首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PML protein plays important roles in regulating cellular homeostasis. It forms PML nuclear bodies (PML-NBs) that act like nuclear relay stations and participate in many cellular functions. In this study, we have examined the proteome of mouse embryonic fibroblasts (MEFs) derived from normal (PML+/+) and PML knockout (PML−/−) mice. The aim was to identify proteins that were differentially expressed when MEFs were incapable of producing PML. Using comparative proteomics, total protein were extracted from PML−/− and PML+/+ MEFs, resolved by two dimensional electrophoresis (2-DE) gels and the differentially expressed proteins identified by LC-ESI-MS/MS. Nine proteins (PML, NDRG1, CACYBP, CFL1, RSU1, TRIO, CTRO, ANXA4 and UBE2M) were determined to be down-regulated in PML−/− MEFs. In contrast, ten proteins (CIAPIN1, FAM50A, SUMO2 HSPB1 NSFL1C, PCBP2, YWHAG, STMN1, TPD52L2 and PDAP1) were found up-regulated. Many of these differentially expressed proteins play crucial roles in cell adhesion, migration, morphology and cytokinesis. The protein profiles explain why PML−/− and PML+/+ MEFs were morphologically different. In addition, we demonstrated PML−/− MEFs were less adhesive, proliferated more extensively and migrated significantly slower than PML+/+ MEFs. NDRG1, a protein that was down-regulated in PML−/− MEFs, was selected for further investigation. We determined that silencing NDRG1expression in PML+/+ MEFs increased cell proliferation and inhibited PML expression. Since NDRG expression was suppressed in PML−/− MEFs, this may explain why these cells proliferate more extensively than PML+/+ MEFs. Furthermore, silencing NDRG1expression also impaired TGF-β1 signaling by inhibiting SMAD3 phosphorylation.  相似文献   

2.
3.
4.
Wip1 (protein phosphatase Mg2+/Mn2+-dependent 1D, Ppm1d) is a nuclear serine/threonine protein phosphatase that is induced by p53 following the activation of DNA damage response (DDR) signaling. Ppm1d−/− mouse embryonic fibroblasts (MEFs) exhibit premature senescence under conventional culture conditions; however, little is known regarding the role of Wip1 in regulating cellular senescence. In this study, we found that even at a representative physiological concentration of 3% O2, Ppm1d−/− MEFs underwent premature cellular senescence that depended on the functional activation of p53. Interestingly, Ppm1d−/− MEFs showed increased H2AX phosphorylation levels without increased levels of reactive oxygen species (ROS) or DNA base damage compared with wild-type (Wt) MEFs, suggesting a decreased threshold for DDR activation or sustained DDR activation during recovery. Notably, the increased H2AX phosphorylation levels observed in Ppm1d−/− MEFs were primarily associated with S-phase cells and predominantly dependent on the activation of ATM. Moreover, these same phenotypes were observed when Wt and Ppm1d−/− MEFs were either transiently or chronically exposed to low levels of agents that induce replication-mediated double-stranded breaks. These findings suggest that Wip1 prevents the induction of cellular senescence at physiological oxygen levels by attenuating DDR signaling in response to endogenous double-stranded breaks that form during DNA replication.  相似文献   

5.
The bulk of DNA damage caused by ionizing radiation (IR) is generally repaired within hours, yet a subset of DNA lesions may persist even for long periods of time. Such persisting IR-induced foci (pIRIF) co-associate with PML nuclear bodies (PML-NBs) and are among the characteristics of cellular senescence. Here we addressed some fundamental questions concerning the nature and determinants of this co-association, the role of PML-NBs at such sites, and the reason for the persistence of DNA damage in human primary cells. We show that the persistent DNA lesions are devoid of homologous recombination (HR) proteins BRCA1 and Rad51. Our super-resolution microscopy-based analysis showed that PML-NBs are juxtaposed to and partially overlap with the pIRIFs. Notably, depletion of 53BP1 resulted in decreased intersection between PML-NBs and pIRIFs implicating the RNF168-53BP1 pathway in their interaction. To test whether the formation and persistence of IRIFs is PML-dependent and to investigate the role of PML in the context of DNA repair and senescence, we genetically deleted PML in human hTERT-RPE-1 cells. Unexpectedly, upon high-dose IR treatment, cells displayed similar DNA damage signalling, repair dynamics and kinetics of cellular senescence regardless of the presence or absence of PML. In contrast, the PML knock-out cells showed increased sensitivity to low doses of IR and DNA-damaging agents mitomycin C, cisplatin and camptothecin that all cause DNA lesions requiring repair by HR. These results, along with enhanced sensitivity of the PML knock-out cells to DNA-PK and PARP inhibitors implicate PML as a factor contributing to HR-mediated DNA repair.  相似文献   

6.
Promyelocytic leukemia protein (PML) is an essential organizer of PML nuclear bodies (NBs), which carry out a variety of activities, including antiviral functions. Herpesviruses from all subfamilies encode proteins that counteract PML NB-mediated antiviral defenses by multiple mechanisms. However, because of the species specificity of herpesviruses, only a limited number of in vivo studies have been undertaken to investigate the effect of PML or PML NBs on herpesvirus infection. To address this central issue in herpesvirus biology, we studied the course of infection in wild-type and PML−/− mice using murine gammaherpesvirus 68 (MHV68), which encodes a tegument protein that induces PML degradation. While acute infection in PML−/− mice progressed similarly to that in wild-type mice, the lytic reactivation frequency was higher in peritoneal exudate cells, due to both an increase of MHV68 genome-positive cells and greater reactivation efficiency. We also detected a higher frequency of persistent infection in PML−/− peritoneal cells. These findings suggest that the PML protein can repress the establishment or maintenance of gammaherpesvirus latency in vivo. Further use of the PML−/− mouse model should aid in dissecting the molecular mechanisms that underlie the role of PML in gammaherpesvirus latency and may yield clues for how PML modulates herpesvirus latency in general.  相似文献   

7.
8.
SIRT1, the closest mammalian homolog of yeast Sir2, is an NAD+-dependent deacetylase with relevant functions in cancer, aging, and metabolism among other processes. SIRT1 has a diffuse nuclear localization but is recruited to the PML nuclear bodies (PML-NBs) after PML upregulation. However, the functions of SIRT1 in the PML-NBs are unknown. In this study we show that primary mouse embryo fibroblasts lacking SIRT1 contain reduced PML protein levels that are increased after reintroduction of SIRT1. In addition, overexpression of SIRT1 in HEK-293 cells increases the amount of PML protein whereas knockdown of SIRT1 reduces the size and number of PML-NBs and the levels of PML protein in HeLa cells. SIRT1 stimulates PML sumoylation in vitro and in vivo in a deacetylase-independent manner. Importantly, the absence of SIRT1 reduces the apoptotic response of vesicular stomatitis virus-infected cells and favors the extent of this PML-sensitive virus replication. These results show a novel function of SIRT1 in the control of PML and PML-NBs.  相似文献   

9.
Ku80 is important in the repair of DNA double-strand breaks by its essential function in non-homologous end-joining. The absence of Ku80 causes the accumulation of DNA damage and leads to premature ageing in mice. We showed that mouse embryonic fibroblasts (MEFs) from ku80−/− mice senesced rapidly with elevated levels of p53 and p21. Deletion of p21 delayed the early senescence phenotype in ku80−/− MEFs, despite an otherwise intact response of p53. In contrast to ku80−/−p53−/− mice, which die rapidly primarily from lymphomas, there was no significant increase in tumorigenesis in ku80−/−p21−/− mice. However, ku80−/−p21−/− mice showed no improvement with respect to rough fur coat or osteopaenia, and even showed a shortened lifespan compared with ku80−/− mice. These results show that the increased lifespan of ku80−/− MEFs owing to the loss of p21 is not associated with an improvement of the premature ageing phenotypes of ku80−/− mice observed at the organismal level.  相似文献   

10.
Progressive telomere attrition or deficiency of the protective shelterin complex elicits a DNA damage response as a result of a cell''s inability to distinguish dysfunctional telomeric ends from DNA double-strand breaks. SNMIB/Apollo is a shelterin-associated protein and a member of the SMN1/PSO2 nuclease family that localizes to telomeres through its interaction with TRF2. Here, we generated SNMIB/Apollo knockout mouse embryo fibroblasts (MEFs) to probe the function of SNMIB/Apollo at mammalian telomeres. SNMIB/Apollo null MEFs exhibit an increased incidence of G2 chromatid-type fusions involving telomeres created by leading-strand DNA synthesis, reflective of a failure to protect these telomeres after DNA replication. Mutations within SNMIB/Apollo''s conserved nuclease domain failed to suppress this phenotype, suggesting that its nuclease activity is required to protect leading-strand telomeres. SNMIB/Apollo−/−ATM−/− MEFs display robust telomere fusions when Trf2 is depleted, indicating that ATM is dispensable for repair of uncapped telomeres in this setting. Our data implicate the 5′–3′ exonuclease function of SNM1B/Apollo in the generation of 3′ single-stranded overhangs at newly replicated leading-strand telomeres to protect them from engaging the non-homologous end-joining pathway.  相似文献   

11.
Heterochromatin protein 1 (HP1) interacts with various proteins, including lamins, to play versatile functions within nuclei, such as chromatin remodeling and DNA repair. Accumulation of prelamin A leads to misshapen nuclei, heterochromatin disorganization, genomic instability, and premature aging in Zmpste24-null mice. Here, we investigated the effects of prelamin A on HP1α homeostasis, subcellular distribution, phosphorylation, and their contribution to accelerated senescence in mouse embryonic fibroblasts (MEFs) derived from Zmpste24−/− mice. The results showed that the level of HP1α was significantly increased in Zmpste24−/− cells. Although prelamin A interacted with HP1α in a manner similar to lamin A, HP1α associated with the nuclease-resistant nuclear matrix fraction was remarkably increased in Zmpste24−/− MEFs compared with that in wild-type littermate controls. In wild-type cells, HP1α was phosphorylated at Thr50, and the phosphorylation was maximized around 30 min, gradually dispersed 2 h after DNA damage induced by camptothecin. However, the peak of HP1α phosphorylation was significantly compromised and appeared until 2 h, which is correlated with the delayed maximal formation of γ-H2AX foci in Zmpste24−/− MEFs. Furthermore, knocking down HP1α by siRNA alleviated the delayed DNA damage response and accelerated senescence in Zmpste24−/− MEFs, evidenced by the rescue of the delayed γ-H2AX foci formation, downregulation of p16, and reduction of senescence-associated β-galactosidase activity. Taken together, these findings establish a functional link between prelamin A, HP1α, chromatin remodeling, DNA repair, and early senescence in Zmpste24-deficient mice, suggesting a potential therapeutic strategy for laminopathy-based premature aging via the intervention of HP1α.  相似文献   

12.
Cyclin G2 (CycG2) and Cyclin G1 (CycG1), two members of the Cyclin G subfamily, share high amino acid homology in their Cyclin G boxes. Functionally, they play a common role as association partners of the B′γ subunit of protein phosphatase 2A (PP2A) and regulate PP2A function, and their expression is increased following DNA damage. However, whether or not CycG1 and CycG2 have distinct roles during the cellular DNA damage response has remained unclear. Here, we report that CycG2, but not CycG1, co-localized with promyelocytic leukemia (PML) and γH2AX, forming foci following ionizing radiation (IR), suggesting that CycG2 is recruited to sites of DNA repair and that CycG1 and CycG2 have distinct functions. PML failed to localize to nuclear foci when CycG2 was depleted, and vice versa. This suggests that PML and CycG2 mutually influence each other’s functions following IR. Furthermore, we generated CycG2-knockout (Ccng2−/−) mice to investigate the functions of CycG2. These mice were born healthy and developed normally. However, CycG2-deficient mouse embryonic fibroblasts displayed an abnormal response to IR. Dephosphorylation of γH2AX and checkpoint kinase 2 following IR was delayed in Ccng2−/− cells, suggesting that DNA damage repair may be perturbed in the absence of CycG2. Although knockdown of B′γ in wild-type cells also delayed dephosphorylation of γH2AX, knockdown of B′γ in Ccng2−/− cells prolonged this delay, suggesting that CycG2 cooperates with B′γ to dephosphorylate γH2AX. Taken together, we conclude that CycG2 is localized at DNA repair foci following DNA damage, and that CycG2 regulates the dephosphorylation of several factors necessary for DNA repair.  相似文献   

13.
14.
The human DNA polymerase κ homolog Sulfolobus solfataricus DNA polymerase IV (Dpo4) produces “−1” frameshift deletions while copying unmodified DNA and, more frequently, when bypassing DNA adducts. As judged by steady-state kinetics and mass spectrometry, bypass of purine template bases to produce these deletions occurred rarely but with 10-fold higher frequency than with pyrimidines. The DNA adduct 1,N2-etheno-2′-deoxyguanosine, with a larger stacking surface than canonical purines, showed the highest frequency of formation of −1 frameshift deletions. Dpo4 T239W, a mutant we had previously shown to produce fluorescence changes attributed to conformational change following dNTP binding opposite cognate bases (Beckman, J. W., Wang, Q., and Guengerich, F. P. (2008) J. Biol. Chem. 283, 36711–36723), reported similar conformational changes when the incoming dNTP complemented the base following a templating purine base or bulky adduct (i.e. the “+1” base). However, in all mispairing cases, phosphodiester bond formation was inefficient. The frequency of −1 frameshift events and the associated conformational changes were not dependent on the context of the remainder of the sequence. Collectively, our results support a mechanism for −1 frameshift deletions by Dpo4 that involves formation of active complexes via a favorable conformational change that skips the templating base, without causing slippage or flipping out of the base, to incorporate a complementary residue opposite the +1 base, in a mechanism previously termed “dNTP-stabilized incorporation.” The driving force is attributed to be the stacking potential between the templating base and the incoming dNTP base.  相似文献   

15.
The homologous Rho kinases, ROCK1 and ROCK2, are involved in stress fiber assembly and cell adhesion and are assumed to be functionally redundant. Using mouse embryonic fibroblasts (MEFs) derived from ROCK1−/− and ROCK2−/− mice, we have recently reported that they play different roles in regulating doxorubicin-induced stress fiber disassembly and cell detachment: ROCK1 is involved in destabilizing the actin cytoskeleton and cell detachment, whereas ROCK2 is required for stabilizing the actin cytoskeleton and cell adhesion. Here, we present additional insights into the roles of ROCK1 and ROCK2 in regulating stress-induced impairment of cell-matrix and cell-cell adhesion. In response to doxorubicin, ROCK1−/− MEFs showed significant preservation of both focal adhesions and adherens junctions, while ROCK2−/− MEFs exhibited impaired focal adhesions but preserved adherens junctions compared with the wild-type MEFs. Additionally, inhibition of focal adhesion or adherens junction formations by chemical inhibitors abolished the anti-detachment effects of ROCK1 deletion. Finally, ROCK1−/− MEFs, but not ROCK2−/− MEFs, also exhibited preserved central stress fibers and reduced cell detachment in response to serum starvation. These results add new insights into a novel mechanism underlying the anti-detachment effects of ROCK1 deletion mediated by reduced peripheral actomyosin contraction and increased actin stabilization to promote cell-cell and cell-matrix adhesion. Our studies further support the differential roles of ROCK isoforms in regulating stress-induced loss of central stress fibers and focal adhesions as well as cell detachment.  相似文献   

16.
Akt is a crucial phosphoinositide 3-kinase (PI(3)K) effector that regulates cell proliferation and survival. PI(3)K-generated signals, PtdIns(3,4,5)P3 and PtdIns(3,4)P2, direct Akt plasma membrane engagement. Pathological Akt plasma membrane association promotes oncogenesis. PtdIns(3,4)P2 is degraded by inositol polyphosphate 4-phosphatase-1 (4-ptase-1) forming PtdIns(3)P; however, the role of 4-ptase-1 in regulating the activation and function of Akt is unclear. In mouse embryonic fibroblasts lacking 4-ptase-1 (−/−MEFs), the Akt-pleckstrin homology (PH) domain was constitutively membrane-associated both in serum-starved and agonist-stimulated cells, in contrast to +/+MEFs, in which it was detected only at the plasma membrane following serum stimulation. Epidermal growth factor (EGF) stimulation resulted in increased Ser473 and Thr308-Akt phosphorylation and activation of Akt-dependent signalling in −/−MEFs, relative to +/+MEFs. Significantly, loss of 4-ptase-1 resulted in increased cell proliferation and decreased apoptosis. SV40-transformed −/−MEFs showed increased anchorage-independent cell growth and formed tumours in nude mice. This study provides the first evidence, to our knowledge, that 4-ptase-1 controls the activation of Akt and thereby cell proliferation, survival and tumorigenesis.  相似文献   

17.
FANCD2 is required for the repair of DNA damage by the FA (Fanconi anemia) pathway, and, consequently, FANCD2-deficient cells are sensitive to compounds such as cisplatin and formaldehyde that induce DNA:DNA and DNA:protein crosslinks, respectively. The DNA2 helicase/nuclease is required for RNA/DNA flap removal from Okazaki fragments during DNA replication and for the resection of DSBs (double-strand breaks) during HDR (homology-directed repair) of replication stress-induced damage. A knockdown of DNA2 renders normal cells as sensitive to cisplatin (in the absence of EXO1) and to formaldehyde (even in the presence of EXO1) as FANCD2−/− cells. Surprisingly, however, the depletion of DNA2 in FANCD2-deficient cells rescues the sensitivity of FANCD2−/− cells to cisplatin and formaldehyde. We previously showed that the resection activity of DNA2 acts downstream of FANCD2 to insure HDR of the DSBs arising when replication forks encounter ICL (interstrand crosslink) damage. The suppression of FANCD2−/− by DNA2 knockdowns suggests that DNA2 and FANCD2 also have antagonistic roles: in the absence of FANCD2, DNA2 somehow corrupts repair. To demonstrate that DNA2 is deleterious to crosslink repair, we used psoralen-induced ICL damage to trigger the repair of a site-specific crosslink in a GFP reporter and observed that “over-resection” can account for reduced repair. Our work demonstrates that excessive resection can lead to genome instability and shows that strict regulatory processes have evolved to inhibit resection nucleases. The suppression of FANCD2−/− phenotypes by DNA2 depletion may have implications for FA therapies and for the use of ICL-inducing agents in chemotherapy.  相似文献   

18.
19.
Here, we interrogated head and neck cancer (HNSCC) specimens (n = 12) to examine if different metabolic compartments (oxidative vs. glycolytic) co-exist in human tumors. A large panel of well-established biomarkers was employed to determine the metabolic state of proliferative cancer cells. Interestingly, cell proliferation in cancer cells, as marked by Ki-67 immunostaining, was strictly correlated with oxidative mitochondrial metabolism (OXPHOS) and the uptake of mitochondrial fuels, as detected via MCT1 expression (p < 0.001). More specifically, three metabolic tumor compartments were delineated: (1) proliferative and mitochondrial-rich cancer cells (Ki-67+/TOMM20+/COX+/MCT1+); (2) non-proliferative and mitochondrial-poor cancer cells (Ki-67−/TOMM20−/COX−/MCT1−); and (3) non-proliferative and mitochondrial-poor stromal cells (Ki-67−/TOMM20−/COX−/MCT1−). In addition, high oxidative stress (MCT4+) was very specific for cancer tissues. Thus, we next evaluated the prognostic value of MCT4 in a second independent patient cohort (n = 40). Most importantly, oxidative stress (MCT4+) in non-proliferating epithelial cancer cells predicted poor clinical outcome (tumor recurrence; p < 0.0001; log-rank test), and was functionally associated with FDG-PET avidity (p < 0.04). Similarly, oxidative stress (MCT4+) in tumor stromal cells was specifically associated with higher tumor stage (p < 0.03), and was a highly specific marker for cancer-associated fibroblasts (p < 0.001). We propose that oxidative stress is a key hallmark of tumor tissues that drives high-energy metabolism in adjacent proliferating mitochondrial-rich cancer cells, via the paracrine transfer of mitochondrial fuels (such as L-lactate and ketone bodies). New antioxidants and MCT4 inhibitors should be developed to metabolically target “three-compartment tumor metabolism” in head and neck cancers. It is remarkable that two “non-proliferating” populations of cells (Ki-67−/MCT4+) within the tumor can actually determine clinical outcome, likely by providing high-energy mitochondrial “fuels” for proliferative cancer cells to burn. Finally, we also show that in normal mucosal tissue, the basal epithelial “stem cell” layer is hyper-proliferative (Ki-67+), mitochondrial-rich (TOMM20+/COX+) and is metabolically programmed to use mitochondrial fuels (MCT1+), such as ketone bodies and L-lactate. Thus, oxidative mitochondrial metabolism (OXPHOS) is a common feature of both (1) normal stem cells and (2) proliferating cancer cells. As such, we should consider metabolically treating cancer patients with mitochondrial inhibitors (such as Metformin), and/or with a combination of MCT1 and MCT4 inhibitors, to target “metabolic symbiosis.”  相似文献   

20.
Mycobacterial AdnAB exemplifies a family of heterodimeric motor-nucleases involved in processing DNA double strand breaks (DSBs). The AdnA and AdnB subunits are each composed of an N-terminal UvrD-like motor domain and a C-terminal RecB-like nuclease module. Here we conducted a biochemical characterization of the AdnAB motor, using a nuclease-inactivated heterodimer. AdnAB is a vigorous single strand DNA (ssDNA)-dependent ATPase (kcat 415 s−1), and the affinity of the motor for the ssDNA cofactor increases 140-fold as DNA length is extended from 12 to 44 nucleotides. Using a streptavidin displacement assay, we demonstrate that AdnAB is a 3′ → 5′ translocase on ssDNA. AdnAB binds stably to DSB ends. In the presence of ATP, the motor unwinds the DNA duplex without requiring an ssDNA loading strand. We integrate these findings into a model of DSB unwinding in which the “leading” AdnB and “lagging” AdnA motor domains track in tandem, 3′ to 5′, along the same DNA single strand. This contrasts with RecBCD, in which the RecB and RecD motors track in parallel along the two separated DNA single strands. The effects of 5′ and 3′ terminal obstacles on ssDNA cleavage by wild-type AdnAB suggest that the AdnA nuclease receives and processes the displaced 5′ strand, while the AdnB nuclease cleaves the displaced 3′ strand. We present evidence that the distinctive “molecular ruler” function of the ATP-dependent single strand DNase, whereby AdnAB measures the distance from the 5′-end to the sites of incision, reflects directional pumping of the ssDNA through the AdnAB motor into the AdnB nuclease. These and other findings suggest a scenario for the descent of the RecBCD- and AddAB-type DSB-processing machines from an ancestral AdnAB-like enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号