共查询到20条相似文献,搜索用时 15 毫秒
1.
p33 ING1b是肿瘤抑制基因ING1的主要表达形式,已有的研究表明,p33ING1b参与了细胞的生长抑制、凋亡、染色质重塑、DNA损伤修复、肿瘤抑制等.但是,它在细胞衰老过程中的作用目前还不清楚.本研究分析了p33 ING1b基因在细胞衰老过程中的表达情况.结果发现,无论在mRNA水平还是在蛋白水平,p33 ING1b在衰老细胞中的表达均降低.通过构建和包装含p33ING1b基因的重组腺病毒,将p33 ING1b导入衰老细胞中使其过表达,结果显示,p33ING1b的过表达明显促进UV诱导的衰老细胞凋亡,提示p33ING1b在衰老细胞中的表达下调与衰老细胞抗凋亡有关. 相似文献
2.
p33ING1b是一个较晚发现的肿瘤抑制基因ING1的主要表达形式,自从被成功克隆以后得到了广泛的研究,已有的研究表明,p33ING1b参与了细胞的生长抑制、凋亡、染色质重塑、DNA损伤修复、肿瘤抑制和细胞衰老等。但是它在细胞衰老过程中的作用特别是对衰老细胞DNA损伤修复的影响还没有被地阐明,在本研究中,我们首先用2BS细胞构建了细胞衰老模型,通过RT-PCR和Western blot技术证实p33ING1b在衰老细胞中的表达水平是下调的,然后通过构建和包装包含p33ING1b基因的腺病毒,将p33ING1b导入年轻和衰老细胞中并使其过表达,用HCR(host cell reactivation)方法检测年轻细胞和衰老细胞DNA损伤修复能力。我们的实验首次表明,相对于年轻细胞,p33ING1b的过表达使衰老细胞的DNA的损伤修复能力显著增加,这说明p33ING1b在衰老细胞中的表达下调与衰老细胞DNA损伤修复能力的下降有关,也进一步证实了p33ING1b在细胞衰老过程中起着十分重要的作用。 相似文献
3.
p33(ING1) enhances UVB-induced apoptosis in melanoma cells 总被引:14,自引:0,他引:14
The biological functions of the tumor suppressor ING1 have been studied extensively in the past few years since it was cloned. It shares many biological functions with p53 and has been reported to mediate growth arrest, senescence, apoptosis, anchorage-dependent growth, chemosensitivity, and DNA repair. Some of these functions, such as cell cycle arrest and apoptosis, have been shown to be dependent on the activity of both ING1 and p53 proteins. Two recent reports by Scott and colleagues demonstrate that p33(ING1) (one of the ING1 isoforms) translocates to the nucleus and binds to PCNA upon UV irradiation. Here we report that p33(ING1) mediates UV-induced cell death in melanoma cells. We found that overexpression of p33(ING1) increased while the introduction of an antisense p33(ING1) plasmid reduced the apoptosis rate in melanoma cells after UVB irradiation. We also demonstrated that enhancement of UV-induced apoptosis by p33(ING1) required the presence of p53. Moreover, we found that p33(ING1) enhanced the expression of endogenous Bax and altered the mitochondrial membrane potential. Taken together, these observations strongly suggest that p33(ING1) cooperates with p53 in UVB-induced apoptosis via the mitochondrial cell death pathway in melanoma cells. 相似文献
4.
5.
p33(ING1)是生长抑制基因(ING1)编码的重要抑癌蛋白,具有抑制细胞生长﹑促进细胞老化﹑维持基因组稳定性、作用于细胞周期调控点等作用,其失活与肿瘤的发生、发展密切相关。本文就近年来有关p33(ING1)的结构、功能及其在肿瘤中的失活机制、临床应用前景等方面的研究进展进行了概述。 相似文献
6.
UV irradiation triggers apoptosis through both the membrane death receptor and the intrinsic apoptotic signaling pathways. Bax, a member of the Bcl-2 family of proteins, translocates from the cytosol to the mitochondrial membrane during UV-induced apoptosis, but the regulation of Bax translocation by UV irradiation remains elusive. In this study, we show that Bax translocation, caspase-3 activation and cell death by UV irradiation are not affected by Z-IETD-fmk (caspase-8 inhibitor), but delayed by Pifithrin- (p53 inhibitor), although Bid cleavage could be completely abolished by Z-IETD-fmk. Co-transfecting YFP-Bax and Bid-CFP into human lung adenocarcinoma cells, we demonstrate that translocation of YFP-Bax precedes that of Bid-CFP, there is no significant FRET (fluorescence resonance energy transfer) between them. Similar results are obtained in COS-7 cells expressing YFP-Bax and Bid-CFP. Furthermore, using acceptor photobleaching technique, we observe that there is no interaction between YFP-Bax and Bid-CFP in both healthy and apoptotic cells. Additionally, during UV-induced apoptosis there is downregulation of Bcl-xL, an anti-apoptotic protein. Overexpression of Bcl-xL in cells susceptible to UV-induced apoptosis prevents Bax translocation and cell death, repression of Bid protein with siRNA (small interfering RNA) do not inhibit cell death by UV irradiation. Taken together, these data strongly suggest that Bax translocation by UV irradiation is a Bid-independent event and inhibited by overexpression of Bcl-xL. 相似文献
7.
The PCNA-associated factor KIAA0101/p15(PAF) binds the potential tumor suppressor product p33ING1b 总被引:1,自引:0,他引:1
Simpson F Lammerts van Bueren K Butterfield N Bennetts JS Bowles J Adolphe C Simms LA Young J Walsh MD Leggett B Fowles LF Wicking C 《Experimental cell research》2006,312(1):73-85
The KIAA0101/p15(PAF)/OEATC-1 protein was initially isolated in a yeast two-hybrid screen for proliferating cell nuclear antigen (PCNA) binding partners, and was shown to bind PCNA competitively with the cell cycle regulator p21(WAF). PCNA is involved in DNA replication and damage repair. Using polyclonal antisera raised against a p15(PAF) fusion protein, we have shown that in a range of mammalian tumor and non-tumor cell lines the endogenous p15(PAF) protein localises to the nucleus and the mitochondria. Under normal conditions no co-localisation with PCNA could be detected, however following exposure to UV it was possible to co-immunoprecipitate p15(PAF) and PCNA from a number of cell lines, suggesting a UV-enhanced association of the two proteins. Overexpression of p15(PAF) in mammalian cells was also found to protect cells from UV-induced cell death. Based on similarities between the behaviour of p15(PAF) and the potential tumor suppressor product p33ING1b, we have further shown that these two proteins interact in the same complex in cell cultures. This suggests that p15(PAF) forms part of a larger protein complex potentially involved in the regulation of DNA repair, apoptosis and cell cycle progression. 相似文献
8.
p33ING1参与了多种生物学过程,包括细胞生长抑制、凋亡、DNA损伤修复、染色质重塑等.近来研究显示,p33在细胞衰老过程中表达降低,这可能与衰老细胞的抗凋亡有关.但p33在衰老细胞中表达下调的分子机理仍不清楚.我们发现,在衰老细胞中miR-138表达升高与p33基因的表达降低密切相关.以下实验结果支持如此结论:(1)与年轻细胞相比,带p33ING1 3′UTR 报告载体荧光素酶活性在衰老细胞中降低;突变3′UTR上的miR-138结合位点可升高报告载体荧光素酶在衰老细胞中的活性;(2)在衰老细胞中miR-138的表达升高;(3)在年轻细胞中,过表达miR-138不仅可抑制带p33ING1 3′UTR 报告载体荧光素酶活性,而且下调细胞内p33ING1基因mRNA和蛋白水平.与此相反,抑制miR-138活性可升高带p33ING1 3′UTR 报告载体荧光素酶活性,并且上调细胞内p33ING1基因mRNA和蛋白水平.这些结果表明,p33ING1基因是miR-138的靶基因;在衰老过程中,miR-138表达升高, 由此导致该基因的表达降低. 相似文献
9.
The p33ING1b tumor suppressor cooperates with p53 to induce apoptosis in response to etoposide in human osteosarcoma cells 总被引:6,自引:0,他引:6
p33ING1b induces cell cycle arrest and stimulates DNA repair, apoptosis and chemosensitivity. The magnitude of some p33ING1b effects may be due to activation of the tumor suppressor p53. To investigate if the p33ING1b protein affected chemosensitivity of osteosarcoma cells, we overexpressed p33ING1b in p53+/+ U2OS cells or in p53-mutant MG63 cells, and then assessed for growth arrest and apoptosis after treatment with etoposide. p33ING1b increased etoposide-induced growth inhibition and apoptosis to a much greater degree in p53+/+ U2OS cells than in p53-mutant MG63 cells. Moreover, ectopic expression of p33ING1b markedly upregulated p53, p21WAF1 and bax protein levels and activated caspase-3 protein kinase in etoposide-treated U2OS cells. Together, our data indicate that p33ING1b prominently enhances etoposide-induced apoptosis through p53-dependent pathways in human osteosarcoma cells. p33ING1b may be an important marker and/or therapeutic target in the prevention and treatment of metastatic osteosarcoma. 相似文献
10.
NAD(P)H quinone oxidoreductase 1 inhibits the proteasomal degradation of the tumour suppressor p33(ING1b) 总被引:1,自引:0,他引:1
The tumour suppressor p33(ING1b) ((ING1b) for inhibitor of growth family, member 1b) is important in cellular stress responses, including cell-cycle arrest, apoptosis, chromatin remodelling and DNA repair; however, its degradation pathway is still unknown. Recently, we showed that genotoxic stress induces p33(ING1b) phosphorylation at Ser 126, and abolishment of Ser 126 phosphorylation markedly shortened its half-life. Therefore, we suggest that Ser 126 phosphorylation modulates the interaction of p33(ING1b) with its degradation machinery, stabilizing this protein. Combining the use of inhibitors of the main degradation pathways in the nucleus (proteasome and calpains), partial isolation of the proteasome complex, and in vitro interaction and degradation assays, we set out to determine the degradation mechanism of p33(ING1b). We found that p33(ING1b) is degraded in the 20S proteasome and that NAD(P)H quinone oxidoreductase 1 (NQO1), an oxidoreductase previously shown to modulate the degradation of p53 in the 20S proteasome, inhibits the degradation of p33(ING1b). Furthermore, ultraviolet irradiation induces p33(ING1b) phosphorylation at Ser 126, which, in turn, facilitates its interaction with NQO1. 相似文献
11.
12.
P Bose S Thakur S Thalappilly B Y Ahn S Satpathy X Feng K Suzuki S W Kim K Riabowol 《Cell death & disease》2013,4(9):e788
The ING family of tumor suppressors acts as readers and writers of the histone epigenetic code, affecting DNA repair, chromatin remodeling, cellular senescence, cell cycle regulation and apoptosis. The best characterized member of the ING family, ING1, interacts with the proliferating cell nuclear antigen (PCNA) in a UV-inducible manner. ING1 also interacts with members of the 14-3-3 family leading to its cytoplasmic relocalization. Overexpression of ING1 enhances expression of the Bax gene and was reported to alter mitochondrial membrane potential in a p53-dependent manner. Here we show that ING1 translocates to the mitochondria of primary fibroblasts and established epithelial cell lines in response to apoptosis inducing stimuli, independent of the cellular p53 status. The ability of ING1 to induce apoptosis in various breast cancer cell lines correlates well with its degree of translocation to the mitochondria after UV treatment. Endogenous ING1 protein specifically interacts with the pro-apoptotic BCL2 family member BAX, and colocalizes with BAX in a UV-inducible manner. Ectopic expression of a mitochondria-targeted ING1 construct is more proficient in inducing apoptosis than the wild type ING1 protein. Bioinformatic analysis of the yeast interactome indicates that yeast ING proteins interact with 64 mitochondrial proteins. Also, sequence analysis of ING1 reveals the presence of a BH3-like domain. These data suggest a model in which stress-induced cytoplasmic relocalization of ING1 by 14-3-3 induces ING1-BAX interaction to promote mitochondrial membrane permeability and represent a paradigm shift in our understanding of ING1 function in the cytoplasm and its contribution to apoptosis. 相似文献
13.
14.
15.
The biological functions of the tumor suppressor ING1 have been studied extensively in the past few years since it was cloned. It shares many biological functions with p53 and has been reported to mediate growth arrest, senescence, apoptosis, anchorage-dependent growth, chemosensitivity, and DNA repair. Some of these functions, such as cell cycle arrest and apoptosis, have been shown to be dependent on the activity of both ING1 and p53 proteins. Two recent reports by Scott and colleagues demonstrate that p33ING1 (one of the ING1 isoforms) translocates to the nucleus and binds to PCNA upon UV irradiation. Here we report that p33ING1 mediates UV-induced cell death in melanoma cells. We found that overexpression of p33ING1 increased while the introduction of an antisense p33ING1 plasmid reduced the apoptosis rate in melanoma cells after UVB irradiation. We also demonstrated that enhancement of UV-induced apoptosis by p33ING1 required the presence of p53. Moreover, we found that p33ING1 enhanced the expression of endogenous Bax and altered the mitochondrial membrane potential. Taken together, these observations strongly suggest that p33ING1 cooperates with p53 in UVB-induced apoptosis via the mitochondrial cell death pathway in melanoma cells. 相似文献
16.
Cyclin-dependent kinase inhibitor p27(Kip1) is required for mouse mammary gland morphogenesis and function 总被引:5,自引:0,他引:5
Muraoka RS Lenferink AE Simpson J Brantley DM Roebuck LR Yakes FM Arteaga CL 《The Journal of cell biology》2001,153(5):917-932
We have studied the role of the cyclin-dependent kinase (Cdk) inhibitor p27(Kip1) in postnatal mammary gland morphogenesis. Based on its ability to negatively regulate cyclin/Cdk function, loss of p27 may result in unrestrained cellular proliferation. However, recent evidence about the stabilizing effect of p27 on cyclin D1-Cdk4 complexes suggests that p27 deficiency might recapitulate the hypoplastic mammary phenotype of cyclin D1-deficient animals. These hypotheses were investigated in postnatal p27-deficient (p27(-/-)), hemizygous (p27(+/)-), or wild-type (p27(+/+)) mammary glands. Mammary glands from p27(+/)- mice displayed increased ductal branching and proliferation with delayed postlactational involution. In contrast, p27(-/-) mammary glands or wild-type mammary fat pads reconstituted with p27(-/-) epithelium produced the opposite phenotype: hypoplasia, low proliferation, decreased ductal branching, impaired lobuloalveolar differentiation, and inability to lactate. The association of cyclin D1 with Cdk4, the kinase activity of Cdk4 against pRb in vitro, the nuclear localization of cyclin D1, and the stability of cyclin D1 were all severely impaired in p27(-/-) mammary epithelial cells compared with p27(+/+) and p27(+/-) mammary epithelial cells. Therefore, p27 is required for mammary gland development in a dose-dependent fashion and positively regulates cyclin D-Cdk4 function in the mammary gland. 相似文献
17.
18.
Ornella Cazzalini Paola Perucca Roberto Mocchi Sabrina Sommatis Lucia Anna Stivala 《Cell cycle (Georgetown, Tex.)》2014,13(2):240-248
DDB2 is a protein playing an essential role in the lesion recognition step of the global genome sub-pathway of nucleotide excision repair (GG-NER) process. Among the proteins involved in the DNA damage response, p21CDKN1A (p21) has been reported to participate in NER, but also to be removed by proteolytic degradation, thanks to its association with PCNA. DDB2 is involved in the CUL4-DDB1 complex mediating p21 degradation; however, the direct interaction between DDB2, p21 and PCNA has been never investigated. Here, we show that DDB2 co-localizes with PCNA and p21 at local UV-induced DNA-damage sites, and these proteins co-immunoprecipitate in the same complex. In addition, we provide evidence that p21 is not able to bind directly DDB2, but, to this end, the presence of PCNA is required. Direct physical association of recombinant DDB2 protein with PCNA is mediated by a conserved PIP-box present in the N-terminal region of DDB2. Mutation of the PIP-box resulted in the loss of protein interaction. Interestingly, the same mutation, or depletion of PCNA by RNA interference, greatly impaired DDB2 degradation induced by UV irradiation. These results indicate that DDB2 is a PCNA-binding protein, and that this association is required for DDB2 proteolytic degradation. 相似文献
19.
Chengqi Guan Zhaoxiu Liu Cuihua Lu Mingbing Xiao Hui Shi Runzhou Ni Zhaolian Bian 《Journal of cellular biochemistry》2019,120(7):11726-11737
The microtubule binding protein, nucleolar spindle-associated protein 1 (NUSAP1), has a crucial function in mitosis and its expression is closely associated with carcinogenesis. Herein, we aimed to determine the function of NUSAP1 in the development of human esophageal squamous cell carcinoma (ESCC), and the association of NUSAP1 expression with ESCC. Immunohistochemical staining of ESCC tissue sections indicated that NUSAP1 was expressed to a higher degree in tumor tissues than in adjacent nontumor tissues. NUSAP1 levels were relevant closely to histological differentiation (P = 0.049). Overall survival was longer in patients with lower NUSAP1 levels ( P < 0.001). NUSAP1 expression ( P = 0.002), histological differentiation ( P < 0.001), tumor depth ( P = 0.045), lymph node metastases ( P < 0.001), and tumor-node-metastasis staging ( P = 0.008) were greatly associated with overall survival using univariate analysis. Multivariate analysis suggested that histological differentiation ( P = 0.014) and NUSAP1 expression ( P = 0.026) could be independent prognostic markers for ESCC. Additionally, the biological behavior of ESCC cells was investigated in vitro and in vivo. Suppression of NUSAP1 inhibited cellular proliferation and invasion, and induced cell cycle arrest and apoptosis in vitro. More importantly, knockdown of NUSAP1 led to inhibition of tumor formation in nude mice. These findings indicated that NUSAP1 is a potential prognostic biomarker in ESCC, and is an ESCC oncogene. Thus, NUSAP1 could represent a therapeutic target for ESCC. 相似文献
20.
Malicet C Hoffmeister A Moreno S Closa D Dagorn JC Vasseur S Iovanna JL 《Biochemical and biophysical research communications》2006,339(1):284-289
p8 is an 80 amino-acid polypeptide identified because of its remarkable over-expression in the stressed pancreas. This protein, apparently devoid of enzymatic activity, is a powerful regulator of several intracellular pathways, suggesting that it has to interact with several molecular partners to modulate their activity. We used two-hybrid screening of a pre-transformed human testes cDNA library to identify some of these partners. One of them was the multifunctional protein Jab1, its interaction with p8 being confirmed by His6-pull down and co-immunoprecipitation assays. In addition, we could show that the two proteins co-localized in the cell. Our functional data demonstrate that Jab1 requires direct interaction with p8 to induce the translocation of p27 from nucleus to cytoplasm and its subsequent degradation. Experiments showing that the knock-down of p8 expression results in a strong inhibition of Jab1 activity confirmed that the mechanism by which Jab1 promotes cell growth by decreasing p27 level is p8-dependent. 相似文献