首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The quality of mitochondria, essential organelles that produce ATP and regulate numerous metabolic pathways, must be strictly monitored to maintain cell homeostasis. The loss of mitochondrial quality control systems is acknowledged as a determinant for many types of neurodegenerative diseases including Parkinson's disease (PD). The two gene products mutated in the autosomal recessive forms of familial early‐onset PD, Parkin and PINK1, have been identified as essential proteins in the clearance of damaged mitochondria via an autophagic pathway termed mitophagy. Recently, significant progress has been made in understanding how the mitochondrial serine/threonine kinase PINK1 and the E3 ligase Parkin work together through a novel stepwise cascade to identify and eliminate damaged mitochondria, a process that relies on the orchestrated crosstalk between ubiquitin/phosphorylation signaling and autophagy. In this review, we highlight our current understanding of the detailed molecular mechanisms governing Parkin‐/PINK1‐mediated mitophagy and the evidences connecting Parkin/PINK1 function and mitochondrial clearance in neurons.  相似文献   

2.
Parkinson disease (PD) is a complex neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra. Multiple genes have been associated with PD, including Parkin and PINK1. Recent studies have established that the Parkin and PINK1 proteins function in a common mitochondrial quality control pathway, whereby disruption of the mitochondrial membrane potential leads to PINK1 stabilization at the mitochondrial outer surface. PINK1 accumulation leads to Parkin recruitment from the cytosol, which in turn promotes the degradation of the damaged mitochondria by autophagy (mitophagy). Most studies characterizing PINK1/Parkin mitophagy have relied on high concentrations of chemical uncouplers to trigger mitochondrial depolarization, a stimulus that has been difficult to adapt to neuronal systems and one unlikely to faithfully model the mitochondrial damage that occurs in PD. Here, we report that the short mitochondrial isoform of ARF (smARF), previously identified as an alternate translation product of the tumor suppressor p19ARF, depolarizes mitochondria and promotes mitophagy in a Parkin/PINK1-dependent manner, both in cell lines and in neurons. The work positions smARF upstream of PINK1 and Parkin and demonstrates that mitophagy can be triggered by intrinsic signaling cascades.  相似文献   

3.
《Autophagy》2013,9(7):871-878
Mitochondrial dysfunction is an early sign of many neurodegenerative diseases. Very recently, two Parkinson disease (PD) associated genes, PINK1 and Parkin, were shown to mediate the degradation of damaged mitochondria via selective autophagy (mitophagy). PINK1 kinase activity is needed for prompt and efficient Parkin recruitment to impaired mitochondria. PD-associated Parkin mutations interfere with the process of mitophagy at distinct steps. Here we show that whole mitochondria are turned over via macroautophagy. Moreover, disease-associated PINK1 mutations also compromise the selective degradation of depolarized mitochondria. This may be due to the decreased physical binding activity of PD-linked PINK1 mutations to Parkin. Thus, PINK1 mutations abrogate autophagy of impaired mitochondria upstream of Parkin. In addition to compromised PINK1 kinase activity, reduced binding of PINK1 to Parkin leads to failure in Parkin mitochondrial translocation, resulting in the accumulation of damaged mitochondria, which may contribute to disease pathogenesis.  相似文献   

4.
Myocyte function and survival relies on the maintenance of a healthy population of mitochondria. The PINK1/Parkin pathway plays an important role in clearing defective mitochondria via autophagy in cells. However, how the PINK1/Parkin pathway regulates mitochondrial quality control and whether it coordinates with other mitophagy pathways are still unclear. Therefore, the objective of this study was to investigate the effect of PINK1-deficiency on mitochondrial quality control in myocytes. Using PINK1-deficient (PINK1-/-) mice, we found that Parkin is recruited to damaged cardiac mitochondria in hearts after treatment with the mitochondrial uncoupler FCCP or after a myocardial infarction even in the absence of PINK1. Parkin recruitment to depolarized mitochondria correlates with increased ubiquitination of mitochondrial proteins and activation of mitophagy in PINK1-/- myocytes. In addition, induction of mitophagy by the atypical BH3-only protein BNIP3 is unaffected by lack of PINK1. Overall, these data suggest that Parkin recruitment to depolarized cardiac mitochondria and subsequent activation of mitophagy is independent of PINK1. Moreover, alternative mechanisms of Parkin activation and pathways of mitophagy remain functional in PINK1-/- myocytes and could compensate for the PINK1 deficiency.  相似文献   

5.
Parkinson disease (PD) is the second most prevalent neurodegenerative disorder, and thus elucidation of the pathogenic mechanism and establishment of a fundamental cure is essential in terms of public welfare. Fortunately, our understanding of the pathogenesis of two types of recessive familial PDs—early-onset familial PD caused by dysfunction of the PTEN-induced putative kinase 1 (PINK1) gene and autosomal recessive juvenile Parkinsonism (ARJP) caused by a mutation in the Parkin gene—has evolved and continues to expand.Key words: PINK1, parkin, ubiquitin, mitochondria, autophagy, mitophagy, membrane potential, quality controlSince the cloning of PINK1 and Parkin, numerous papers have been published about the corresponding gene products, but the mechanism by which dysfunction of PINK1 and/or Parkin causes PD remain unclear. Parkin encodes a ubiquitin ligase E3, a substrate recognition member of the ubiquitination pathway, whereas PINK1 encodes a mitochondria-targeted serine-threonine kinase that contributes to the maintenance of mitochondrial integrity. Based on their molecular functions, it is clear that Parkin-mediated ubiquitination and PINK1 phosphorylation are key events in disease pathogenesis. The underlying mechanism, however, is not as well defined and claims of pathogenicity, until recently, remained controversial. Although Parkin''s E3 activity was clearly demonstrated in vitro, we were unable to show a clear E3 activity of Parkin in cell/in vivo. In addition, despite a predicted mitochondrial localization signal for PINK1, we were unable to detect PINK1 on mitochondria by either immunoblotting or immunocytochemistry. More confusingly, overexpression of nontagged PINK1 mainly localized to the cytoplasm under steady state conditions.Work by Dr. Youle''s group at the National Institutes of Health in 2008, however, offered new insights. They reported that Parkin associated with depolarized mitochondria and that Parkin-marked mitochondria were subsequently cleared by autophagy. Soon after their publication, we also examined the function of Parkin and PINK1 following a decrease in mitochondrial membrane potential. Our findings, described below (Fig. 1), have contributed to the development of a mechanism explaining pathogenicity.Open in a separate windowFigure 1Model of mitochondrial quality control mediated by PINK1 and Parkin. Under steady-state conditions, the mature 60 kDa PINK1 is constantly cleaved by an unknown protease to a 50 kDa intermediate form that is subsequently degraded, presumably by the proteasome (upper part). The protein, however, is stabilized on depolarized mitochondria because the initial processing event is inhibited by a decrease in mitochondrial membrane potential (lower part). Accumulated PINK1 recruits cytosolic Parkin onto depolarized mitochondria resulting in activation of its E3 activity. Parkin then ubiquitinates a mitochondrial substrate(s). As a consequence, damaged mitochondria are degraded via mitophagy. Ub, ubiquitin.(1) We sought to determine the subcellular localization of endogenous PINK1, and realized that endogenous PINK1 is barely detectable under steady-state conditions. However, a decrease in mitochondrial membrane-potential following treatment with the mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) results in the gradual accumulation of endogenous PINK1 on mitochondria. Importantly, when CCCP is washed out, the accumulated endogenous PINK1 rapidly disappears (within 30 min) both in the presence and absence of cycloheximide. These results support the hypothesis that PINK1 is constantly transported to the mitochondria, but is rapidly degraded in a membrane potential-dependent manner (see below for details). We speculate that PINK1 is stabilized by a decrease in mitochondrial membrane potential and as a result accumulates on depolarized mitochondria.(2) We examined the potential role of PINK1 in the mitochondrial recruitment of Parkin. In control MEFs (PINK1+/+), Parkin is selectively recruited to the mitochondria following CCCP treatment, and subsequently results in the selective disappearance of the mitochondria via autophagy (called mitophagy). In sharp contrast, Parkin is not translocated to the mitochondria in PINK1 knockout (PINK1−/−) MEFs following CCCP treatment, and subsequent mitochondrial degradation is also completely impeded. These results suggest that PINK1 is “a Parkin-recruitment factor” that recruits Parkin from the cytoplasm to damaged mitochondria in a membrane potential-dependent manner for mitophagy.(3) We monitored the E3 activity of Parkin using an artificial pseudo-substrate fused to Parkin in cells. Parkin''s E3 activity was repressed under steady-state conditions; however, we find that Parkin ubiquitinates the pseudo-substrate when it is retrieved to the depolarized mitochondria, suggesting that activation of the latent Parkin E3 activity is likewise dependent on a decrease in mitochondrial membrane potential.(4) PINK1 normally exists as either a long (approximately 60 kDa) or a short (approximately 50 kDa) protein. Because the canonical mitochondrial targeting signal (matrix targeting signal) is cleaved after import into the mitochondria, the long form has been designated as the precursor and the short form as the mature PINK1. However, our subcellular localization study of endogenous PINK1 following CCCP treatment shows that the long form is recovered in the mitochondrial fraction, suggesting that it is not the pre-import precursor form. Moreover, by monitoring the degradation process of PINK1 following recovery of membrane potential, we realized that the short form of PINK1 transiently appears soon after CCCP is washed out and then later disappears, suggesting that the processed form of PINK1 is an intermediate in membrane-potential-dependent degradation. In conclusion, these results imply that PINK1 cleavage does not reflect a canonical maturation process accompanying mitochondrial import as initially thought, but rather represents constitutive degradation in healthy mitochondria by a two-step mechanism; i.e., first limited processing and subsequent complete degradation probably via the proteasome.(5) PINK1 accumulation by decrease of membrane potential and subsequent recruitment of Parkin onto mitochondria are presumably etiologically important because they are impeded for the most part by disease-linked mutations of PINK1 or Parkin.These results, together with reports by other groups, strongly suggest that recessive familial PD is caused by dysfunction of quality control for depolarized mitochondria.At present, we do not know whether the aforementioned pathogenic mechanism of recessive familial PD can be generalized to prevalent sporadic PD. However, the clinical symptoms of recessive familial PD caused by dysfunction of PINK1 or Parkin resembles that of idiopathic PD except early-onset pathogenesis, and thus it is plausible that there is a common pathogenic mechanism. We accordingly believe that our results provide solid insight into the molecular mechanisms of PD pathogenesis, not only for familial forms caused by Parkin and PINK1 mutations, but also the major sporadic form of PD.To fully understand the molecular mechanism of PINK1-Parkin-mediated mitophagy, further details need to be addressed including: identifying the protease(s) that processes PINK1 in a mitochondrial membrane-potential dependent manner and that presumably monitors mitochondrial integrity; identifying a physiological substrate(s) of PINK1; determining the molecular mechanism underlying Parkin activation; and identifying the protein(s) linking Parkin-mediated ubiquitination to mitophagy. A detailed mechanism of the aforementioned events will be the focus of future research, however, we feel our conclusion that PINK1 and Parkin function in the removal of depolarized mitochondria is evident and hope that our studies will provide a solid foundation for further studies.  相似文献   

6.
PINK1 and Parkin mutations cause recessive Parkinson's disease (PD). In Drosophila and SH-SY5Y cells, Parkin is recruited by PINK1 to damaged mitochondria, where it ubiquitinates Mitofusins and consequently promotes mitochondrial fission and mitophagy.Here, we investigated the impact of mutations in endogenous PINK1 and Parkin on the ubiquitination of mitochondrial fusion and fission factors and the mitochondrial network structure. Treating control fibroblasts with mitochondrial membrane potential (Δψ) inhibitors or H(2)O(2) resulted in ubiquitination of Mfn1/2 but not of OPA1 or Fis1. Ubiquitination of Mitofusins through the PINK1/Parkin pathway was observed within 1 h of treatment. Upon combined inhibition of Δψ and the ubiquitin proteasome system (UPS), no ubiquitination of Mitofusins was detected. Regarding morphological changes, we observed a trend towards increased mitochondrial branching in PD patient cells upon mitochondrial stress.For the first time in PD patient-derived cells, we demonstrate that mutations in PINK1 and Parkin impair ubiquitination of Mitofusins. In the presence of UPS inhibitors, ubiquitinated Mitofusin is deubiquitinated by the UPS but not degraded, suggesting that the UPS is involved in Mitofusin degradation.  相似文献   

7.
Mutations in the mitochondrial kinase PINK1 and the cytosolic E3 ligase Parkin can cause Parkinson's disease. Damaged mitochondria accumulate PINK1 on the outer membrane where, dependent on kinase activity, it recruits and activates Parkin to induce mitophagy, potentially maintaining organelle fidelity. How PINK1 recruits Parkin is unknown. We show that endogenous PINK1 forms a 700 kDa complex with the translocase of the outer membrane (TOM) selectively on depolarized mitochondria whereas PINK1 ectopically targeted to the outer membrane retains association with TOM on polarized mitochondria. Inducibly targeting PINK1 to peroxisomes or lysosomes, which lack a TOM complex, recruits Parkin and activates ubiquitin ligase activity on the respective organelles. Once there, Parkin induces organelle selective autophagy of peroxisomes but not lysosomes. We propose that the association of PINK1 with the TOM complex allows rapid reimport of PINK1 to rescue repolarized mitochondria from mitophagy, and discount mitochondrial-specific factors for Parkin translocation and activation.  相似文献   

8.
The elucidation of the function of the PINK1 protein kinase and Parkin ubiquitin E3 ligase in the elimination of damaged mitochondria by autophagy (mitophagy) has provided unprecedented understanding of the mechanistic pathways underlying Parkinson’s disease (PD). We provide a comprehensive overview of the general importance of autophagy in Parkinson’s disease and related disorders of the central nervous system. This reveals a critical link between autophagy and neurodegenerative and neurodevelopmental disorders and suggests that strategies to modulate mitophagy may have greater relevance in the CNS beyond PD.  相似文献   

9.
Dissection of the function of two Parkinson's disease-linked genes encoding the protein kinase, PTEN-induced kinase 1 (PINK1) and ubiquitin E3 ligase, Parkin, has illuminated a highly conserved mitochondrial quality control pathway found in nearly every cell type including neurons. Mitochondrial damage-induced activation of PINK1 stimulates phosphorylation-dependent activation of Parkin and ubiquitin-dependent elimination of mitochondria by autophagy (mitophagy). Structural, cell biological and neuronal studies are unravelling the key steps of PINK1/Parkin-dependent mitophagy and uncovering new insights into how the pathway is regulated. The emerging role for aberrant immune activation as a driver of dopaminergic neuron degeneration after loss of PINK1 and Parkin poses new exciting questions on cell-autonomous and noncell-autonomous mechanisms of PINK1/Parkin signalling in vivo.  相似文献   

10.
The failure to trigger mitophagy is implicated in the pathogenesis of familial Parkinson disease that is caused by PINK1 or Parkin mutations. According to the prevailing PINK1-Parkin signaling model, mitophagy is promoted by the mitochondrial translocation of Parkin, an essential PINK1-dependent step that occurs via a previously unknown mechanism. Here we determined that critical concentrations of NO was sufficient to induce the mitochondrial translocation of Parkin even in PINK1 deficiency, with apparent increased interaction of full-length PINK1 accumulated during mitophagy, with neuronal nitric oxide synthase (nNOS). Specifically, optimum levels of NO enabled PINK1-null dopaminergic neuronal cells to regain the mitochondrial translocation of Parkin, which appeared to be significantly suppressed by nNOS-null mutation. Moreover, nNOS-null mutation resulted in the same mitochondrial electron transport chain (ETC) enzyme deficits as PINK1-null mutation. The involvement of mitochondrial nNOS activation in mitophagy was further confirmed by the greatly increased interactions of full-length PINK1 with nNOS, accompanied by mitochondrial accumulation of phospho-nNOS (Ser1412) during mitophagy. Of great interest is that the L347P PINK1 mutant failed to bind to nNOS. The loss of nNOS phosphorylation and Parkin accumulation on PINK1-deficient mitochondria could be reversed in a PINK1-dependent manner. Finally, non-toxic levels of NO treatment aided in the recovery of PINK1-null dopaminergic neuronal cells from mitochondrial ETC enzyme deficits. In summary, we demonstrated the full-length PINK1-dependent recruitment of nNOS, its activation in the induction of Parkin translocation, and the feasibility of NO-based pharmacotherapy for defective mitophagy and ETC enzyme deficits in Parkinson disease.  相似文献   

11.
《Autophagy》2013,9(5):660-662
Much evidence links mitochondrial dysfunction to the death of neurons in Parkinson disease (PD), and is particularly emphasized by our growing understanding of the function of genes linked to recessively inherited PD such as PINK1, parkin and DJ-1. Recent work has revealed an exciting link between the PINK1-Parkin pathway and the autophagic turnover of dysfunctional mitochondrial (mitophagy). We have recently shown that mitofusin is ubiquitinated by Parkin when it is recruited to dysfunctional mitochondria. Recent work also shows that regulated fission and fusion events help segregate dysfunctional mitochondria prior to mitophagy. Here we hypothesize how Parkin-mediated ubiquitination of Mfn may play a role in this mechanism.  相似文献   

12.
Mutations in Pten-induced kinase 1 (PINK1) are linked to early-onset familial Parkinson's disease (FPD). PINK1 has previously been implicated in mitochondrial fission/fusion dynamics, quality control, and electron transport chain function. However, it is not clear how these processes are interconnected and whether they are sufficient to explain all aspects of PINK1 pathogenesis. Here we show that PINK1 also controls mitochondrial motility. In Drosophila, downregulation of dMiro or other components of the mitochondrial transport machinery rescued dPINK1 mutant phenotypes in the muscle and dopaminergic (DA) neurons, whereas dMiro overexpression alone caused DA neuron loss. dMiro protein level was increased in dPINK1 mutant but decreased in dPINK1 or dParkin overexpression conditions. In Drosophila larval motor neurons, overexpression of dPINK1 inhibited axonal mitochondria transport in both anterograde and retrograde directions, whereas dPINK1 knockdown promoted anterograde transport. In HeLa cells, overexpressed hPINK1 worked together with hParkin, another FPD gene, to regulate the ubiquitination and degradation of hMiro1 and hMiro2, apparently in a Ser-156 phosphorylation-independent manner. Also in HeLa cells, loss of hMiro promoted the perinuclear clustering of mitochondria and facilitated autophagy of damaged mitochondria, effects previously associated with activation of the PINK1/Parkin pathway. These newly identified functions of PINK1/Parkin and Miro in mitochondrial transport and mitophagy contribute to our understanding of the complex interplays in mitochondrial quality control that are critically involved in PD pathogenesis, and they may explain the peripheral neuropathy symptoms seen in some PD patients carrying particular PINK1 or Parkin mutations. Moreover, the different effects of loss of PINK1 function on Miro protein level in Drosophila and mouse cells may offer one explanation of the distinct phenotypic manifestations of PINK1 mutants in these two species.  相似文献   

13.
Mitophagy alleviates neuronal damage after cerebral ischemia by selectively removing dysfunctional mitochondria. Phosphatase and tensin homolog (PTEN) induced putative kinase 1 (PINK1)/Parkin-mediated mitophagy is the most well-known type of mitophagy. However, little is known about the role of PINK1/Parkin-mediated mitophagy in ischemic tolerance induced by hypoxic postconditioning (HPC) with 8% O2 against transient global cerebral ischemia (tGCI). Hence, we aimed to test the hypothesis that HPC-mediated PINK1/Parkin-induced mitochondrial ubiquitination and promotes mitophagy, thus exerting neuroprotection in the hippocampal CA1 subregion against tGCI. We found that mitochondrial clearance was disturbed at the late phase of reperfusion after tGCI, which was reversed by HPC, as evidenced by the reduction of the translocase of outer mitochondrial membrane 20 homologs (TOMM20), translocase of inner mitochondrial membrane 23 (TIMM23) and heat shock protein 60 (HSP60) in CA1 after HPC. In addition, HPC further increased the ratio of LC3II/I in mitochondrial fraction and promoted the formation of mitophagosomes in CA1 neurons after tGCI. The administration of lysosome inhibitor chloroquine (CQ) intraperitoneally or mitophagy inhibitor (Mdivi-1) intracerebroventricularly abrogated HPC-induced mitochondrial turnover and neuroprotection in CA1 after tGCI. We also found that HPC activated PINK1/Parkin pathway after tGCI, as shown by the augment of mitochondrial PINK1 and Parkin and the promotion of mitochondrial ubiquitination in CA1. In addition, PINK1 or Parkin knockdown with small-interfering RNA (siRNA) suppressed the activation of PINK1/Parkin pathway and hampered mitochondrial clearance and attenuated neuroprotection induced by HPC, whereas PINK1 overexpression promoted PINK1/Parkin-mediated mitophagy and ameliorated neuronal damage in CA1 after tGCI. Taken together, the new finding in this study is that HPC-induced neuroprotection against tGCI through promoting mitophagy mediated by PINK1/Parkin-dependent pathway.Subject terms: Cell death in the nervous system, Stroke  相似文献   

14.
PINK1, a serine/threonine ubiquitin kinase, and Parkin, an E3 ubiquitin ligase, work in coordination to target damaged mitochondria to the lysosome in a process called mitophagy. This review will cover what we have learned from PINK1 and Parkin knockout (KO) mice. Systemic PINK1 and Parkin KO mouse models haven’t faithfully recapitulated early onset forms of Parkinson’s disease found in humans with recessive mutations in these genes. However, the utilization of these mouse models has given us insight into how PINK1 and Parkin contribute to mitochondrial quality control and function in different tissues beyond the brain such as in heart and adipose tissue. Although PINK1 and Parkin KO mice have been generated over a decade ago, these models are still being used today to creatively elucidate cell-type specific functions. Recently, these mouse models have uncovered that these proteins contribute to innate immunity and cancer phenotypes.  相似文献   

15.
PINK1 is a mitochondrial kinase proposed to have a role in the pathogenesis of Parkinson''s disease through the regulation of mitophagy. Here, we show that the PINK1 main cleavage product, PINK152, after being generated inside mitochondria, can exit these organelles and localize to the cytosol, where it is not only destined for degradation by the proteasome but binds to Parkin. The interaction of cytosolic PINK1 with Parkin represses Parkin translocation to the mitochondria and subsequent mitophagy. Our work therefore highlights the existence of two cellular pools of PINK1 that have different effects on Parkin translocation and mitophagy.  相似文献   

16.
Xinnan Wang 《Autophagy》2017,13(11):1998-1999
The knowledge gap separating the molecular and cellular underpinnings of Parkinson disease (PD) and its pathology hinders treatment innovation. Adding to this difficulty is the lack of a reliable biomarker for PD. Our previous studies identify a link of 2 PD proteins, PINK1/PRKN Parkin to a mitochondrial motor adaptor RHOT1/Miro-1, which mediates mitochondrial motility and mitophagy. Here we review our recent paper showing that a third PD protein, LRRK2, also targets RHOT1 and regulates mitophagy, and pathogenic LRRK2 disrupts this function. Notably, we discover impairments in RHOT1 and mitophagy in sporadic PD patients with no known genetic backgrounds, pointing to RHOT1-mediated mitophagy as a convergent pathway in PD. This novelty opens new doors in PD research toward RHOT1-based therapy and biomarker development.  相似文献   

17.
Parkin is a well-established synergistic mediator of mitophagy in dysfunctional mitochondria. Mitochondria are the main target of arsenic trioxide (ATO) cytotoxicity, and the effect of mitophagy on ATO action remains unclear. In this study, we used stable Parkin-expressing (YFP-Parkin) and Parkin loss-of-function mutant (Parkin C431S) HeLa cell models to ascertain whether Parkin-mediated mitophagy participates in ATO-induced apoptosis/cell death. Our data showed that the overexpression of Parkin significantly sensitized HeLa cells to ATO-initiated proliferation inhibition and apoptosis; however, the mutation of Parkin C431S significantly weakened this Parkin-mediated responsiveness. Our further investigation found that ATO significantly downregulated two fusion proteins (Mfn1/2) and upregulated fission-related protein (Drp1). Autophagy was also activated as evidenced by the formation of autophagic vacuoles and mitophagosomes, increased expression of PINK1, and recruitment of Parkin to impaired mitochondria followed by their degradation, accompanied by the increased transformation of LC3-I to LC3-II, increased expression of Beclin1 and decreased expression of P62 in YFP-Parkin HeLa cells. Enhanced mitochondrial fragmentation and autophagy indicated that mitophagy was activated. Furthermore, during the process of mitophagy, the overproduction of ROS implied that ROS might represent a key factor that initiates mitophagy following Parkin recruitment to mitochondria. In conclusion, our findings indicate that Parkin is critically involved in ATO-triggered mitophagy and functions as a potential antiproliferative target in cancer cells.  相似文献   

18.
线粒体自噬(mitochondrial autophagy, or mitophagy)指的是细胞通过自吞噬作用,降解与清除受损线粒体或者多余线粒体,其对整个线粒体网络的功能完整性和细胞存活具有重要作用。线粒体自噬过程受多种途径调控,PINK1/Parkin通路是其中的一条,其异常与多种疾病的发生密切相关,如心血管疾病、肿瘤和帕金森病等。在去极化线粒体中,磷酸酶及张力蛋白同源物(PTEN)诱导的激酶1(PTEN-induced kinase 1,PINK1)作为受损线粒体的分子传感器,触发线粒体自噬的起始信号,并将Parkin募集至线粒体;Parkin作为线粒体自噬信号的“增强子”,通过对线粒体蛋白质进一步泛素化介导自噬信号的扩大;去泛素化酶和PTEN-long蛋白参与调控该过程,并对维持线粒体稳态具有重要作用。本文主要对PINK1与Parkin蛋白质的分子结构和其介导线粒体自噬发生的分子机制,以及参与调控该途径的关键蛋白质进行综述,为进一步研究以线粒体自噬缺陷为特征的疾病治疗提供理论基础。  相似文献   

19.
Mutations in several genes, including PINK1 and Parkin, are known to cause autosomal recessive cases of Parkinson disease in humans. These genes operate in the same pathway and play a crucial role in mitochondrial dynamics and maintenance. PINK1 is required to recruit Parkin to mitochondria and initiate mitophagy upon mitochondrial depolarization. In this study, we show that PINK1-dependent Parkin mitochondrial recruitment in response to global mitochondrial damage by carbonyl cyanide m-chlorophenylhydrazine (CCCP) requires active glucose metabolism. Parkin accumulation on mitochondria and subsequent Parkin-dependent mitophagy is abrogated in glucose-free medium or in the presence of 2-deoxy-d-glucose upon CCCP treatment. The defects in Parkin recruitment correlate with intracellular ATP levels and can be attributed to suppression of PINK1 up-regulation in response to mitochondria depolarization. Low levels of ATP appear to prevent PINK1 translation instead of affecting PINK1 mRNA expression or reducing its stability. Consistent with a requirement of ATP for elevated PINK1 levels and Parkin mitochondrial recruitment, local or individual mitochondrial damage via photoirradiation does not affect Parkin recruitment to damaged mitochondria as long as a pool of functional mitochondria is present in the photoirradiated cells even in glucose-free or 2-deoxy-d-glucose-treated conditions. Thus, our data identify ATP as a key regulator for Parkin mitochondrial translocation and sustaining elevated PINK1 levels during mitophagy. PINK1 functions as an AND gate and a metabolic sensor coupling biogenetics of cells and stress signals to mitochondria dynamics.  相似文献   

20.
Parkinson disease (PD) is the most common movement disorder and is characterized by dopaminergic dysfunction. The majority of PD cases are sporadic; however, the discovery of genes linked to rare familial forms of the disease has provided crucial insight into the molecular mechanisms of disease pathogenesis. Multiple genes mediating familial forms of Parkinson’s disease (PD) have been identified, such as parkin (PARK2) and phosphatase and tensin homologue deleted on chromosome ten (PTEN)-induced putative kinase 1: PINK1 (PARK6). Here, we showed that Parkin directly interacts with PINK1, but did not bind to pathogenic PINK1 mutants. Parkin, but not its pathogenic mutants, stabilizes PINK1 by interfering with its degradation via the ubiquitin-mediated proteasomal pathway. In addition, the interaction between Parkin and PINK1 resulted in reciprocal reduction of their solubility. Our results indicate that Parkin regulates PINK1 stabilization via direct interaction with PINK1, and operates through a common pathway with PINK1 in the pathogenesis of early-onset PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号