首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trace amines (TAs) in the mammalian brain have been investigated for four decades. Trace amine‐associated receptors (TAARs) were discovered during the search for receptors activated by TAs. TAARs are considered a second class of vertebrate olfactory receptors and successfully proliferated in conjunction with adaptation to living on the ground to detect carnivore odors. Thus, therian mammals have a high number of TAAR genes due to rapid species‐specific gene duplications. In primate lineages, however, their genomes have significantly smaller numbers of TAAR genes than do other mammals. To elucidate the evolutionary force driving these patterns, exhaustive data mining of TAAR genes was performed for 13 primate genomes (covering all four infraorders) and two nonprimate euarchontan genomes. This study identified a large number of pseudogenes in many of these primate genomes and thus investigated the pseudogenization event process for the TAAR repertoires. The degeneration of TAARs is likely associated with arboreal inhabitants reducing their exposure to carnivores, and this was accelerated by the change in the nose shape of haplorhines after their divergence from strepsirrhines. Arboreal life may have decreased the reliance on the chemosensing of predators, suggestive of leading to the depauperation of TAAR subfamilies. The evolutionary deterioration of TAARs in primates has been reestablished in recently derived primates due to high selection pressure and probably functional diversity.  相似文献   

2.
Odorant receptors (ORs) located in the nasal epithelium, at the ciliated surface of olfactory sensory neurons, represent the initial step of a transduction cascade that leads to odor detection. ORs form the largest and most diverse family of G-protein-coupled receptors (GPCRs). They are encoded by a multigene family that has been partially characterized in cyclostomes, teleosts, amphibia, birds and mammals, as well as in Drosophila melanogaster and the nematode Caenorhabditis elegans. As new sequence data emerge, it is increasingly clear that OR primary structure can vary dramatically across phyla. Some chemoreceptors are encoded by genes with little sequence similarity to the prototypical ORs originally isolated in mammals. A large number of sequences are now available allowing a detailed study of the evolutionary implications of OR diversity across species. This review discusses the evolutionary implications of the divergent primary structures of chemoreceptors with identical functions.  相似文献   

3.
In mammals, odorants induce various behavioral responses that are critical to the survival of the individual and species. Binding signals of odorants to odorant receptors (ORs) expressed in the olfactory epithelia are converted to an odor map, a pattern of activated glomeruli, in the olfactory bulb (OB). This topographic map is used to identify odorants for memory-based learned decisions. In the embryo, a coarse olfactory map is generated in the OB by a combination of dorsal-ventral and anterior-posterior targeting of olfactory sensory neurons (OSNs), using specific sets of axon-guidance molecules. During the process of OSN projection, odor signals are sorted into distinct odor qualities in separate functional domains in the OB. Odor information is then conveyed by the projection neurons, mitral/tufted cells, to various regions in the olfactory cortex, particularly to the amygdala for innate olfactory decisions. Although the basic architecture of hard-wired circuits is generated by a genetic program, innate olfactory responses are modified by neonatal odor experience in an activity-dependent manner. Stimulus-driven OR activity promotes post-synaptic events and dendrite selection in the responding glomeruli making them larger. As a result, enhanced odor inputs in neonates establish imprinted olfactory memory that induces attractive responses in adults, even when the odor quality is innately aversive. In this paper, I will provide an overview of the recent progress made in the olfactory circuit formation in mice.  相似文献   

4.
Teleost fishes perceive their environment through a range of sensory modalities, among which olfaction often plays an important role. Richness of the olfactory repertoire depends on the diversity of receptors coded by homologous genes classified into four families: OR, TAAR, VR1, and VR2. Herein, we focus on the OR gene repertoire. While independent large contractions of the OR gene repertoire associated with ecological transitions have been found in mammals, little is known about the diversity of the OR gene repertoire and its evolution in teleost fishes, a group that includes more than 34,000 living species. We analyzed genomes of 163 species representing diversity in this large group. We found a large range of variation in the number of functional OR genes, from 15 in the Broad-nose Pipefish Syngnathus typhle and the Ocean Sunfish Mola mola, to 429 in the Zig-zag Eel Mastacembelus armatus. The number of OR genes was higher in species when a multilamellar olfactory rosette was present. Moreover, the number of lamellae was correlated with the richness of the OR gene repertoire. While a slow and balanced birth-and-death process generally drives the evolution of the OR gene repertoire, we inferred several episodes of high rates of gene loss, sometimes followed by large gains in the number of OR genes. These gains coincide with morphological changes of the olfactory organ and suggest a strong functional association between changes in the morphology and the evolution of the OR gene repertoire.  相似文献   

5.
Among vertebrates, the sense of smell is mediated by olfactory receptors (ORs) expressed in sensory neurons within the olfactory epithelium. Comparative genomic studies suggest that the olfactory acuity of mammalian species correlates positively with both the total number and the proportion of functional OR genes encoded in their genomes. In contrast to mammals, avian olfaction is poorly understood, with birds widely regarded as relying primarily on visual and auditory inputs. Here, we show that in nine bird species from seven orders (blue tit, Cyanistes caeruleus; black coucal, Centropus grillii; brown kiwi, Apteryx australis; canary, Serinus canaria; galah, Eolophus roseicapillus; red jungle fowl, Gallus gallus; kakapo, Strigops habroptilus; mallard, Anas platyrhynchos; snow petrel, Pagodroma nivea), the majority of amplified OR sequences are predicted to be from potentially functional genes. This finding is somewhat surprising as one previous report suggested that the majority of OR genes in an avian (red jungle fowl) genomic sequence are non-functional pseudogenes. We also show that it is not the estimated proportion of potentially functional OR genes, but rather the estimated total number of OR genes that correlates positively with relative olfactory bulb size, an anatomical correlate of olfactory capability. We further demonstrate that all the nine bird genomes examined encode OR genes belonging to a large gene clade, termed gamma-c, the expansion of which appears to be a shared characteristic of class Aves. In summary, our findings suggest that olfaction in birds may be a more important sense than generally believed.  相似文献   

6.
Combinatorial receptor codes for odors   总被引:64,自引:0,他引:64  
Malnic B  Hirono J  Sato T  Buck LB 《Cell》1999,96(5):713-723
The discriminatory capacity of the mammalian olfactory system is such that thousands of volatile chemicals are perceived as having distinct odors. Here we used a combination of calcium imaging and single-cell RT-PCR to identify odorant receptors (ORs) for odorants with related structures but varied odors. We found that one OR recognizes multiple odorants and that one odorant is recognized by multiple ORs, but that different odorants are recognized by different combinations of ORs. Thus, the olfactory system uses a combinatorial receptor coding scheme to encode odor identities. Our studies also indicate that slight alterations in an odorant, or a change in its concentration, can change its "code," potentially explaining how such changes can alter perceived odor quality.  相似文献   

7.
Animals recognize their external world through the detection of tens of thousands of chemical odorants. Olfactory receptor (OR) genes encode proteins for detecting odorant molecules and form the largest multigene family in mammals. It is known that humans have fewer OR genes and a higher fraction of OR pseudogenes than mice or dogs. To investigate whether these features are human specific or common to all higher primates, we identified nearly complete sets of OR genes from the chimpanzee and macaque genomes and compared them with the human OR genes. In contrast to previous studies, here we show that the number of OR genes ( approximately 810) and the fraction of pseudogenes (51%) in chimpanzees are very similar to those in humans, though macaques have considerably fewer OR genes. The pseudogenization rates and the numbers of genes affected by positive selection are also similar between humans and chimpanzees. Moreover, the most recent common ancestor between humans and chimpanzees had a larger number of functional OR genes (>500) and a lower fraction of pseudogenes (41%) than its descendents, suggesting that the OR gene repertoires are in a phase of deterioration in both lineages. Interestingly, despite the close evolutionary relationship between the 2 species, approximately 25% of their functional gene repertoires are species specific due to massive gene losses. These findings suggest that the tempo of evolution of OR genes is similar between humans and chimpanzees, but the OR gene repertoires are quite different between them. This difference might be responsible for the species-specific ability of odor perception.  相似文献   

8.
Vertebrate odorant receptor (OR) genes have been isolated and characterized in several taxa, including bony fish and mammals. However, the search for more ancient vertebrate OR genes has been unsuccessful to date, indicating that these ancient genes share little sequence identity with previously isolated ORs. The lamprey (Lampetra fluviatilis) olfactory epithelium does not appear to express any of the modern vertebrate ORs previously identified in bony fish and mammals. We have isolated and characterized an ancient family of vertebrate membrane receptors from the olfactory epithelium of the lamprey. Sequence analysis reveals similarities with other Class A (rhodopsin-like) G protein-coupled receptors such as serotonin, dopamine, and histamine receptors, but the expression patterns of members of the new family, as well as certain conserved motifs, strongly suggest that the sequences encode ORs. Sequence similarity within the lamprey OR family is low, and Southern blot analysis suggests reduced-sized subfamilies. This novel vertebrate OR gene family, the most ancient isolated to date, is proposed to be involved in the detection of water-borne molecules in jawless fishes. Lamprey OR genes therefore represent a new level of diversity within the vertebrate OR gene family, but also provide clues as to how vertebrate ORs might have emerged. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 383–392, 1998  相似文献   

9.
Amano T  Gascuel J 《PloS one》2012,7(4):e33922
Recent genome wide in silico analyses discovered a new family (type 2 or family H) of odorant receptors (ORs) in teleost fish and frogs. However, since there is no evidence of the expression of these novel OR genes in olfactory sensory neurons (OSN), it remains unknown if type 2 ORs (OR2) function as odorant receptors. In this study, we examined expression of OR2 genes in the frog Xenopus tropicalis. The overall gene expression pattern is highly complex and differs depending on the gene and developmental stage. RT-PCR analysis in larvae showed that all of the OR2η genes we identified were expressed in the peripheral olfactory system and some were detected in the brain and skin. Whole mount in situ hybridization of the larval olfactory cavity confirmed that at least two OR2η genes so far tested are expressed in the OSN. Because tadpoles are aquatic animals, OR2η genes are probably involved in aquatic olfaction. In adults, OR2η genes are expressed in the nose, brain, and testes to different degrees depending on the genes. OR2η expression in the olfactory system is restricted to the medium cavity, which participates in the detection of water-soluble odorants, suggesting that OR2ηs function as receptors for water-soluble odorants. Moreover, the fact that several OR2ηs are significantly expressed in non-olfactory organs suggests unknown roles in a range of biological processes other than putative odorant receptor functions.  相似文献   

10.
Kishida T 《PloS one》2008,3(6):e2385
The olfactory receptor (OR) multigene family is responsible for the sense of smell in vertebrate species. OR genes are scattered widely in our chromosomes and constitute one of the largest gene families in eutherian genomes. Some previous studies revealed that eutherian OR genes diverged mainly during early mammalian evolution. However, the exact period when, and the ecological reason why eutherian ORs strongly diverged has remained unclear. In this study, I performed a strict data mining effort for marsupial opossum OR sequences and bootstrap analyses to estimate the periods of chromosomal migrations and gene duplications of OR genes during tetrapod evolution. The results indicate that chromosomal migrations occurred mainly during early vertebrate evolution before the monotreme-placental split, and that gene duplications occurred mainly during early mammalian evolution between the bird-mammal split and marsupial-placental split, coinciding with the reduction of opsin genes in primitive mammals. It could be thought that the previous chromosomal dispersal allowed the OR genes to subsequently expand easily, and the nocturnal adaptation of early mammals might have triggered the OR gene expansion.  相似文献   

11.

Background  

A common feature of chemosensory systems is the involvement of G protein-coupled receptors (GPCRs) in the detection of environmental stimuli. Several lineages of GPCRs are involved in vertebrate olfaction, including trace amine-associated receptors, type 1 and 2 vomeronasal receptors and odorant receptors (ORs). Gene duplication and gene loss in different vertebrate lineages have lead to an enormous amount of variation in OR gene repertoire among species; some fish have fewer than 100 OR genes, while some mammals possess more than 1000. Fascinating features of the vertebrate olfactory system include allelic exclusion, where each olfactory neuron expresses only a single OR gene, and axonal guidance where neurons expressing the same receptor project axons to common glomerulae. By identifying homologous ORs in vertebrate and in non-vertebrate chordates, we hope to expose ancestral features of the chordate olfactory system that will help us to better understand the evolution of the receptors themselves and of the cellular components of the olfactory system.  相似文献   

12.
Host plant shifts by phytophagous insects play a key role in insect evolution and plant ecology. Such shifts often involve major behavioral changes as the insects must acquire an attraction and/or lose the repulsion to the new host plant's odor and taste. The evolution of chemotactic behavior may be due, in part, to gene expression changes in the peripheral sensory system. To test this hypothesis, we compared gene expression in the olfactory organs of Drosophila sechellia, a narrow ecological specialist that feeds on the fruit of Morinda citrifolia, with its close relatives Drosophila simulans and Drosophila melanogaster, which feed on a wide variety of decaying plant matter. Using whole-genome microarrays and quantitative polymerase chain reaction, we surveyed the entire repertoire of Drosophila odorant receptors (ORs) and odorant-binding proteins (OBPs) expressed in the antennae. We found that the evolution of OR and OBP expression was accelerated in D. sechellia compared both with the genome average in that species and with the rate of OR and OBP evolution in the other species. However, some of the gene expression changes that correlate with D. sechellia's increased sensitivity to Morinda odorants may predate its divergence from D. simulans. Interspecific divergence of olfactory gene expression cannot be fully explained by changes in the relative abundance of different sensilla as some ORs and OBPs have evolved independently of other genes expressed in the same sensilla. A number of OR and OBP genes are upregulated in D. sechellia compared with its generalist relatives. These genes include Or22a, which likely responds to a key odorant of M. citrifolia, and several genes that are yet to be characterized in detail. Increased expression of these genes in D. sechellia may have contributed to the evolution of its unique chemotactic behavior.  相似文献   

13.
NaNa Kang  JaeHyung Koo 《BMB reports》2012,45(11):612-622
Olfactory receptors (ORs) detect volatile chemicals that lead to the initial perception of smell in the brain. The olfactory receptor (OR) is the first protein that recognizes odorants in the olfactory signal pathway and it is present in over 1,000 genes in mice. It is also the largest member of the G protein-coupled receptors (GPCRs). Most ORs are extensively expressed in the nasal olfactory epithelium where they perform the appropriate physiological functions that fit their location. However, recent whole-genome sequencing shows that ORs have been found outside of the olfactory system, suggesting that ORs may play an important role in the ectopic expression of non-chemosensory tissues. The ectopic expressions of ORs and their physiological functions have attracted more attention recently since MOR23 and testicular hOR17-4 have been found to be involved in skeletal muscle development, regeneration, and human sperm chemotaxis, respectively. When identifying additional expression profiles and functions of ORs in non-olfactory tissues, there are limitations posed by the small number of antibodies available for similar OR genes. This review presents the results of a research series that identifies ectopic expressions and functions of ORs in non-chemosensory tissues to provide insight into future research directions. [BMB Reports 2012; 45(11): 612-622]  相似文献   

14.
The vertebrate olfactory receptor (OR) subgenome harbors the largest known gene family, which has been expanded by the need to provide recognition capacity for millions of potential odorants. We implemented an automated procedure to identify all OR coding regions from published sequences. This led us to the identification of 831 OR coding regions (including pseudogenes) from 24 vertebrate species. The resulting dataset was subjected to neighbor-joining phylogenetic analysis and classified into 32 distinct families, 14 of which include only genes from tetrapodan species (Class II ORs). We also report here the first identification of OR sequences from a marsupial (koala) and a monotreme (platypus). Analysis of these OR sequences suggests that the ancestral mammal had a small OR repertoire, which expanded independently in all three mammalian subclasses. Classification of ``fish-like' (Class I) ORs indicates that some of these ancient ORs were maintained and even expanded in mammals. A nomenclature system for the OR gene superfamily is proposed, based on a divergence evolutionary model. The nomenclature consists of the root symbol `OR', followed by a family numeral, subfamily letter(s), and a numeral representing the individual gene within the subfamily. For example, OR3A1 is an OR gene of family 3, subfamily A, and OR7E12P is an OR pseudogene of family 7, subfamily E. The symbol is to be preceded by a species indicator. We have assigned the proposed nomenclature symbols for all 330 human OR genes in the database. A WWW tool for automated name assignment is provided. Received: / Accepted:  相似文献   

15.
P. Bu  Z. Jian  J. Koshy  Y. Shen  B. Yue  Z. Fan 《Animal genetics》2019,50(4):358-366
Olfactory receptors (ORs) are encoded by OR genes. The OR genes in forest musk deer (Moschus berezovskii), which rely on olfaction for reproductive and social communication, are poorly understood. In this study, we analyzed the genome sequence of the forest musk deer to obtain its olfactory subgenome and compared it to other species. A total of 1378 OR‐related sequences were detected in the forest musk deer genome including 864 functional genes, 366 pseudogenes and 148 partial genes. These OR genes were classified into Class I and Class II and were further classified into 18 families and 244 subfamilies through sequence identity. Comparative analyses of the OR genes’ protein sequences in species from different orders (forest musk deer, human, mouse and dog) showed that 12 clusters were specific to forest musk deer. However, when compared to other Artiodactyl species (i.e. cattle, yak and pig) only two clusters were specific to forest musk deer. The odor identification potential of the OR genes in the forest musk deer was focused mainly on floral, woody, lemon, sweet and fatty odors. We also found that OR genes specific to forest musk deer were involved in the identification of spearmint and caraway. Our work is the first genome‐wide analysis of OR genes in forest musk deer. These findings will assist with better understanding the relationship between behavior and olfaction in the forest musk deer and the characteristics of the olfactory subgenome in Artiodactyl mammals.  相似文献   

16.
The mammalian sense of smell is governed by the largest gene family, which encodes the olfactory receptors (ORs). The gain and loss of OR genes is typically correlated with adaptations to various ecological niches. Modern humans have 853 OR genes but 55% of these have lost their function. Here we show evidence of additional OR loss of function in the Neanderthal and Denisovan hominin genomes using comparative genomic methodologies. Ten Neanderthal and 8 Denisovan ORs show evidence of loss of function that differ from the reference modern human OR genome. Some of these losses are also present in a subset of modern humans, while some are unique to each lineage. Morphological changes in the cranium of Neanderthals suggest different sensory arrangements to that of modern humans. We identify differences in functional olfactory receptor genes among modern humans, Neanderthals and Denisovans, suggesting varied loss of function across all three taxa and we highlight the utility of using genomic information to elucidate the sensory niches of extinct species.  相似文献   

17.
18.
19.
20.
Variation in odor perception between individuals is initiated by binding of “odorant” molecules to olfactory receptors (ORs) located in the nasal cavity. To determine the mechanism for variation in odor perception, identification of specific ligands for a large number of ORs is required. However, it has been difficult to identify specific ligands, and ligands have been identified for only 2–3% of the hundreds of mammalian ORs. One way to increase the number of identified ligands is to take advantage of >60 human OR genes that are segregating as a result of a single nucleotide polymorphism, between a functional intact allele and a nonfunctional pseudogene allele. Potential ligands for these ORs can be identified by correlating odor perception of an individual with their genotype [intact/intact (I/I) vs. pseudogene/pseudogene (P/P)] for an OR gene. For this type of study, genotypes must be determined for a large number of individuals. We have developed a PCR-based assay to distinguish between the intact and pseudogene alleles of 49 segregating human OR genes and to determine an individual''s genotype for these genes. To facilitate rapid determination of genotypes for a large number of individuals, the assay uses a small number of simple steps and equipment commonly found in most molecular biology and biochemistry laboratories. Although this assay was developed to distinguish between polymorphisms in OR genes, it can easily be adapted for use in distinguishing single nucleotide polymorphisms in any gene or chromosomal locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号