首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
2.

Background

HIV-1 infection dysregulates the immune system and alters gene expression in circulating monocytes. Differential gene expression analysis of CD14+ monocytes from subjects infected with HIV-1 revealed increased expression of sialoadhesin (Sn, CD169, Siglec 1), a cell adhesion molecule first described in a subset of macrophages activated in chronic inflammatory diseases.

Methodology/Principal Findings

We analyzed sialoadhesin expression on CD14+ monocytes by flow cytometry and found significantly higher expression in subjects with elevated viral loads compared to subjects with undetectable viral loads. In cultured CD14+ monocytes isolated from healthy individuals, sialoadhesin expression was induced by interferon-α and interferon-γ but not tumor necrosis factor-α. Using a stringent binding assay, sialoadhesin-expressing monocytes adsorbed HIV-1 through interaction with the sialic acid residues on the viral envelope glycoprotein gp120. Furthermore, monocytes expressing sialoadhesin facilitated HIV-1 trans infection of permissive cells, which occurred in the absence of monocyte self-infection.

Conclusions/Significance

Increased sialoadhesin expression on CD14+ monocytes occurred in response to HIV-1 infection with maximum expression associated with high viral load. We show that interferons induce sialoadhesin in primary CD14+ monocytes, which is consistent with an antiviral response during viremia. Our findings suggest that circulating sialoadhesin-expressing monocytes are capable of binding HIV-1 and effectively delivering virus to target cells thereby enhancing the distribution of HIV-1. Sialoadhesin could disseminate HIV-1 to viral reservoirs during monocyte immunosurveillance or migration to sites of inflammation and then facilitate HIV-1 infection of permissive cells.  相似文献   

3.
The stage of differentiation and the lineage of CD4+ cells profoundly affect their susceptibility to infection by human immunodeficiency virus type 1 (HIV-1). While CD4+ T lymphocytes in patients are readily susceptible to HIV-1 infection, peripheral blood monocytes are relatively resistant during acute or early infection, even though monocytes also express CD4 and viral strains with macrophage (M)-tropic phenotypes predominate. CCR5, the main coreceptor for M-tropic viruses, clearly contributes to the ability of CD4+ T cells to be infected. To determine whether low levels of CCR5 expression account for the block in infection of monocytes, we examined primary monocyte lineage cells during differentiation. Culturing of blood monocytes for 5 days led to an increase in the mean number of CCR5-positive cells from <20% of monocytes to >80% of monocyte-derived macrophages (MDM). Levels of CCR5 expression per monocyte were generally lower than those on MDM, perhaps below a minimum threshold level necessary for efficient infection. Productive infection may be restricted to the small subset of monocytes that express relatively high levels of CCR5. Steady-state CCR5 mRNA levels also increased four- to fivefold during MDM differentiation. Infection of MDM by M-tropic HIV-1JRFL resulted in >10-fold-higher levels of p24, and MDM harbored >30-fold more HIV-1 DNA copies than monocytes. In the presence of the CCR5-specific monoclonal antibody (MAb) 2D7, virus production and cellular levels of HIV-1 DNA were decreased by >80% in MDM, indicating a block in viral entry. There was a direct association between levels of CCR5 and differentiation of monocytes to macrophages. Levels of CCR5 were related to monocyte resistance and macrophage susceptibility to infection because infection by the M-tropic strain HIV-1JRFL could be blocked by MAb 2D7. These results provide direct evidence that CCR5 functions as a coreceptor for HIV-1 infection of primary macrophages.  相似文献   

4.
5.
Dendritic cells (DCs) are essential antigen-presenting cells for the induction of T cell immunity against HIV. On the other hand, due to the susceptibility of DCs to HIV infection, virus replication is strongly enhanced in DC–T cell interaction via an immunological synapse formed during the antigen presentation process. When HIV-1 is isolated from individuals newly infected with the mixture of R5 and X4 variants, R5 is predominant, irrespective of the route of infection. Because the early massive HIV-1 replication occurs in activated T cells and such T-cell activation is induced by antigen presentation, we postulated that the selective expansion of R5 may largely occur at the level of DC–T cell interaction. Thus, the immunological synapse serves as an infectious synapse through which the virus can be disseminated in vivo. We used fluorescent recombinant X4 and R5 HIV-1 consisting of a common HIV-1 genome structure with distinct envelopes, which allowed us to discriminate the HIV-1 transmitted from DCs infected with the two virus mixtures to antigen-specific CD4+ T cells by flow cytometry. We clearly show that the selective expansion of R5 over X4 HIV-1 did occur, which was determined at an early entry step by the activation status of the CD4+ T cells receiving virus from DCs, but not by virus entry efficiency or productivity in DCs. Our results imply a promising strategy for the efficient control of HIV infection.  相似文献   

6.

Background

Visceral leishmaniasis has emerged as an important opportunistic disease among patients infected with HIV-1. Both HIV-1 and the protozoan parasite Leishmania can productively infect cells of the macrophage-dendritic cell lineage.

Methodology/Principal Findings

Here we demonstrate that Leishmania infantum amastigotes increase HIV-1 production when human primary dendritic cells (DCs) are cocultured together with autologous CD4+ T cells. Interestingly, the promastigote form of the parasite does not modulate virus replication. Moreover, we report that amastigotes promote virus replication in both cell types. Our results indicate that this process is due to secretion of parasite-induced soluble factors by DCs. Luminex micro-beads array system analyses indicate that Leishmania infantum amastigotes induce a higher secretion of several cytokines (i.e. IL-1α, IL-2, IL-6, IL-10 and TNF-α) and chemokines (i.e. MIP-1α, MIP-1β and RANTES) in these cells. Studies conducted with pentoxifylline and neutralizing antibodies revealed that the Leishmania-dependent augmentation in HIV-1 replication is due to a higher secretion of IL-6 and TNF-α.

Conclusions/Significance

Altogether these findings suggest that the presence of Leishmania within DC/T-cell conjugates leads to an enhancement of virus production and demonstrate that HIV-1 and Leishmania can establish complex interactions in such a cellular microenvironment.  相似文献   

7.
HIV-1 proviral DNA integration into host chromosomal DNA is only partially completed by the viral integrase, leaving two single-stranded DNA gaps with 5′-end mismatched viral DNA flaps. It has been inferred that these gaps are repaired by the cellular DNA repair machinery. Here, we investigated the efficiency of gap repair at integration sites in different HIV-1 target cell types. First, we found that the general gap repair machinery in macrophages was attenuated compared with that in dividing CD4+ T cells. In fact, the repair in macrophages was heavily reliant upon host DNA polymerase β (Pol β). Second, we tested whether the poor dNTP availability found in macrophages is responsible for the delayed HIV-1 proviral DNA integration in this cell type because the Km value of Pol β is much higher than the dNTP concentrations found in macrophages. Indeed, with the use of a modified quantitative AluI PCR assay, we demonstrated that the elevation of cellular dNTP concentrations accelerated DNA gap repair in macrophages at HIV-1 proviral DNA integration sites. Finally, we found that human monocytes, which are resistant to HIV-1 infection, exhibited severely restricted gap repair capacity due not only to the very low levels of dNTPs detected but also to the significantly reduced expression of Pol β. Taken together, these results suggest that the low dNTP concentrations found in macrophages and monocytes can restrict the repair steps necessary for HIV-1 integration.  相似文献   

8.

Background

Epidemiological studies suggest that allogeneic immunity may inhibit HIV-1 transmission from mother to baby and is less frequent in multiparous than uniparous women. Alloimmune responses may also be elicited during unprotected heterosexual intercourse, which is associated ex vivo with resistance to HIV infection.

Methodology/Principal Findings

The investigation was carried out in well-defined heterosexual and homosexual monogamous partners, practising unprotected sex and a heterosexual cohort practising protected sex. Allogeneic CD4+ and CD8+ T cell proliferative responses were elicited by stimulating PBMC with the partners'' irradiated monocytes and compared with 3rd party unrelated monocytes, using the CFSE method. Significant increase in allogeneic proliferative responses was found in the CD4+ and CD8+ T cells to the partners'' irradiated monocytes, as compared with 3rd party unrelated monocytes (p≤0.001). However, a significant decrease in proliferative responses, especially of CD8+ T cells to the partners'' compared with 3rd party monocytes was consistent with tolerization, in both the heterosexual and homosexual partners (p<0.01). Examination of CD4+CD25+FoxP3+ regulatory T cells by flow cytometry revealed a significantly greater proportion of these cells in the homosexual than heterosexual partners practising unprotected sex (p<0.05). Ex vivo studies of infectivity of PBMC with HIV-1 showed significantly greater inhibition of infectivity of PBMC from heterosexual subjects practising unprotected compared with those practising protected sex (p = 0.02).

Conclusions/Significance

Both heterosexual and homosexual monogamous partners practising unprotected sex develop allogeneic CD4+ and CD8+ T cell proliferative responses to the partners'' unmatched cells and a minority may be tolerized. However, a greater proportion of homosexual rather than heterosexual partners developed CD4+CD25FoxP3+ regulatory T cells. These results, in addition to finding greater inhibition of HIV-1 infectivity in PBMC ex vivo in heterosexual partners practising unprotected, compared with those practising protected sex, suggest that allogeneic immunity may play a significant role in the immuno-pathogenesis of HIV-1 infection.  相似文献   

9.

Background

Xenotropic murine leukemia virus-related virus (XMRV) has been found in the prostatic tissue of prostate cancer patients and in the blood of chronic fatigue syndrome patients. However, numerous studies have found little to no trace of XMRV in different human cohorts. Based on evidence suggesting common transmission routes between XMRV and HIV-1, HIV-1 infected individuals may represent a high-risk group for XMRV infection and spread.

Methodology/Principal Findings

DNA was isolated from the peripheral blood mononuclear cells (PBMCs) of 179 HIV-1 infected treatment naïve patients, 86 of which were coinfected with HCV, and 54 healthy blood donors. DNA was screened for XMRV provirus with two sensitive, published PCR assays targeting XMRV gag and env and one sensitive, published nested PCR assay targeting env. Detection of XMRV was confirmed by DNA sequencing. One of the 179 HIV-1 infected patients tested positive for gag by non-nested PCR whereas the two other assays did not detect XMRV in any specimen. All healthy blood donors were negative for XMRV proviral sequences. Sera from 23 HIV-1 infected patients (15 HCV+) and 12 healthy donors were screened for the presence of XMRV-reactive antibodies by Western blot. Thirteen sera (57%) from HIV-1+ patients and 6 sera (50%) from healthy donors showed reactivity to XMRV-infected cell lysate.

Conclusions/Significance

The virtual absence of XMRV in PBMCs suggests that XMRV is not associated with HIV-1 infected or HIV-1/HCV coinfected patients, or blood donors. Although we noted isolated incidents of serum reactivity to XMRV, we are unable to verify the antibodies as XMRV specific.  相似文献   

10.
11.
Human immunodeficiency virus type 1 (HIV-1) transmission by the parenteral route is similar to mucosal transmission in the predominance of virus using the CCR5 coreceptor (R5 virus), but it is unclear whether blood dendritic cells (DCs), monocytes, or T cells are the cells initially infected. We used ex vivo HIV-1 infection of sorted blood mononuclear cells to model the in vivo infection of blood leukocytes. Using quantitative real-time PCR to detect full-length HIV-1 DNA, both sorted CD11c+ myeloid and CD11c plasmacytoid DCs were more frequently infected than other blood mononuclear cells, including CD16+ or CD14+ monocytes or resting CD4+ T cells. There was a strong correlation between CCR5 coreceptor use and preferential DC infection across a range of HIV-1 isolates. After infection of unsorted blood mononuclear cells, HIV-1 was initially detected in the CD11c+ DCs and later in other leukocytes, including clustering DCs and activated T cells. DC infection with R5 virus was productive, as shown by efficient transmission to CD4+ T cells in coculture. Blood DCs infected with HIV-1 in vitro and cultured alone expressed only low levels of multiply spliced HIV-1 RNA unless cocultured with CD4+ T cells. Early selective infection of immature blood DCs by R5 virus and upregulation of viral expression during DC-T-cell interaction and transmission provide a potential pathway for R5 selection following parenteral transmission.  相似文献   

12.

Background

During the first trimester of pregnancy, HIV-1 mother-to-child transmission is relatively rare despite the permissivity of placental cells to cell-to-cell HIV-1 infection. The placenta interacts directly with maternal uterine cells (decidual cells) but the physiological role of the decidua in the control of HIV-1 transmission and whether decidua could be a source of infected cells is unknown.

Methodology/Principal Findings

To answer to this question, decidual mononuclear cells were exposed to HIV-1 in vitro. Decidual cells were shown to be more susceptible to infection by an R5 HIV-1, as compared to an X4 HIV-1. Infected cells were identified by flow cytometry analysis. The results showed that CD14+ cells were the main targets of HIV-1 infection in the decidua. These infected CD14+ cells expressed DC-SIGN, CD11b, CD11c, the Fc gamma receptor CD16, CD32 and CD64, classical MHC class-I and class-II and maturation and activation molecules CD83, CD80 and CD86. The permissivity of decidual tissue was also evaluated by histoculture. Decidual tissue was not infected by X4 HIV-1 but was permissive to R5 HIV-1. Different profiles of infection were observed depending on tissue localization.

Conclusions/Significance

The presence of HIV-1 target cells in the decidua in vitro and the low rate of in utero mother-to-child transmission during the first trimester of pregnancy suggest that a natural control occurs in vivo limiting cell-to-cell infection of the placenta and consequently infection of the fetus.  相似文献   

13.
In vitro evidence suggests that memory CD4+ cells are preferentially infected by human immunodeficiency virus type 1 (HIV-1), yet studies of HIV-1-infected individuals have failed to detect preferential memory cell depletion. To explore this paradox, we stimulated CD45RA+ CD4+ (naïve) and CD45RO+ CD4+ (memory) cells with antibodies to CD3 and CD28 and infected them with either CCR5-dependent (R5) or CXCR4-dependent (X4) HIV-1 isolates. Naïve CD4+ cells supported less X4 HIV replication than their memory counterparts. However, naïve cells were susceptible to R5 viral infection, while memory cells remained resistant to infection and viral replication. As with the unseparated cells, mixing the naïve and memory cells prior to infection resulted in cells resistant to R5 infection and highly susceptible to X4 infection. While both naïve and memory CD4+ subsets downregulated CCR5 expression in response to CD28 costimulation, only the memory cells produced high levels of the β-chemokines RANTES, MIP-1α, and MIP-1β upon stimulation. Neutralization of these β-chemokines rendered memory CD4+ cells highly sensitive to infection with R5 HIV-1 isolates, indicating that downregulation of CCR5 is not sufficient to mediate complete protection from CCR5 strains of HIV-1. These results indicate that susceptibility to R5 HIV-1 isolates is determined not only by the level of CCR5 expression but also by the balance of CCR5 expression and β-chemokine production. Furthermore, our results suggest a model of HIV-1 transmission and pathogenesis in which naïve rather than memory CD4+ T cells serve as the targets for early rounds of HIV-1 replication.  相似文献   

14.
15.

Background

Visceral leishmaniasis has now emerged as an important opportunistic disease in patients coinfected with human immunodeficiency virus type-1 (HIV-1). Although the effectiveness of HIV-1 protease inhibitors, such as nelfinavir, in antiretroviral therapies is well documented, little is known of the impact of these drugs on Leishmania in coinfected individuals.

Methodology and Principal Findings

Here, we show that nelfinavir generates oxidative stress in the parasite, leading to altered physiological parameters such as an increase in the sub-G1 DNA content, nuclear DNA fragmentation and loss of mitochondrial potential, which are all characteristics of apoptosis. Pretreatment of axenic amastigotes with the caspase inhibitor z-VAD-fmk did not inhibit the increase in sub-G1 DNA content in nelfinavir-treated parasites, suggesting therefore that this antiviral agent does not kill Leishmania amastigotes in a caspase-dependent manner. Furthermore, we observed that the mitochondrial resident protein endonuclease G is involved. We also demonstrate that parasites overexpressing GSH1 (the rate limiting enzyme of glutathione biosynthesis) were more resistant to nelfinavir when compared to untransfected controls.

Conclusions and Significance

These data suggest that nelfinavir induces oxidative stress in Leishmania amastigotes, culminating in caspase-independent apoptosis, in which DNA is degraded by endonuclease G. This study provides a rationale for future, long-term design of new therapeutic strategies to test nelfinavir as a potential antileishmanial agent as well as for possible future use in Leishmania/HIV-1 coinfections.  相似文献   

16.
17.
The effects of human immunodeficiency virus (HIV) on the immune response in patients with cutaneous leishmaniasis have not yet been fully delineated. This study quantified and evaluated the function of memory T-cell subsets in response to soluble Leishmania antigens (SLA) from patients coinfected with HIV and Leishmania with tegumentary leishmaniasis (TL). Eight TL/HIV coinfected subjects and 10 HIV seronegative subjects with TL were evaluated. The proliferative response of CD4+and CD8+T-cells and naïve, central memory (CM) and effector memory (EM) CD4+T-cells in response to SLA were quantified using flow cytometry. The median cell division indices for CD4+and CD8+T-cells of coinfected patients in response to SLA were significantly lower than those in patients with Leishmania monoinfection (p < 0.05). The proportions of CM and EM CD4+T-cells in response to SLA were similar between the coinfected patients and patients with Leishmania monoinfection. However, the median CM and EM CD4+T-cell counts from coinfected patients were significantly lower (p < 0.05). The reduction in the lymphoproliferative response to Leishmania antigens coincides with the decrease in the absolute numbers of both EM and CM CD4+T-cells in response to Leishmania antigens in patients coinfected with HIV/Leishmania.  相似文献   

18.
Although CD4(+) cells represent the major target for HIV infection in blood, claims of complement-independent binding of HIV-1 to erythrocytes and the possible role of Duffy blood group antigen, have generated controversy. To examine the question of binding to erythrocytes, HIV-1 was incubated in vitro with erythrocytes from 30 healthy leukapheresis donors, and binding was determined by p24 analysis and adsorption of HIV-1 with reduction of infectivity for CD4(+) target cells. All of the cells, regardless of blood group type, bound HIV-1 p24. A typical preparation of erythrocytes bound <2.4% of the added p24, but erythrocytes selectively removed essentially all of the viral infectivity as determined by decreased infection of CD4(+) target cells; however, cell-associated HIV-1 was approximately 100-fold more efficient, via trans infection, than unadsorbed virus for infection of CD4(+) cells. All of the bound HIV-1 p24 was released by treatment of the cells with EDTA, and binding was optimized by adding Ca2+ and Mg2+ during the washing of erythrocytes containing bound HIV-1. Although the small number of contaminating leukocytes in the erythrocyte preparation also bound HIV-1 p24, there was no significant binding to CD4, and it thus appears that the binding occurred on leukocytes at non-CD4 sites. Furthermore, binding occurred to erythrocyte ghosts from which contaminating leukocytes had been previously removed. The results demonstrate that erythrocytes incubated in vitro with HIV-1 differentially adsorb all of the infectious HIV-1 virions (as opposed to non-infectious or degraded virions) in the absence of complement and independent of blood group, and binding is dependent on divalent cations. By analogy with HIV-1 bound to DC-SIGN on dendritic cells, erythrocyte-bound HIV-1 might comprise an important surface reservoir for trans infection of permissive cells.  相似文献   

19.
The C-type lectin receptor DCIR, which has been shown very recently to act as an attachment factor for HIV-1 in dendritic cells, is expressed predominantly on antigen-presenting cells. However, this concept was recently challenged by the discovery that DCIR can also be detected in CD4+ T cells found in the synovial tissue from rheumatoid arthritis (RA) patients. Given that RA and HIV-1 infections share common features such as a chronic inflammatory condition and polyclonal immune hyperactivation status, we hypothesized that HIV-1 could promote DCIR expression in CD4+ T cells. We report here that HIV-1 drives DCIR expression in human primary CD4+ T cells isolated from patients (from both aviremic/treated and viremic/treatment naive persons) and cells acutely infected in vitro (seen in both virus-infected and uninfected cells). Soluble factors produced by virus-infected cells are responsible for the noticed DCIR up-regulation on uninfected cells. Infection studies with Vpr- or Nef-deleted viruses revealed that these two viral genes are not contributing to the mechanism of DCIR induction that is seen following acute infection of CD4+ T cells with HIV-1. Moreover, we report that DCIR is linked to caspase-dependent (induced by a mitochondria-mediated generation of free radicals) and -independent intrinsic apoptotic pathways (involving the death effector AIF). Finally, we demonstrate that the higher surface expression of DCIR in CD4+ T cells is accompanied by an enhancement of virus attachment/entry, replication and transfer. This study shows for the first time that HIV-1 induces DCIR membrane expression in CD4+ T cells, a process that might promote virus dissemination throughout the infected organism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号