouting of Purkinje cell recurrent axon collaterals, terminals of which hyperinnervated Purkinje cell somata, including persistent somatic spines, and formed heterotypical synapses with Purkinje cell dendritic spines, sites usually occupied by parallel fiber (granule cell axon) terminals. Purkinje cells in such preparations failed to develop complex spikes when recorded from intracellularly, and their membrane input resistances were low, making them less sensitive to inhibitory input. If granule cells and oligodendrocytes were eliminated, but astrocytes were not compromised, sprouting of recurrent axon collaterals occurred and their terminals projected to Purkinje cell dendritic spines, but the Purkinje cells had astrocytic sheaths, their somata were not hyperinnervated, the somatic spines had disappeared, complex spike discharges predominated, and membrane input resistance was like that of Purkinje cells in untreated control cultures. When cerebellar cultures without granule cells and glia were transplanted with granule cells and/or glia from another source, a series of changes occurred that included stripping of excess Purkinje cell axosomatic synapses by astrocytic processes, reduction of heterotypical axospinous synapses in the presence of astrocytes, disappearance of Purkinje cell somatic spines with astrocytic ensheathment, and proliferation of Purkinje cell dendritic spines after the introduction of astrocytes. Dendritic spine proliferation was followed by formation of homotypical axospinous synapses when granule cells were present or persistence as unattached spines in the absence of granule cells. The results of these studies indicate that astrocytes regulate the numbers of Purkinje cell axosomatic and axospinous synapses, induce Purkinje cell dendritic spine proliferation, and promote the structural and functional maturation of Purkinje cells.  相似文献   

6.
Activity of protein kinase C (PKC), and in particular the PKCgamma-isoform, has been shown to strongly affect and regulate Purkinje cell dendritic development, suggesting an important role for PKC in activity-dependent Purkinje cell maturation. In this study we have analyzed the role of two additional Ca(2+)-dependent PKC isoforms, PKCalpha and -beta, in Purkinje cell survival and dendritic morphology in slice cultures using mice deficient in the respective enzymes. Pharmacological PKC activation strongly reduced basal Purkinje cell dendritic growth in wild-type mice whereas PKC inhibition promoted branching. Purkinje cells from mice deficient in PKCbeta, which is expressed in two splice forms by granule but not Purkinje cells, did not yield measurable morphological differences compared to respective wild-type cells under either experimental condition. In contrast, Purkinje cell dendrites in cultures from PKCalpha-deficient mice were clearly protected from the negative effects on dendritic growth of pharmacological PKC activation and showed an increased branching response to PKC inhibition as compared to wild-type cells. Together with our previous work on the role of PKCgamma, these data support a model predicting that normal Purkinje cell dendritic growth is mainly regulated by the PKCgamma-isoform, which is highly activated by developmental processes. The PKCalpha isoform in this model forms a reserve pool, which only becomes activated upon strong stimulation and then contributes to the limitation of dendritic growth. The PKCbeta isoform appears to not be involved in the signaling cascades regulating Purkinje cell dendritic maturation in cerebellar slice cultures.  相似文献   

7.
Abstract: The requirement of complex sphingolipid biosynthesis for growth of neurons was examined in developing rat cerebellar Purkinje neurons using a dissociated culture system. Purkinje cells developed well-differentiated dendrites and axons after 2 weeks in a serum-free nutrient condition. Addition of 2 µM fumonisin B1, a fungal inhibitor of mammalian ceramide synthase, inhibited incorporation of [3H]galactose/glucosamine and [14C]serine into complex sphingolipids of cultured cerebellar neurons. Under this condition, the expression of Purkinje cell-enriched sphingolipids, including GD1α, 9-O-acetylated LD1 and GD3, and sphingomyelin, was significantly decreased. After 2 weeks' exposure to fumonisin B1, dose-dependent measurable decreases in the survival and visually discernible differences in the morphology were seen in fumonisin-treated Purkinje cells. The Purkinje cell dendrites exhibited two types of anomalies; one population of cells developed elongated but less-branched dendrites after a slight time lag, but their branches began to degenerate. In some cells, formation of elongated dendrite trees was severely impaired. However, treatment with fumonisin B1 also led to the formation of spinelike protrusions on the dendrites of Purkinje cells as in control cultures. In contrast to the alterations observed in Purkinje cells, morphology of other cell types including granule neurons appeared to be almost normal after treatment with fumonisin B1. These observations indicated strongly that membrane sphingolipids participate in growth and maintenance of dendrites and in the survival of cerebellar Purkinje cells. Indeed, these effects of fumonisin B1 were reversed, but not completely, by the addition of 6-[[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]caproyl]sphingosine (C6-NBD-ceramide), a synthetic derivative of ceramide. Thus, we conclude that deprivation of membrane sphingolipids in a culture environment is responsible for aberrant growth of Purkinje cells.  相似文献   

8.
Previous studies of Purkinje cell dendrites in lurcher ↔ wild-type mouse chimeras (lurcher chimeras) have documented the surprising occurrence of unusual atrophic dendritic morphologies among the wild-type cells of the mosaic cerebella. We have hypothesized that these aberrant morphologies arise from a process of developmental deafferentation that is due to the unique loss of mutant Purkinje cells in these chimeras. These earlier studies left unanswered the question of whether the abnormal dendrites were the result of a blocked developmental process (agenesis) or regressive events that deform a previously well-developed dendritic arbor (atrophy). Using a set of simple morphometric measures, we now examine wild-type Purkinje cells in young lurcher chimeras. At postnatal day 20, normal Purkinje cell development is nearly but not fully complete. In lurcher chimeras, the morphologies of the wild-type Purkinje cell dendrites are similar to those in wild-type controls of the same age. This means that they are larger in height, width, and cross-section than their counterparts in adult lurcher chimeras. The younger cells exhibit almost none of the atrophic morphologies described in mature animals. We conclude that the aberrant morphologies found in adult lurcher chimeras arise from atrophy rather than through a failure in development. Furthermore, consideration of the details of the wild-type dendrites in the lurcher chimeras leads to the proposal that the height and width of the Purkinje cell dendritic tree are controlled by two independent mechanisms. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
Dendritic cells express the skeletal muscle ryanodine receptor (RyR1), yet little is known concerning its physiological role and activation mechanism. Here we show that dendritic cells also express the Ca(v)1.2 subunit of the L-type Ca(2+) channel and that release of intracellular Ca(2+) via RyR1 depends on the presence of extracellular Ca(2+) and is sensitive to ryanodine and nifedipine. Interestingly, RyR1 activation causes a very rapid increase in expression of major histocompatibility complex II molecules on the surface of dendritic cells, an effect that is also observed upon incubation of mouse BM12 dendritic cells with transgenic T cells whose T cell receptor is specific for the I-A(bm12) protein. Based on the present results, we suggest that activation of the RyR1 signaling cascade may be important in the early stages of infection, providing the immune system with a rapid mechanism to initiate an early response, facilitating the presentation of antigens to T cells by dendritic cells before their full maturation.  相似文献   

10.
Nuclear receptors and their coregulators play a critical role in brain development by regulating the spatiotemporal expression of their target genes. The arginine-glutamic acid dipeptide repeats gene (Rere) encodes a nuclear receptor coregulator previously known as Atrophin 2. In the developing cerebellum, RERE is expressed in the molecular layer, the Purkinje cell layer and the granule cell layer but not in granule cell precursors. To study RERE''s role in cerebellar development, we used RERE-deficient embryos bearing a null allele (om) and a hypomorphic allele (eyes3) of Rere (Rere om/eyes3). In contrast to wild-type embryos, formation of the principal fissures in these RERE-deficient embryos was delayed and the proliferative activity of granule cell precursors (GCPs) was reduced at E18.5. This reduction in proliferation was accompanied by a decrease in the expression of sonic hedgehog (SHH), which is secreted from Purkinje cells and is required for normal GCP proliferation. The maturation and migration of Purkinje cells in Rere om/eyes3 embryos was also delayed with decreased numbers of post-migratory Purkinje cells in the cerebellum. During the postnatal period, RERE depletion caused incomplete division of lobules I/II and III due to truncated development of the precentral fissure in the cerebellar vermis, abnormal development of lobule crus I and lobule crus II in the cerebellar hemispheres due to attenuation of the intercrural fissure, and decreased levels of Purkinje cell dendritic branching. We conclude that RERE-deficiency leads to delayed development of the principal fissures and delayed maturation and migration of Purkinje cells during prenatal cerebellar development and abnormal cerebellar foliation and Purkinje cell maturation during postnatal cerebellar development.  相似文献   

11.
Purkinje cells are the principal neurons of the cerebellar cortex and are characterized by a large and highly branched dendritic tree. For this reason, they have for a long time been an attractive model system to study the regulation of dendritic growth and differentiation. In this article, I will first review studies on different aspects of Purkinje cell dendritic development and then go on to present studies which have aimed at experimentally altering Purkinje cell dendritic development. Some of the cellular and molecular mechanisms which have been shown by these studies to be important determinants of Purkinje cell dendritic development will be discussed, in particular the role of the parallel fiber input, of hormones, and of neuronal growth factors. The organotypic slice culture method will be introduced as an important experimental tool to study Purkinje cell dendritic development under controlled conditions. Using cerebellar slice cultures, protein kinase C (PKC) has been identified as a major determinant of Purkinje cell dendritic development and the contribution of specific isoforms of PKC will be discussed. Finally, it will be shown that Purkinje cell dendritic development in slice cultures does not depend on the activation of glutamate receptors and appears to be independent of the presence of the neurotrophin BDNF. These studies indicate that the initial outgrowth of the Purkinje cell dendritic tree can occur in the absence of signals derived from afferent fibers, but is under control of PKC signaling.  相似文献   

12.
The receptor tyrosine kinase TrkB and its ligands, brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT-4/5), are critically important for growth, survival and activity-dependent synaptic strengthening in the central nervous system. These TrkB-mediated actions occur in a highly cell-type specific manner. Here we report that cerebellar Purkinje cells, which are richly endowed with TrkB receptors, develop a normal morphology in trkB-deficient mice. Thus, in contrast to other types of neurons, Purkinje cells do not need TrkB for dendritic growth and spine formation. Instead, we find a moderate delay in the maturation of GABAergic synapses and, more importantly, an abnormal multiple climbing fiber innervation in Purkinje cells in trkB-deficient mice. Thus, our results demonstrate an involvement of TrkB receptors in synapse elimination and reveal a new role for receptor tyrosine kinases in the brain. Electronic Supplementary Materials Supplementary Materials is available in the online version of this article at  相似文献   

13.
Within the cerebellum calmodulin mRNA is found predominantly in Purkinje cells, with lower levels in granule cells and interneurons. The message shows developmental increases during the first 14 days postnatally. Surviving Purkinje cells of the staggerer (sg/sg) mutant, which are grossly stunted and lack tertiary dendritic spines, contain no detectable calmodulin mRNA, as assayed by Northern blot or an enhanced biotinylated in situ hybridization. This is in contrast to both the Lurcher Purkinje cells and sg/sg granule cells, which express normal levels of this mRNA up until the time they disappear. The sg/sg phenotype can be explained by a defective Purkinje-cell-specific regulatory mechanism for calmodulin.  相似文献   

14.
Purkinje cells are an attractive model system for studying dendritic development, because they have an impressive dendritic tree which is strictly oriented in the sagittal plane and develops mostly in the postnatal period in small rodents 3. Furthermore, several antibodies are available which selectively and intensively label Purkinje cells including all processes, with anti-Calbindin D28K being the most widely used. For viewing of dendrites in living cells, mice expressing EGFP selectively in Purkinje cells 11 are available through Jackson labs. Organotypic cerebellar slice cultures cells allow easy experimental manipulation of Purkinje cell dendritic development because most of the dendritic expansion of the Purkinje cell dendritic tree is actually taking place during the culture period 4. We present here a short, reliable and easy protocol for viewing and analyzing the dendritic morphology of Purkinje cells grown in organotypic cerebellar slice cultures. For many purposes, a quantitative evaluation of the Purkinje cell dendritic tree is desirable. We focus here on two parameters, dendritic tree size and branch point numbers, which can be rapidly and easily determined from anti-calbindin stained cerebellar slice cultures. These two parameters yield a reliable and sensitive measure of changes of the Purkinje cell dendritic tree. Using the example of treatments with the protein kinase C (PKC) activator PMA and the metabotropic glutamate receptor 1 (mGluR1) we demonstrate how differences in the dendritic development are visualized and quantitatively assessed. The combination of the presence of an extensive dendritic tree, selective and intense immunostaining methods, organotypic slice cultures which cover the period of dendritic growth and a mouse model with Purkinje cell specific EGFP expression make Purkinje cells a powerful model system for revealing the mechanisms of dendritic development.  相似文献   

15.
Thyroid hormones play an important role in brain development, but the mechanism(s) by which triiodothyronine (T3) mediates neuronal differentiation is poorly understood. Here we demonstrate that T3 regulates the neurotrophic factor, neurotrophin-3 (NT-3), in developing rat cerebellar granule cells both in cell culture and in vivo. In situ hybridization experiments showed that developing Purkinje cells do not express NT-3 mRNA but do express trkC, the putative neuronal receptor for NT-3. Addition of recombinant NT-3 to cerebellar cultures from embryonic rat brain induces hypertrophy and neurite sprouting of Purkinje cells, and upregulates the mRNA encoding the calcium-binding protein, calbindin-28 kD. The present study demonstrates a novel interaction between cerebellar granule neurons and developing Purkinje cells in which NT-3 induced by T3 in the granule cells promotes Purkinje cell differentiation.  相似文献   

16.
Dendrite arborization patterns are critical determinants of neuronal connectivity and integration. Planar and highly branched dendrites of the cerebellar Purkinje cell receive specific topographical projections from two major afferent pathways; a single climbing fiber axon from the inferior olive that extend along Purkinje dendrites, and parallel fiber axons of granule cells that contact vertically to the plane of dendrites. It has been believed that murine Purkinje cell dendrites extend in a single parasagittal plane in the molecular layer after the cell polarity is determined during the early postnatal development. By three-dimensional confocal analysis of growing Purkinje cells, we observed that mouse Purkinje cells underwent dynamic dendritic remodeling during circuit maturation in the third postnatal week. After dendrites were polarized and flattened in the early second postnatal week, dendritic arbors gradually expanded in multiple sagittal planes in the molecular layer by intensive growth and branching by the third postnatal week. Dendrites then became confined to a single plane in the fourth postnatal week. Multiplanar Purkinje cells in the third week were often associated by ectopic climbing fibers innervating nearby Purkinje cells in distinct sagittal planes. The mature monoplanar arborization was disrupted in mutant mice with abnormal Purkinje cell connectivity and motor discoordination. The dendrite remodeling was also impaired by pharmacological disruption of normal afferent activity during the second or third postnatal week. Our results suggest that the monoplanar arborization of Purkinje cells is coupled with functional development of the cerebellar circuitry.  相似文献   

17.
Our previous studies have shown that brain‐derived neurotrophic factor (BDNF) enhances bone/cementum‐related protein gene expression through the TrkB‐c‐Raf‐ERK1/2‐Elk‐1 signaling pathway in cementoblasts, which play a critical role in the establishment of a functional periodontal ligament. To clarify how BDNF regulates survival in cementoblasts, we examined its effects on cell death induced by serum starvation in immortalized human cementoblast‐like (HCEM) cells. BDNF inhibited the death of HCEM cells. Small‐interfering RNA (siRNA) for TRKB, a high affinity receptor for BDNF, and for Bcl‐2, countered the BDNF‐induced decrease in dead cell number. In addition, LY294002, a PI3‐kinase inhibitor; SH‐6, an Akt inhibitor; and PDTC, a nuclear factor kappa B (NF‐κB) inhibitor, but not PD98059, an ERK1/2 inhibitor, abolished the protective effect of BDNF against cell death. BDNF enhanced phosphorylated Akt levels, NF‐κB activity in the nucleus, Bcl‐2 mRNA levels, and mitochondrial membrane potential. The blocking of BDNF's actions by treatment with siRNA in all cases for TRKB and Bcl‐2, LY294002, SH‐6, and PDTC suppressed the enhancement. These findings provide the first evidence that a TrkB‐PI3‐kinase‐Akt‐NF‐κB‐Bcl‐2 signaling pathway triggered by BDNF and the subsequent protective effect of BDNF on mitochondrial membrane potential are required to rescue HCEM cells from serum starvation‐induced cell death. Furthermore, the survival and increased expression of bone/cementum‐related proteins induced by BDNF in HCEM cells occur through different signaling pathways. J. Cell. Physiol. 221: 696–706, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Neurons develop dendritic arbors in cell type-specific patterns. Using growing Purkinje cells in culture as a model, we performed a long-term time-lapse observation of dendrite branch dynamics to understand the rules that govern the characteristic space-filling dendrites. We found that dendrite architecture was sculpted by a combination of reproducible dynamic processes, including constant tip elongation, stochastic terminal branching, and retraction triggered by contacts between growing dendrites. Inhibition of protein kinase C/protein kinase D signaling prevented branch retraction and significantly altered the characteristic morphology of long proximal segments. A computer simulation of dendrite branch dynamics using simple parameters from experimental measurements reproduced the time-dependent changes in the dendrite configuration in live Purkinje cells. Furthermore, perturbation analysis to parameters in silico validated the important contribution of dendritic retraction in the formation of the characteristic morphology. We present an approach using live imaging and computer simulations to clarify the fundamental mechanisms of dendrite patterning in the developing brain.  相似文献   

19.
The normal development of Purkinje cell dendrites is dependent on afferent innervation. To investigate the role of neuronal activity in Purkinje cell dendritic development, chick embryos were chronically treated with a potent, selective, and systemically active competitive N-methyl-D -aspartate (NMDA) receptor antagonist, NPC 12626. The NMDA receptor was chosen as a target for pharmacological blockade because of the importance of the NMDA receptor in synaptic plasticity and stabilization in development. Chick embryos were given daily injections of NPC 12626 (25 to 100 mg/kg) from embryonic day 14 (E14) to E17. The initial injections of NPC 12626 dramatically blocked embryo movements, but activity levels partially recovered following subsequent injections. Embryo movements were reduced by 24% at the end of the experiment. Embryos were killed on E18, and their brains processed for Golgi-Cox staining. The morphology of Golgi-stained Purkinje cells in drug-treated embryos was similar to control embryos. Morphometric analysis showed, however, that chronic treatment with NPC 12626 resulted in a 19% reduction in Purkinje cell dendritic tree area and a 13% reduction in the number of dendritic branch points. The overall width and height of the drug-treated dendritic trees were not significantly different from controls, suggesting that NPC 12626 reduced Purkinje cell dendritic area by interfering with branch formation. The volume of the granule cell layer and the heights of the molecular and external granule cell layers was not reduced, suggesting that NPC 12626 treatment did not simply delay development. These results suggest that activation of the NMDA receptor may mediate the afferent-target interactions in the cerebellum that regulate the elaboration of Purkinje cell dendrites. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
During development, growing axons must locate target cells to form synapses. This is not easy, since target cells are also growing and even actively migrating. In some brain regions, such axons have been reported to wait for the timing when target cells become mature, without invading their target region. However, in the cerebellum climbing fibers (CFs), major afferent axons, arrive near their target neurons, Purkinje cells, when the neurons are still actively migrating. We, therefore, examined whether synaptic contacts are established at such early stages. To specifically label CFs, we introduced by in utero electroporation a mixture of genes encoding for Ptf1a‐enhancer‐driven Cre recombinase and Cre‐dependent fluorescent protein into the mouse hindbrain at embryonic day (E) 10.5 and observed them during development. The earliest stages at which labeled CFs were observed in the cerebellar primordium were E15.5–E16.5. These fibers were fasciculated in the dorsal region and entered the cerebellar primordium. Some fibers defasciculated and reached the caudal region. At E17.5 and E18.5, fasciculated fibers were also found in the mantle region, and some grew toward the surface of the primordium to penetrate a mass of Purkinje cells. Interestingly, as early as E16.5, labeled fibers were found to run in close apposition to Purkinje cell dendrites and to express a presynaptic marker. These observations suggest that CFs form synapses with Purkinje cells as soon as the fibers enter the cerebellum. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 927–934, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号